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Atomic boson sampling in a Bose-Einstein-condensed gas

V. V. Kocharovsky ,1 Vl. V. Kocharovsky ,2 and S. V. Tarasov 2

1Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
2Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia

(Received 2 January 2022; revised 31 July 2022; accepted 17 November 2022; published 19 December 2022)

We consider quantum statistical physics of many-body equilibrium fluctuations in an interacting Bose-
Einstein-condensed (BEC) gas. We find a universal analytic formula for a characteristic function (Fourier
transform) of a joint probability distribution for the particle occupation numbers in a BEC gas and discuss �P-
hardness of computing this distribution. The latter is done by means of the Hafnian master theorem generalizing
the classical permanent master theorem of MacMahon. We suggest an atomic boson sampling in the many-body
interacting systems as an alternative to a widely studied Gaussian boson sampling of photons. We outline a
multiqubit BEC trap, formed by a set of the single-qubit potential wells, as a convenient model for studying
atomic boson sampling.
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I. INTRODUCTION: MANY-BODY BEC FLUCTUATIONS
AND GAUSSIAN BOSON SAMPLING

The subject of the paper is the quantum statistical physics
of the many-body equilibrium fluctuations in a gas with
a Bose-Einstein condensate (BEC). We present the explicit
analytic solution for the statistics of this stationary stochas-
tic process and associated atomic boson sampling. In doing
this analysis, we need to touch, albeit only briefly, upon a
prototype model and experimental aspects of atomic boson
sampling in a BEC gas as well as upon mathematics behind
a computational complexity of the above process. Those as-
pects of this nontrivial physical problem are closely related
to the fundamental physics of the many-body process under
consideration. Their detailed analysis is certainly needed, but
it is beyond the scope of the present paper.

Boson sampling of the single-photon Fock states in a
linear interferometer had been suggested in Refs. [1,2] for
demonstrating quantum advantage of many-body quantum
simulators over classical computers [3–7]. Yet an absence of
suitable on-demand sources of single photons put forward the
boson sampling of Gaussian, squeezed states of photons as
the most plausible platform [2,8–32]. We consider physics of
an alternative system which is based on the BEC of trapped
interacting atoms. The starting point of our analysis is a fact
of two-mode squeezing of particle excitations in a BEC trap
established in Ref. [33] and strongly pronounced in the fluc-
tuations of a total BEC occupation calculated in Ref. [34].

Physics of N atoms in a BEC trap looks substan-
tially different from the physics of massless photons in the
interaction-free, nonequilibrium (nonthermal), linear inter-
ferometer due to the presence of the condensate, thermal
equilibrium, particle mass, and interaction as well as the ab-
sence of external sources of bosons. Yet we show that these
peculiarities do not prevent us from solving this problem an-
alytically and, in fact, turn the BEC trap into a deep platform
for testing quantum many-body physics, in particular, boson

sampling. In the present paper, we elaborate on the underly-
ing many-body BEC physics and do not aim to simulate the
Gaussian boson sampling in an optical interferometer.

Consider joint fluctuations in the occupations of the ex-
cited particle states. We find a truly simple, universal formula
for their characteristic function (Fourier transform of their
joint probability distribution) in terms of a normally ordered
correlation function G of trapped particles. By means of the
Hafnian master theorem (28), it yields the cumulants (hence,
moments) and probabilities of the joint distribution via a
matrix Hafnian (a certain extension of the matrix permanent
[35–37]). The Hafnians and permanents are �P-hard for com-
puting [38,39] and can be viewed as a universal tool for
analyzing the �P-hard problems [3,40]. This fact implies �P-
hardness of computing many-body equilibrium fluctuations in
the occupations of excited particle states in a BEC trap and
opens a path for the exploration of an entire spectrum of the
theoretical or experimental BEC problems inspired by boson
sampling in an optical interferometer.

A reduction to computing a permanent is known also for
the transition amplitude of a quantum circuit in a universal
quantum computer [41]. This fact puts the �P-hardnesses of
(i) the quantum statistics in a BEC trap and (ii) the universal
quantum computer on the same footing.

For simplicity’s sake, we consider an equilibrium BEC in a
weakly interacting gas at temperatures well below the critical
region within the Bogoliubov-Popov approximation [42,43]
and show that computing particle excitation fluctuations is a
�P-hard problem (even within the grand canonical ensemble
adopted in this paper).

The grand canonical ensemble does not fully account for
the canonical-ensemble constraint of an exact conservation of
the total number of particles N in the BEC trap, N = const.
The latter is the ultimate reason for the very onset of the BEC
phase transition [44]. A canonical-ensemble analysis of the
critical fluctuations near the critical temperature of the BEC

2469-9926/2022/106(6)/063312(19) 063312-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6802-3258
https://orcid.org/0000-0002-0487-4931
https://orcid.org/0000-0002-4219-4291
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.063312&domain=pdf&date_stamp=2022-12-19
https://doi.org/10.1103/PhysRevA.106.063312


KOCHAROVSKY, KOCHAROVSKY, AND TARASOV PHYSICAL REVIEW A 106, 063312 (2022)

FIG. 1. The multiqubit BEC trap: A sketch of the geometry of its
trapping potential in the case of a two-dimensional lattice built of the
Q single-qubit cells. Each single-qubit cell is formed by a double-
well potential featuring two close lower energy levels separated from
the higher energy levels by the energy gap �E much wider than
the lower-energy splitting δE . Slightly uneven depths of different
single-qubit cells are chosen on purpose to show the presence of
an inhomogeneous underlying (background) potential, designed for
controlling cell occupations, the condensate profile, and Bogoliubov
couplings. For clarity’s sake, the high potential walls at the outer
borders of the multiqubit trap are not shown.

phase transition is much more involved. It can be fulfilled on
the basis of the Holstein-Primakoff, or Girardeaux-Arnowitt,
representation by means of the nonpolynomial diagram tech-
nique and recurrence equations for partial contractions of the
atomic field operators described in Refs. [45–47]. It also leads
to the matrix permanent or Hafnian.

Experimental studies of cold dilute gases [48–62] allowed
one to directly measure fluctuations in a total noncondensate
occupation. Further splitting the noncondensate into parts and
measuring fluctuations in occupations of the coarse-grained
groups of excited states will come soon. Understanding such
fluctuations means reaching a much deeper level of quantum
statistics than a level of the mean condensate, quasiparticle
characteristics, and condensate fluctuations studied previously
[50,51,63–68]. Particle-number fluctuations are important
for matter-wave interferometers [69] (like Ramsey [70,71]
or Mach-Zehnder [72] on-chip ones) and were studied for
squeezed states [70] and trap cells [73,74].

II. A POTENTIAL TRAP DESIGN FEATURING ATOMIC
BOSON SAMPLING: THE BEC TRAP MADE

UP OF QUBIT POTENTIAL WELLS

To exemplify a many-body system under general physical
analysis, let us use an example shown in Fig. 1. Such specially
designed traps could be employed to test atomic boson sam-
pling in a controllable, full, and clear way. The challenge is
twofold. First, a trap with a finite number M of lower split-off
excited states or groups of states, coupled to each other via
Bogoliubov coupling, is desirable. If all higher excited states
are separated from such a lower miniband by an energy gap
wider than the temperature T and have vanishing Bogoliubov
couplings, they have exponentially small occupations and can
be skipped or accounted for as a kind of perturbation. Second,
there should be a way to sample and simultaneously measure
occupations of some lower miniband states or some groups of
them, say, via a multidetector imaging.

Consider a design of the BEC trap with a split-off lower
energy miniband inspired by an analogy with a multiqubit
system. Let us start with several, Q, tight qubit cells, each with
two close lower energy levels, adjust the intercell potential
barriers to be relatively narrow but not very high, and arrange
the cells into a two- or three-dimensional lattice. Then, place
the lattice on top of a slightly varying in space background po-
tential with high walls at the trap borders. Quantum tunneling
of atoms under the intercell barriers should be significant to
ensure a reasonable interaction between atoms from different
individual qubit wells needed for a formation of a common
nonuniform condensate and significant Bogoliubov couplings
within a large subset of excited states. Otherwise, the atomic
boson sampling would not show its full computational com-
plexity.

If the intercell potential walls are infinitely high and cells
are the same, then two wave eigenfunctions corresponding to
the first, e1, and second, e2, energy levels in each single-qubit
cell constitute a natural basis for constructing the excited
states of the trap. The 2Q combinations of those single-qubit
states are the eigenfunctions of the entire multiqubit well and
form a lower miniband of energy levels, {εq}. In the degen-
erate case of the identical single-qubit cells, there are Q + 1
different levels in this miniband, εq = (Q − q)e1 + qe2; q =
0, 1, ..., Q. A degeneracy, gq, of each level εq is the number of
ways to assign the second energy level e2 to the q single-qubit
cells and the first energy level e1 to the rest of the Q − q
single-qubit cells, that is, the binomial coefficient, gq = (Qq).
The sum of those degeneracies equals the total number of
wave eigenfunctions in the miniband,

∑Q
q=0

(Q
q

) = 2Q.
It is instructive to see how these eigenfunctions of the

multiqubit trap with infinitely high walls emerge adiabatically
from single-particle wave functions of the original struc-
tureless (say, box) trap with increasing intercell potentials.
Analysis of a one-dimensional (1D) model with a flat potential
and almost equally spaced delta-function potential barriers
suggests that these eigenfunctions in the system of indepen-
dent qubit cells asymptotically correspond to the appropriate
superpositions of the 2Q lower-energy eigenfunctions of the
entire trap with finite potential barriers. Based on this observa-
tion, one can choose the 2Q lower-energy eigenfunctions of an
actual trap as a system of two (s = 1 and s = 2) bands of the
generating eigenfunctions {ϕs,p|p = 1, ..., Q} to work with.
By analogy, it is even possible to think about a new system
of Q distributed qubits assigning a pair of eigenfunctions ϕ1,p

and ϕ2,p′ (e.g., with equal indices p′ = p) to be the lower and
upper energy states of a new qubit. In such a multiqubit model
of an actual trap with arbitrary finite (not necessarily infinite)
intercell potential walls, there are 2Q multiqubit combinations
of the above eigenfunctions of the miniband of the 2Q low-
est energy levels. The corresponding qubits are not identical
anymore, even if the cell dimensions are the same.

Varying the dimensions and background potentials of the
single-qubit cells would allow one to control and vary the
trap eigenfunctions ϕs,p and energy levels in a wide range.
In particular, the background potentials individually control
the amplitudes of eigenfunctions in different cells, that is,
the relative occupations of different single-qubit cells. Tuning
the intracell potential barriers provides an efficient tool for
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controlling the intraqubit properties such as the qubit energy
splittings δEj, j = 1, ..., Q.

In this paper, we consider an arbitrary number, M + 1,
of the single-particle energy levels of the trap constituting a
miniband. For example, one can adjust parameters to have
a lower miniband of M + 1 = 2Q levels separated from all
higher energy levels by an energy gap �E wider than the
temperature T . In a typical design, the size of the qubit well
is of the order of the de Broglie wavelength, about 1 µm. The
size of the entire multiqubit BEC trap, say, in the 2D case is
about

√
Q μm.

Another design could be based on a bunch of Q quasi-1D
BEC traps each supporting a preselected (say, via a prop-
erly designed Bragg reflection) longitudinal atomic mode
and coupled to neighbors via a quantum tunneling through
potential barriers constituting walls between 1D traps. A
cross-section profile of each 1D trap could support two, al-
most degenerate, transverse atomic modes with close lower
energy levels constituting a qubit for each longitudinal mode.
All higher-order transverse atomic modes could have much
higher energy levels separated from the two qubit levels by a
gap �E � T .

An individual qubit well has a twofold-degenerate ground
level split by a certain perturbation. In particular, a double-
well trap becomes the qubit well if its parameters are adjusted
appropriately. BEC in the double-well traps and optical lat-
tices as well as their Bogoliubov excitations are well studied
[63,69,70,75–81].

Lowering the temperature below the critical value Tc and
controlling the inhomogeneous background potential and bar-
riers separating qubit wells allow one to create an entire
hierarchy of BEC regimes [78]: From the regime of anoma-
lously large critical fluctuations in the critical region (neat Tc)
or strongly correlated regime to the regime of a quasiconden-
sate or fragmented condensates of the individual qubit wells
to the regime of a well established, macroscopically occupied
common condensate inhomogeneously spread over the entire
trap at T � Tc. We consider the latter case assuming N � Q.

Note that at T � Tc the excited states above the lower
miniband could become exponentially low occupied and de-
coupled from the lower miniband states. At certain conditions,
the 2Q lower-miniband states are mainly decoupled from
the environment of the continuum of the excited states in
the overall infinite-size Hilbert space and constitute a finite-
size subspace of the Hilbert space of Q interacting qubits. The
2Q partial qubit states could be thought of as quasidegenerate
single-condensate states which are not macroscopically occu-
pied. The energy of atom interaction also can be adjusted (in
particular, via a Feshbach resonance) so that the Bogoliubov
couplings are spread over the entire lower miniband, but not
above the energy gap.

The quantity of interest is the joint probability distribution
of the occupations of any preselected subset of bare-particle
excited states or groups of such states in the equilibrium phase
specified by the macroscopic wave function of the entire-trap
condensate appeared due to spontaneous symmetry breaking
in the course of the BEC phase transition. This subset of states
or groups of states should be variable and controllable by
tuning each detector for occupation measurement projecting
upon a prescribed state or group of states. For example, in the

case of a 2D multiqubit trap one could use a multidetector
imaging by light propagating through the trap perpendicular
to its plane and detect separately an occupation of excited
states localized in each single-qubit cell or any other cell from
a system of cells chosen for multidetector imaging. Such a
geometry allows one to easily reconfigure the system of cells
for detection, that is, to collect joint-occupation statistics for
different subsets of groups of states. The latter is necessary
for revealing manifestations of computational complexity in
the atomic boson sampling. Further comments on the boson-
sampling testing in the BEC trap are given in Sec. VII.

III. QUASIPARTICLES VERSUS BEC-MODIFIED WAVE
FUNCTIONS: BOGOLIUBOV TRANSFORM

AND MULTIMODE SQUEEZING

Quantum transitions of particles between excited states
are described by the operators â†

k and âk which create and
annihilate, respectively, a particle in a state with a wave
function ψk (r) in a mesoscopic trap of a finite volume V
confining a dilute interacting gas of N particles in total by
means of some external potential U (r). Let us consider an
equilibrium state (described by a density matrix ρ̂) of such a
Bose-Enstein-condensed gas with a well-formed macroscopic
wave function ψ0(r) of the condensate at a temperature T well
below a critical region. This N-body system can be accurately
described by means of the Bogoliubov-Popov approximation
[42,43,82] via a set of quasiparticles whose creation and anni-
hilation operators b̂†

j and b̂ j are related to the particle ones
via two representations of the excited-particle field opera-
tor, ψ̂ex(r) =∑k �=0 ψk (r)âk =∑ j (u j (r)b̂ j + v∗

j (r)b̂†
j ), and a

symplectic matrix R of Bogoliubov transformation:

Vâ = R Vb̂, Vâ ≡ (.., â†
k, âk, ..)

T , Vb̂ ≡ (.., b̂†
j, b̂ j, ..)

T . (1)

The superscript T stands for a transpose operation. Here-
inafter, the superscript star (∗) means complex conjugation.
The vectors Vâ and Vb̂ consist of the creation and annihilation
operators of the particles and quasiparticles, respectively. The
basis of orthonormal bare-particle wave functions {ψk (r)| k =
1, 2, . . .} can be chosen arbitrarily. For instance, it could ac-
commodate the single-particle wave functions prescribed for
projection by detectors measuring the excited-state occupa-
tions.

The condensate obeys the Gross-Pitaevskii equation:

L̂ ψ0 = 0; L̂ ≡ − h̄2�

2M
+ U + g〈N0〉ψ2

0 + 2gnex − μ.

(2)
Here � is the three-dimensional Laplace operator, g =
4π h̄2a/m an interaction constant, m a particle mass, μ a
chemical potential, 〈N0〉 a mean number of particles in the
condensate, and nex(r) = 〈ψ̂†

ex(r)ψ̂ex(r)〉 is a mean density
profile of the excited particle fraction. The angles stand for a
statistical averaging, 〈. . .〉 = Tr{ . . . ρ̂ }. The two-component
quasiparticle wave function {uj, v j} of an energy Ej obeys the
Bogoliubov-de Gennes equations:

L̂ u j + g〈N0〉ψ2
0 (r)(u j + v j ) = +Eju j,

L̂ v j + g〈N0〉ψ2
0 (r)(u j + v j ) = −Ejv j . (3)
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The wave functions are normalized to unity as follows:∫
V |ψ0|2d3r = 1,

∫
V (|u j |2 − |v j |2)d3r = 1; j = 1, 2, . . .. For

simplicity of formulas, we assume that all wave functions
ψ0, u j, v j [and fk in Eq. (4) below] are real-valued.

We’ll solve these equations and expand the quasiparticle
wave functions via an appropriate basis of excited states or-
thogonal to the condensate wave function. In principle, one
may start with an arbitrary complete set of such excited
states and apply an ad hoc orthonormalization procedure [67].
There is a more convenient choice of such states, namely, as
the solutions to a single-particle BEC-modified Schrödinger
equation [34,83],

L̂ fk = εk fk, (4)

in which the potential is modified by the condensate (obvi-
ously, f0 = ψ0). The set of orthonormal solutions { fk (r)| k =
1, 2, ...} forms a complete basis in the single-particle Hilbert
space of excited states. In the basis { fk}, a two-component
wave function {u, v} can be written as a vector w = {wr,k| r =
1, 2; k = 1, 2, ...} with components constituting the wave
functions u(r) =∑k �=0 w1,k fk (r), v∗(r) =∑k �=0 w2,k fk (r)
and enumerated by a double index K = (r, k). The Nambu-
type index r runs over two values 1 and 2. The index k
enumerates positions of the above two-component blocks
in the natural order of increasing index k. As a result, the
Bogoliubov-de Gennes equations (3) acquire a standard form
of an algebraic problem on the eigenvalues Ej and eigenvec-
tors w j of a certain (2×2)-block matrix B = (Bk,k′ ),

Bw j = Ejw j ; Bk,k′ = (σz + iσy)�k,k′ + εkσzδk,k′ . (5)

The latter involves the overlapping integrals

�k,k′ = g〈N0〉
∫

fk (r) ψ2
0 (r) fk′ (r) d3r, (6)

which determine the Bogoliubov coupling coefficients, and
the 2×2 Pauli matrices

σy =
[

0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (7)

The δk,k′ is the Kronecker delta.
This mean-field approach accounts for interactions and is

not reduced to just a modification of the excitation spectrum.
Via nonlinear Gross-Pitaevskii and Bogoliubov–de Gennes
equations, the bare particles (atoms) acquire Bogoliubov cou-
plings, Eq. (6), and form the quasiparticles—superpositions
of many bare particles. The eigenvectors (quasiparticles) w j

are no less important than their eigenvalues (excited energies)
Ej , especially since in the experiments detectors count the
real atoms (bare particles), not virtual energy eigenvectors
(quasiparticles). This fact brings into the game an interplay
between the interference and interactions of bare particles.
This interplay is the ultimate cause for (i) a self-generation of
squeezed states by a quantum many-body interacting system
even in the equilibrium (thermal) state and (ii) an appearance
of computational complexity in atomic boson sampling re-
vealed in this paper.

The matrix R, that describes the Bogoliubov transforma-
tion Eq. (1), can be viewed as a product of two matrices:

R = U R̃, U = (U r′,k′
r,k

)
. (8)

The matrix U describes the transformation between two bases
of two-component Bogoliubov states {u j, v j}, namely, from
the creation and annihilation operators { ˆ̃a†

k,
ˆ̃ak} in the basis

of the BEC-modified particle states { fk| k = 1, 2, . . .} to the
creation and annihilation operators {â†

k, âk} in the basis of
the bare-particle excited states {ψk| k = 1, 2, . . .} chosen for
measuring the occupation numbers n̂k = â†

k âk . It is formed by
the intertwining unitary matrix U and its complex conjugate
U ∗, where U is the matrix of the transformation between those
two bases in the single-particle Hilbert space:

fk =
∑
k′ �=0

Uk′,kψk′ . (9)

In Eqs. (8) like in Eq. (23) for G, we enumerate the entries
of the matrices, associated with both creation, â†

k , and anni-
hilation, âk , operators, by the double indices K = (r, k) for
rows and K ′ = (r′, k′) for columns. The indices k = 1, 2, . . .

and k′ = 1, 2 . . . stand for the position (row and column) of
an entire 2×2 block. The dual indices r = 1, 2 and r′ = 1, 2
specify the position (row and column) of the entry (such
as U r′,k′

r,k ) within that 2×2 block. The rows and columns
are ordered in the natural order of increasing indices k and
k′ for the 2×2 blocks and increasing indices r = 1, 2 and
r′ = 1, 2 inside each 2×2 block. In terms of such a Nambu-
type notation, we have U 1,k′

1,k = (U ∗)k,k′ , U 2,k′
2,k = Uk,k′ , U 1,k′

2,k =
U 2,k′

1,k = 0.
The matrix R̃ stands for the specific Bogoliubov trans-

formation (1) that relates the quasiparticle creation and
annihilation operators b̂†

k, b̂k to the creation and annihilation
operators ˆ̃a†

k,
ˆ̃ak associated with the BEC-modified particles

defined by Eq. (4); ψ̂ex(r) =∑k �=0 fk (r) ˆ̃ak . The Bogoliubov
matrix R̃ diagonalizes the Bogoliubov–de Gennes matrix B in
Eqs. (5):

R̃−1BR̃ =
⊕

j

E jσz, R̃ = (R̃r′,k′
r,k

)
. (10)

The matrix R̃ is a (2×2)-block matrix whose 2×2 entry for
the given block indices k, k′,

(
R̃r′,k′

r,k

) =
(

Pk,k′

[
cosh ξk,k′ sinh ξk,k′

sinh ξk,k′ cosh ξk,k′

])
, (11)

is the product of the Lorentzian 2×2 matrix containing the
relative partial squeezing parameter ξk,k′ , given by the energies
Ek′ , εk as follows:

cosh ξk,k′ = εk + Ek′

2
√

εkEk′
, sinh ξk,k′ = εk − Ek′

2
√

εkEk′
, (12)

and the factor Pk,k′ accounting for a mixing weight of the
BEC-modified excited wave function fk′ in the expansion of
the k-quasiparticle two-component wave function:

uk′ (r) =
∑
k �=0

(cosh ξk,k′ )Pk,k′ fk (r),

vk′ (r) =
∑
k �=0

(sinh ξk,k′ )Pk,k′ fk (r). (13)

The matrix P = (Pk,k′ ) is unitary (in fact, orthogonal) since
the Bogoliubov transformation (1) is symplectic, that is, keeps
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invariant the canonical Bose commutation relations for the
creation and annihilation operators. The intersection of the
odd rows and odd columns of R̃ as well as the intersection
of the even rows and even columns of R̃ form the same
submatrix, while the intersection of the odd rows and even
columns of R̃ as well as the intersection of the even rows and
odd columns of R̃ form the other same submatrix:

R̃1
1 = R̃2

2 = (
R̃1,k′

1,k

) = (R̃2,k′
2,k

) = (Pk,k′ cosh ξk,k′ ),

R̃2
1 = R̃1

2 = (
R̃2,k′

1,k

) = (R̃1,k′
2,k

) = (Pk,k′ sinh ξk,k′ ). (14)

Both nonvanishing off-diagonal entries ξk,k′ and Pk,k′ at
k �= k′ are responsible for the multimode squeezing in the
system of atomic modes associated with the BEC-modified
excited states. The quasiparticles define the eigenenergy
modes which are completely independent of each other, are
not squeezed, and stay in a thermal state when in equilibrium.
On the contrary, the BEC-modified excited states correspond
to the excited modes which form a mutually squeezed multi-
mode system due to mixing via the unitary matrix P.

In terms of a column vector composed of all the creation
operators in its upper half and all the annihilation operators in
its lower half, that is not in the alternating pattern of Eq. (1),
the matrix R̃ performs the following Bogoliubov transforma-
tion: ( ˆ̃a†

ˆ̃a

)
=
[

R̃1
1 R̃2

1

R̃1
2 R̃2

2

]( b̂†

b̂

)
. (15)

Here b̂† = (b̂†
1, b̂†

2, . . .)
T and b̂ = (b̂1, b̂2, . . .)T as well as

alike boldface operator vectors are the column vectors of the
creation and annihilation operators, respectively.

The Bogoliubov transformation R̃ can be concisely de-
scribed via the polar decomposition of its blocks (14) into a
product of a unitary matrix and a Hermitian matrix:

(Pk,k′ cosh ξk,k′ ) = P cosh r,

(Pk,k′ sinh ξk,k′ ) = Peiθ sinh r. (16)

So, we have a product of a polar part, represented by unitary
matrices P or Peiθ , and a Hermitian part, represented by
the hyperbolic functions cosh r or sinh r of the multimode
squeezing matrix r. The matrix r is a positive semidefinite
Hermitian matrix. The matrices cosh r, P , and Peiθ are given
by the following explicit formulas:

cosh r = [(Pk,k′ cosh ξk,k′ )T (Pk,k′ cosh ξk,k′ )]1/2,

P = (Pk,k′ cosh ξk,k′ )(cosh r)−1,

Peiθ = (Pk,k′ sinh ξk,k′ )(sinh r)−1. (17)

Note that the matrices P and P are not the same. Thus, the
Bogoliubov transformation (8) is a superposition( â†

â

)
=
[

(UP )∗ 0

0 UP

][
cosh r (eiθ sinh r)∗

eiθ sinh r cosh r∗

]( b̂†

b̂

)
(18)

of a transformation, specified by the Hermitian matrix of
squeezing parameters r = (rk,k′ ) and the unitary eiθ , and a
unitary transformation, which is the product of two block-
diagonal unitary transformations specified by the unitary P
and an arbitrary unitary U . The unitary P is associated

with the transformation from the quasiparticles to the BEC-
modified excited states { fk}, while the unitary U describes a
further transformation from the wave-function basis { fk} to
any basis of excited states {ψk} chosen for projection upon by
detectors measuring occupations of excited states or groups of
them.

For comparison with Gaussian boson sampling in the
optical interferometer, one can represent the Bogoliubov
transformation (18) via the quantum optics formalism (see
Refs. [84–89] and references therein), namely, as a unitary
evolution, governed by a unitary multimode squeeze operator

Ŝ = exp

[
b̂†TSb̂† − b̂TS†b̂

2

]
; S = eiθ r = r∗eiθ∗

, (19)

and a unitary multimode rotation operator

�̂ = exp(ib̂†T�b̂), � = �†, (20)

with an additional excited-state transformation described by a
unitary matrix U like the one in Eqs. (8):

â† = U ∗Ŝ†�̂†b̂†�̂Ŝ

= U ∗e−i�∗
(cosh r)b̂† + U ∗ei�e−iθ∗

(sinh r∗)b̂,

â = UŜ†�̂†b̂�̂Ŝ

= Ue−i�∗
eiθ (sinh r)b̂† + Uei�(cosh r∗)b̂. (21)

A symmetric matrix S defining the squeeze operator is rep-
resented via two Hermitian matrices r and θ . A Hermitian
matrix � defines the rotation operator �̂. A size of vectors
and matrices is determined by a number M of modes in the
system.

Clearly, the Bogoliubov transformation (21) matches the
one in Eq. (18) when one sets S = eiθ r, ei� = P , so
ei� cosh r∗ = R̃2

2 and e−i�∗
eiθ sinh r = R̃1

2.
We conclude that the values of the inter- and intramode

squeezing, defined by the squeezing parameters rk,k′ (that
is, in essence, by the entries of the matrices r or cosh r or
sinh r) is determined by the Hadamard (that is, entry by entry,
not standard, row by column) product of matrices (Pk,k′ ) and
(cosh ξk,k′ ) or (sinh ξk,k′ ) in Eq. (14). If it was the standard
matrix product, then the intermode mixing via the unitary
mixing matrix P would play a part of a unitary matrix U and
the strength of the multimode squeezing would be determined
just by the Lorenzian partial squeezing parameters ξk,k′ in
Eqs. (12). However, in reality, the effect of the interparticle
interaction turned by the inhomogeneous condensate into the
overlapping integrals (6) (i.e., Bogoliubov couplings) is not
as simple as the latter scenario may suggest. The point is
that the two effects, the effect of a direct squeezing of a
partial k-mode induced by a quasiparticle k′ mode via the
off-diagonal coefficient ξk,k′ and the effect of a unitary mixing
of a partial k mode with a quasiparticle k′ mode given by
the off-diagonal coefficient Pk,k′ do not contribute to the Bo-
goliubov transformation independently via just the standard
product of two matrices. On the contrary, the contributions of
those two effects nontrivially intertwine since the combined
effect is given by the Hadamard product of the matrices (Pk,k′ )
and (cosh ξk,k′ ) or (sinh ξk,k′ ).
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IV. JOINT PROBABILITY DISTRIBUTION OF
THE EXCITED PARTICLE OCCUPATIONS
VIA THE CHARACTERISTIC FUNCTION,

THE HAFNIAN MASTER THEOREM

Consider occupations of any basis states {ψk|k �= 0} in
the single-particle Hilbert space. They are described by the
Hermitian operators n̂k = â†

k âk and can be measured by the
appropriate detectors projecting particles onto these states.
We calculate the joint probability distribution ρ({nk}) of these
observables {n̂k| k �= 0} by means of the well-known approach
of the characteristic function �({uk}) and cumulant expansion
(see, for example, Refs. [90–93] and references therein) as
follows:

ρ({nk}) =
∫ π

−π

...

∫ π

−π

e−i
∑

k uknk �({uk})
∏

k

duk

2π
,

�({uk}) = 〈ei
∑

k uk n̂k 〉 ≡ Tr{ei
∑

k uk n̂k ρ̂}. (22)

Utilizing the method employed in Ref. [34] but assigning now
an individual argument zk = eiuk to each excited state, we get
the characteristic function of this distribution:

� = 1√
det[1 − (Z − 1)G]

, Gr′,k′
r,k = 〈: â†

r,k âr′,k′ : 〉. (23)

[See Appendices A and B for details on the derivation of
Eqs. (23) and (24) for the joint occupation probability dis-
tribution of the excited particle states and the Hafnian master
theorem (28).] Here G is the covariance matrix with entries
GK ′

K , enumerated by double indices K = (r, k) for rows and
K ′ = (r′, k′) for columns and equal to normally ordered (note
colons) averages of a product of two creation or annihilation
operators. Nambu-type index r acquires two values: 1, 2. For
any operator Ô , it denotes that same operator, Ôr = Ô , if
r = 1 or its Hermitian conjugate, Ôr = Ô†, if r = 2. It is
related to the (2×2)-block structure of the matrix. The identity
matrix is denoted by the symbol 1.

The variables form a diagonal matrix Z = diag({zK})
which contains pairs of the same variable zr,k = zk = eiuk

along the diagonal and has a size that is twice the number
M of excited particle states in the considered miniband.

The result (23) is truly general and universal since it
gives the statistics of the joint occupations of any restricted,
marginal number of states M or coarse-grained groups of
states by any number of the interacting noncondensed atoms
N − 〈N0〉.

Its derivation via quasiparticles entails the covariance ma-
trix expressed via the symplectic Bogoliubov matrix R as
follows:

G = RDR† + RR† − 1

2
. (24)

Here the (2×2)-block diagonal matrix D is determined by
thermal population of the quasiparticle excitations:

D =
⊕

j

1

eEj/T − 1

[
1 0

0 1

]
. (25)

We derived Eq. (23) also within the microscopic theory of
critical phenomena [45–47] via the method of the recurrence
equations for the partial operator contractions, unrelated to

the Bogoliubov-Popov picture of the BEC-condensed gas. It
is valid for any system of the interacting unconstraint bosons
in an equilibrium state described by any normally ordered co-
variance matrix G, that is, for any state ρ̂ = e−Ĥ/T /Tr{e−Ĥ/T }.

The joint occupation probability distribution is given by the
mixed derivatives:

ρ({nk}) =
∏

k

∂nk

nk! ∂znk
k

�

∣∣∣∣
{zk=0}

, {zk ≡ eiuk |k = 1, 2, ...}.
(26)

We get the distribution (26) explicitly as follows:

ρ({nk}) = hafC̃({nk})√
det(1 + G)

∏
k nk!

, C = AG(1 + G)−1,

(27)
where the permutation matrix A =⊕ j σx contains the Pauli
matrix σx and makes the matrices C and C̃({nk}) under the
Hafnian symmetric. We derive Eq. (26) from Eq. (23) via the
Wick’s theorem, which is well-known in the quantum field
theory [94,95] and is equivalent, in this case, to the Hafnian
master theorem (Appendix B):

1√
det(1 + (1 − Z )G)

=
∑
{nk}

hafC̃({nk})√
det(1 + G)

∏
k

znk
k

nk!
. (28)

In fact, the Hafnian [37,96] was introduced in Refs. [97,98]
as a notation for a Wick’s sum of all possible products of
n two-operator contractions (averages) in a given product of
2n creation or annihilation operators. Here the Hafnian is
a function of the (2n×2n)-matrix C̃({nk}), n =∑k nk , built
from the matrix C, Eq. (27), via replacing the kth pair of
rows with the nk copies of the kth pair of rows for all
k = 1, ..., M and then replacing the k′th pair of columns in
the (n×2M )-matrix, obtained at the first step, with the nk′

copies of the k′th pair of columns for all k′ = 1, . . . , M.
The MacMahon master theorem (30) follows from (28) as
a particular case. The very definition of the Hafnian as a
sum of the products of just n entries of a (2n×2n)-matrix
C̃, hafC̃ = 1

2nn!

∑
σ∈S2n

∏n
j=1 C̃σ (2 j)

σ (2 j−1), is designed to account
properly for the (2×2)-block structure of the matrices C
and C̃. The latter also inherits the (2×2)-block structure
of the matrix Z that corresponds to the derivatives of the
determinantal function 1/

√
det(1 − ZC) over pairs of equal

variable zk = z1,k = z2,k in each (2×2)-block of the diago-
nal matrix Z at the point {zk = 0}. The definitions of the
permanent, perC̃ =∑σ∈S2n

∏2n
i=1 C̃σ (i)

i , and the determinant,

det C̃ =∑σ∈S2n
sgn(σ )

∏2n
i=1 C̃σ (i)

i , have nothing to do with
the (2×2)-block structure of the matrices. In the above for-
mulas, S2n is the symmetric group of all (2n)! permutations of
the set {1, 2, ..., 2n}. At the origin of the coordinate system
{zk = 0}, the square root on the left-hand side of Eq. (28)
is

√
det (1 + (1 − Z )G)|{zk=0} = √

det (1 + G) and, accord-
ingly, we assume that haf S̃({nk = 0|k = 1, . . . , M}) = 1 on
the right-hand side of Eq. (28).

The distribution (27) was also derived via a standard phase-
space method [99,100] and applied to the photon sampling
of Gaussian states in Refs. [19,20]. The phase-space method
had been applied in BEC statistics in Ref. [101] for rederiv-
ing an original result of [33] on the statistics of a Gaussian
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state of atomic modes squeezed by Bogoliubov coupling. In
Appendix A, we use the method of Ref. [101].

Remarkably, the result (23) for the characteristic function
is universal in the sense that it has the same universal form for
any marginal restricted subset of the excited particle states or
coarse-grained groups of excited states, if one considers them
irrespective to the other states. Averaging over the rest of the
excited-state occupations is achieved by setting all irrelevant
variables zk′ equal to zero and keeping just those rows and
columns in the matrices A, D, G,C which are associated with
the chosen marginal subset of excited states. Combining some
excited states into a coarse-grained group is accomplished in
Eqs. (23) and (28) by setting equal all of the variables {zk}
within such a group. If the characteristic function was not
universal in this sense, then one would need to rederive the
formula for it from scratch for any new preselected subset or
coarse-grained groups of excited states.

V. CUMULANT ANALYSIS

Here we point out that the cumulant analysis and the result
for the characteristic function (23) provide the most efficient,
canonical method for characterizing such a complex joint
distribution and distinguishing it from various mockups via
generating cumulants [33] {κ̃{mk}|mk = 1, 2, ...} defined by the
Taylor expansion

ln � =
∑
{mk}

κ̃{mk}
∏

k

(eiuk − 1)mk

mk!
(29)

and directly related to the moments and cumulants of the
distribution.

One could use the permanent master theorem,

1

det(1 − ZC)
=
∑
{sK }

[
per C({sK})

∏
K

zsK
K

sK !

]
, (30)

of MacMahon [35,36]. A double index K = (r, k) runs over
all rows of a matrix C({sK}); {sK} is a set of non-negative
integers. It is valid for any, even not pairwise equal variables
z1,k , z2,k . The coefficients of this Taylor expansion are given
by the permanent of the C({sK}) which is the C with the K th
row and K th column replaced by the same K th row and K th
column sK times.

If we had 2M stochastic variables, i.e., the number 2M of
independent variables zK in the matrix Z was equal to the
number of matrix rows, and the square root in Eq. (23) for
the characteristic function was absent, then we would at once
conclude that the occupation probability,

ρ ′({sK}) = per (C({sK}))
det(1 + G)

∏
K sK !

, C = AG(1 + G)−1, (31)

is given by a permanent of the extended matrix C({sK}) built
of the matrix C as stated above. The characteristic function �′
of such an auxiliary probability distribution has an extended
set of the generating cumulants κ̃ ′

{mK }:

ln �′ =
∑
{mr,k}

κ̃ ′
{mr,k}

∏
r,k

(eiur,k − 1)mr,k

mr,k!
. (32)

Since in Eq. (23) (a) there are two times less independent
variables because z1,k = z2,k = zk and (b) the square root adds
a prefactor 1/2 for ln �, we get the true generating cumulants
as the simple finite sums of the auxiliary ones:

κ̃{mk} = 1

2

∑
k

mk∑
m1,k=0

[
κ̃ ′

{m1,k ,mk−m1,k}
∏

k′

(
m1,k′

mk′

)]
. (33)

Here a pair of the arguments mr,k, r = 1, 2, in κ̃ ′
{mr,k} is writ-

ten explicitly for the case when m1,k + m2,k = mk;
(m1,k

mk

) =
mk!/(m1,k!m2,k!) is a binomial coefficient. Thus, we obtain an
implicit characterization of the joint occupation probability
distribution of the excited particle states via the cumulants
in Eq. (33) and the permanents in Eq. (31). However, the
permanent master theorem of MacMahon does not directly
provide an explicit analytical formula for the distribution (26)
via permanents.

Remarkably, computing the cumulants and joint proba-
bility distribution for the excited particle occupations is a
�P-hard problem. This is related to a �P-hard complexity of
computing the permanents [38] and the fact that the (2×2)-
block structure of the matrices A, D, G,C and the presence
of the square root in Eq. (23) [the prefactor 1/2 in Eq. (33)]
just modify it a bit to a similar, Hafnian �P-hard complexity,
Eq. (27). Note also that computing a cumulant amounts to
computing an infinite sum of permanents or Hafnians which
is similar to a sum representing a torontonian. Such a sum is
known to be �P-hard for computing [22].

To show a �P-hardness of cumulant computing, let us first
consider the generating cumulants κ̃{nk}, Eq. (29). They are
very similar to the probabilities ρ({nk}), Eqs. (23) and (26),
since they are the coefficients in the Taylor expansion of
the logarithm of the characteristic function over the variables
{zk − 1} and the characteristic function over the variables {zk},

ln � =
∑
{nk}

κ̃{nk}
∏

k

(zk − 1)nk

nk!
, (34)

� =
∑
{nk}

ρ({nk})
∏

k

znk
k , (35)

respectively. Both the characteristic function and its logarithm
are well-behaved, nonsingular analytic functions in the vicin-
ity of the origin of coordinate system {zk = 0} where the
characteristic function equals unity and its logarithm equals
zero. In essence, the logarithm just smoothly modifies the
characteristic function, and a uniform shift of all variables
zk by unity, zk → zk − 1, just regroups the coefficients in
the Taylor expansion. The latter shift means representing the
matrix Z in Eq. (28) as Z = (Z − 1) + 1 that amounts to
just rescaling the matrix C = AG(1 + G)−1 to the new matrix
C = AG, which now defines the matrix C̃({nk}) under the
Hafnians in the Taylor expansion over the shifted variables
zk − 1, while the Hafnians and their �P-hard complexity, of
course, do not disappear. As a result, the generating cumulants
are as �P-hard for computing as the probabilities, that is, the
Hafnians in Eq. (27).

Finally, the standard cumulants κ{nk}, that is, the coef-
ficients in the Taylor expansion of the logarithm of the
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characteristic function over the variables uk = −i ln (zk ),

ln � =
∑
{nk}

κ{nk}
∏

k

(iuk )nk

nk!
, (36)

are just finite linear combinations of the generating cumulants
κ̃{nk} of orders up to {nk} with the coefficients a la Stirling
numbers of the second kind [33]. Thus, computing the stan-
dard cumulants is also �P-hard.

VI. FURTHER COMMENTS ON THE �P-HARDNESS
OF ATOMIC BOSON SAMPLING

Fortunately, the �P-hardness analysis of the average and
approximate cases for the atomic and photonic boson sam-
plings are very similar since the universal result in Eqs. (23)
and (27) puts these two samplings on the same footing,
both with respect to expressing the joint probability via
the Hafnian and ranging complex-valued matrices associ-
ated with the sampling. For the interferometer, a wide
range of complex unitary matrices appears due to varying
its partial modes via adjusting phase shifts and couplings.
For the BEC, a wide range of complex matrices appears
due to varying the partial atomic wave functions (excited
states) assigned to be projected upon for detectors measur-
ing their occupations. In particular, the “hiding” technique
employed in quantum optics works equally well for both
samplings. Besides, in both samplings, the squeezing param-
eters of the matrix under the Hafnian are controllable via
adjusting squeezing in the input sources in the optical inter-
ferometer or the condensate wave function and Bogoliubov
couplings (6) by changing the trapping potential, interaction
(via Feshbach resonances [102]), temperature, or number of
trapped atoms. We skip repeating such �P-hardness analyses,
see Refs. [2,11,15,20–22,26,32,103–107].

We just point to the Haar randomness of unitary matri-
ces, which essentially determines an entire set and range
of variable parameters available in both quantum sampling
systems—the linear interferometer and the BEC trap. The
point is that the covariance matrix G, entering the charac-
teristic function in Eq. (23) and the occupation probabilities
in Eq. (28), depends on the unitary matrix U [Eqs. (8)] that
describes a transformation from the basis of the solutions
{ fk| k = 1, 2, . . .} of the BEC-modified Schrodinger equa-
tion (4) to a variable basis of the bare-particle excited states
{ψk| k = 1, 2, . . .} chosen for projection upon when measur-
ing the excited-state occupations by multidetector imaging,
Eq. (9). This dependence occurs via Eq. (24) for G since
it involves the symplectic Bogoliubov matrix R. Then, the
�P-hardness follows from the usual argument [2,19,20] based
on the fact that the Haar randomness of the unitary matrices
essentially yields the Gaussian randomness of the C̃({nk})
matrices. The �P-hardness of computing the permanent or
Hafnian of a random Gaussian matrix is well-known.

Moreover, the atomic boson sampling in the BEC trap
possesses a functional variability provided by a possibility
to control the trapping potential as a function of spatial co-
ordinates. In principle, it allows one to control all of the
entries of the Bogoliubov coupling matrix (6), that is, also the
extra M(M − 1)/2 mutual intermode squeezing parameters

rk,k′ , Eq. (18), not just M intramode squeezing parameters
for each mode. In the Gaussian boson sampling in the linear
interferometer, the squeezing is provided only to each mode
separately at the input ports of the interferometer by means
of the external sources of squeezed photons. Such a Gaussian
boson sampling is analogous to a very special case of atomic
boson sampling in a degenerate trap when the matrix (rk,k′ ) of
squeezing parameters reduces to a quasidiagonal matrix. The
latter occurs, for example, when only a single-mode or two-
mode Bogoliubov coupling and, hence, squeezing are present,
like in a box trap with a uniform potential. The photon sources
capable of providing and controlling all of the M(M − 1)/2
mutual intermode squeezings are not available.

The presence of those additional off-diagonal squeezing
parameters rk,k′ makes the atomic boson sampling in a BEC
trap with a multimode Bogoliubov coupling (6) more liable
to �P-hardness than Gaussian boson sampling in the linear
interferometer.

Such an additional randomness due to the off-diagonal
squeezing parameters rk,k′ can be converted into a randomness
due to an extra unitary matrix V appearing on the right-hand
side of the polar decomposition (16),

(Pk,k′ cosh ξk,k′ ) = PV (cosh �r )V †, (37)

if we replace the matrix r by its diagonal representation:

r = V �rV
†; rv j = r jv j, �r = diag{r j | j = 1, . . . , M}.

(38)

The singular value decomposition in Eq. (37) is based on the
singular vectors {vj| j = 1, . . . , M} and singular values r j �
0, which are the eigenvectors (comprising the unitary V as
columns) and the eigenvalues (comprising the diagonalized
squeezing matrix �r) of the squeezing matrix r, respectively.
A singular vector v j can be viewed as a column of complex
amplitudes of the excited states in a jth eigen-squeezed mode
that has the single-mode squeezing parameter r j and is not
subject to an intermode squeezing with other eigen-squeezed
modes, r j, j′ = 0 ∀ j′ �= j. The result is the following Bloch-
Messiah reduction [85,86] of the Bogoliubov transformation
(18),(

â†

â

)
=
[
W ∗ 0
0 W

][
cosh �r sinh �r

sinh �r cosh �r

][
V T 0
0 V †

](
b̂†

b̂

)
,

(39)

where the unitaries W and V are chosen to satisfy the so-
called rotation condition emphasized in Ref. [86] in view
of a possible nonuniqueness of the singular value decom-
position, particularly in the presence of degenerate singular
values. Equation (39) describes the overall Bogoliubov trans-
formation as a parallel single-mode squeezing in all the
eigen-squeezed modes preceded by some unitary mode mix-
ing and followed by a different unitary mode mixing.

Taking advantage of this unique Bloch-Messiah represen-
tation, unambiguously specified by the preferred basis of
quasiparticle states diagonalizing the Bogoliubov Hamilto-
nian and the preferred basis of the eigen-squeezed single-
particle excited states diagonalizing the squeezing matrix, we
obtain the normally ordered covariance matrix (24) in the
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following canonical form:

Ḡ =
[
W ∗ 0
0 W

]
(ḠQ + ḠT )

[
W T 0

0 W †

]
, (40)

where

Ḡ ≡
[

G1
1 G2

1

G1
2 G2

2

]
= AT GA, A = (δi,2 j−1−(2M−1)θ ( j−M ) ).

Here, similar to Eq. (39) and contrary to the Nambu-type
enumeration adopted in (23), we use the permutation 2M×2M
matrix A (defined above via the Kronecker delta and the step
function θ (x) = 1 if x > 0, θ (x) = 0 if x � 0) to convert the
matrix G in Eq. (23) into the matrix Ḡ with the following
block enumeration of rows and columns: The upper half
of rows includes all correlations 〈: â†

1,kâr′,k′ :〉 containing a
creation operator at the left position, while the lower half
of rows includes all correlations 〈: â†

2,kâr′,k′ :〉 containing an
annihilation operator at the left position. The first half of
columns includes all correlations 〈: â†

r,kâ2,k′ :〉 containing a
creation operator at the right position, while the second half
of columns includes all correlations 〈: â†

r,kâ1,k′ :〉 containing
an annihilation operator at the right position. A matrix with
such a block enumeration of rows and columns is denoted by
a bar above the symbol of a matrix.

The irreducible covariance matrices ḠQ and ḠT ,

ḠQ = RR† − 1

2
=
[

sinh2 �r sinh �r cosh �r

sinh �r cosh �r sinh2 �r

]
,

(41)

ḠT = RDR†

=
[

cosh �r sinh �r

sinh �r cosh �r

][
q∗ 0
0 q

][
cosh �r sinh �r

sinh �r cosh �r

]
,

(42)

stand for the pure quantum (that is, at zero temperature, T =
0) and complimentary thermal (at T �= 0) contributions to the
total covariance matrix Ḡ = ḠQ + ḠT , respectively, and are
written in the basis of the eigen-squeezed single-particle ex-
cited states {vj| j = 1, ..., M}; q = V † diag{(eEj/T − 1)−1| j =
1, . . . , M}V . The block diagonal matrices in Eq. (39), built
of the unitary matrix W and its inverse matrix W −1 = W †,
describe the pure unitary forward and backward transfor-
mations between an arbitrary bare-particle basis and the
eigen-squeezed basis of excited states in the single-particle
Hilbert space.

The Bloch-Messiah reduction has been used in
Refs. [88,89] for discussion of a hierarchy of various
Gaussian boson samplings with photon sources at zero and
finite temperatures. A general case has been named vibronic
boson sampling since a modern discussion of Gaussian boson
sampling is an extension of the previous detailed analysis
[108] of vibronic transitions in polyatomic molecules.

It is worth noting that the pure quantum contribution to
the total occupation of the noncondensate remains finite and
directly measurable by particle detectors at T → 0. It is well-
known as the quantum depletion of the condensate [42,63]
and possesses a nontrivial statistics of fluctuations [34]. Such

fluctuations in the total occupation of the noncondensate
have been already directly observed and sampled [48]. The
pure quantum contribution to the covariance matrix given by
Eqs. (41) and (40) describes, via the characteristic function
(23) and the probability distribution (27), even more intriguing
statistics of joint fluctuations in the excited-state occupations
of different groups of excited states. It also can be directly
accessed in the experiments on atomic boson sampling. Note
that the above statistics is easy to compute in the preferable
basis of the eigen-squeeze states defined in Eqs. (38) since the
covariance matrix ḠQ in Eq. (41) corresponds to completely
independent fluctuations of M atomic states with single-mode
squeezing. However, that statistics observed in an arbitrary set
of bare-particle excited states becomes �P-hard for computing
due to an interference caused by the unitary transformation
between eigen-squeezed and bare-particle states. As follows
from Eqs. (41) and (42), the pure quantum and complimentary
thermal contributions both explicitly involve the irreducible
squeezing matrix �r . Thus, a simultaneous appearance (in the
bare-particle states) of the squeezing (due to interaction) and
the interference (due to unitary mixing of the eigen-squeezed
states) is responsible for the �P-hardness of computing the
atomic boson sampling statistics.

It is known that in the absence of squeezing, a unitary
mixing of modes fed with thermal light does not make boson
sampling �P-hard. Apparently, the presence of only asymptot-
ically small squeezing in all eigen-squeezed modes, r j � 1,
would not help either. The system has to provide signifi-
cant, not necessarily of order of unity (tanh r j ∼ 1), but still
large enough squeezing in some fraction, M ′, out of all M
eigen-squeezed modes. The latter implies that the asymp-
totic parameter responsible for the �P-hardness of computing
atomic boson sampling is limited by a dimension of a sub-
space in the Hilbert space of excited states associated with
an intersection of the subspace, comprised by M ′ signifi-
cantly squeezed eigen-squeezed states, and the subspace of
states constituting significantly occupied quasiparticles. In-
deed, only those two sets of eigenmodes, associated with the
eigenvectors of the Hamiltonian and the eigenvectors of the
squeezing matrix, constitute and provide the unique, unam-
biguous reference frame and characterization of the system.

Please note that the dominant effect of the many-body
interaction and interference on the quantum statistics of the
atomic boson sampling in Eqs. (23), and (27) is accurately
described by the above Bogoliubov-Popov approach only
within the first-order approximation over the weak interaction
parameter

√
a3N/V � 1 and far from the critical region, i.e.,

at such a low temperature T that (Tc − T )/Tc � a(N/V )1/3.
In fact, the last inequality also sets the range of validity
of the mean-field approximation where, according to the
Ginzburg-Levanyuk criterion [109,110], a mean value of the
order parameter of the BEC phase transition is larger than
its fluctuations. The only approximations we adopted in the
present paper for the analysis of the atomic boson sampling
statistics are the ones needed for validity of the Bogoliubov
model. (We do not elaborate on them here since they had been
analyzed in detail and scrutinized in many works and reviews;
see, for instance, Refs. [42,43,82] and references therein.)
Small higher-order corrections due to the main s-wave inter-
action and other factors (such as the presence of other minor
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interactions, a drift and fluctuations of the trapping poten-
tial, external magnetic field, temperature, sampled modes and
other setup parameters, losses of atoms, and other nonequi-
librium processes) as well as a detector inaccuracy and other
imperfections require an additional, separate analysis. Those
imperfections are always present in real experimental systems,
including a usual optical interferometer, and can wash out the
�P-hardness if they are too large. Their analysis in the case of
the photonic boson sampling has been addressed in a number
of papers. A similar analysis in the case of the atomic boson
sampling in a BEC trap is not available yet, but needs to be
done later on.

The important point is that the �P-hardness of computing
the atomic boson sampling statistics due to appearance of the
Hafnian is not just a feature of the Bogoliubov approxima-
tion. The characteristic function similar to the one within the
Bogoliubov approximation, Eq. (23), also arises in the exact
nonperturbative theory of critical fluctuations which is based
on the nonpolynomial diagram technique [45–47] (see, for
instance, Eq. (54) in Ref. [47]). In virtue of the Hafnian master
theorem (28) (see Appendix B), it describes the same �P-
hardness of computing the joint occupation distribution—the
one originating from �P-hardness of the Hafnian of a matrix
associated with an appropriate covariance matrix.

Compared to the exact general analysis [45–47] (which
consistently includes the effects of critical fluctuations in the
critical region of phase transition on the many-body statistics),
the Bogoliubov approximation (which is a mean-field theory
of the first-order with respect to the interaction parameter)
neglects by critical fluctuations and multipartite higher-order
correlations, but provides a simplified covariance matrix G ac-
counting only for fluctuations via independent quasiparticles.
Thus, the difference between the approximate and exact the-
ories is that the Bogoliubov approximation gives an explicit
expression for the covariance matrix G and, hence, for the
characteristic function, while within the exact general anal-
ysis calculating the covariance matrix G in an explicit form
is difficult. The detailed theory (within the Bogoliubov ap-
proximation), that provides analytical calculation of the joint
probability distribution of excited state occupations presented
above, constitutes the subject of the paper. A nonperturbative
theory of critical fluctuations is much more involved and is
beyond the scope of the present paper.

What is really surprising is that, despite tremendous sim-
plifications due to the aforementioned rough omissions, the
atomic boson sampling statistics within the Bogoliubov ap-
proximation (hence, very far from the critical point of the BEC
phase transition) remains within the same top-level �P-hard
computational complexity class as within the exact analysis
(near the critical point). In other words, one may think that
tremendous complications in the many-body quantum theory
of critical phenomena in phase transitions due to the nonper-
turbative multipartite-correlation nature of anomalous critical
fluctuations could be responsible for placing the many-body
quantum statistics into the top-level complexity class. Yet the
latter is not the case. The interaction via Bogoliubov cou-
pling and interference of bare-particle excited states within
the scope of the quasiparticle approach are enough for raising
the atomic boson sampling statistics to the top-level, �P-hard
complexity class.

Different manifestations of �P-hardness of atomic boson
sampling, such as various interference and correlation prop-
erties of joint moments and cumulants or scaling associated
with the Hafnian of finite-size correlation matrices, can be
tested experimentally. They should be compared against some
classical computer simulations based on classical algorithms,
approximations, or mockups ranging from oversimplified or
already known ones to more and more sophisticated ones.
Those classical aspects of simulations as well as the design
of particular BEC experiments and atom number detectors
are beyond the scope of the present paper. Here we focus on
the understanding and analytical theory of the actual quan-
tum statistical physics of this many-body system and, except
fragmentary comments, leave all experimental, technological,
engineering, applied, and verification aspects of this multiside
problem for future papers and other researchers.

It is worth noting that in the real experiments on the atomic
boson sampling, the interaction parameter should not be tuned
to zero but should be kept finite to provide (i) a common con-
densate extending over the entire BEC trap and (ii) significant
Bogoliubov couplings (6) over a large enough set of atomic
states. Those two conditions favor spreading the nontrivial
correlations and multimode squeezing over a large number of
bare excited atomic states and, hence, achieving a large size of
the correlation and squeezing matrices specifying the matrix
under the Hafnian. In principle, one should try to make that
number or size as large as possible since the �P-hardness of
computing the atomic boson sampling implies an exponential
(as opposed to polynomial) time of computing with respect to
that asymptotic parameter.

Obviously, in the limit of an exponentially small interaction
parameter the Bogoliubov couplings in Eq. (6) and squeezing
in Eq. (18) vanish. So, the aforementioned �P-hard complexity
vanishes in an ideal Bose gas within the grand canonical
ensemble approximation. In the canonical ensemble, some
nontrivial correlations between equilibrium occupations of the
excited particle states of the trap exist even in the ideal gas
due to the total particle number constraint, N = const. They
are related to the known critical fluctuations in the total non-
condensate or condensate occupation in the ideal gas confined
in a mesoscopic trap [44,111].

The �P-hardness also disappears in some exactly soluble
cases or when the matrix C in Eq. (27) is degenerate so the Bo-
goliubov coupling matrix (6) has a special or degenerate form
such that the associated Hafnians or permanents, defining
the joint probability distribution in accord with the Hafnian
or permanent master theorems, (28) or (30), are computable
in polynomial time (e.g., via fully polynomial randomized
approximation scheme [39] or recursively, like permanents in
Ref. [112]).

VII. TESTING BOSON SAMPLING IN THE ATOMIC
BEC TRAP AND COMPARING IT WITH

PHOTONIC-INTERFEROMETER EXPERIMENTS

The present paper is devoted to an investigation of the
computational complexity of calculating the joint probability
distribution of excited state occupations in the interacting
BEC gas and the related atomic boson sampling. The atomic
BEC trap can be viewed as a boson-sampling platform
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alternative to a photonic interferometer. In both systems, the
output multivariate statistics is associated with the �P-hard for
computing Hafnians of complex-valued, easily controllable
matrices. The latter allows one to vary the output statistics
over a wide range. It is remarkable that computing the atomic
boson sampling in an interacting equilibrium many-body sys-
tem turns out to be similar to computing the Gaussian boson
sampling of noninteracting photons in a linear interferometer.
That is why we discuss its relation to the known photonic
Gaussian boson sampling in a linear interferometer.

We emphasize that the system of interacting atoms in the
BEC trap does not need (a) any external source of input
bosons in any quantum (Fock, squeezed, etc.) states, (b) con-
trol of system parameters and gates, or (c) any other type
of processing usually associated with quantum computers or
simulators. In principle, after each measurement of the oc-
cupations of the excited state or coarse-grained groups of
them, for instance, via a simultaneous optical multidetector
imaging, the system of interacting atoms returns back to the
equilibrium state (that is, resets itself, if the atoms were not
removed from the trap, or is reloaded into the trap, if the atoms
were released from the trap for occupations measurement) and
becomes ready for the next multi-detector measurement of the
joint atomic occupations. In other words, this is not a quantum
computer or simulator of some input signal or some artificial,
controlled process. The combined system of atoms in the BEC
trap and detectors works as a random string generator, namely,
it generates random strings of the excited state occupation
numbers obeying the joint probability distribution (27) given
by the �P-hard for computing Hafnian hafC̃({nk}). One just
need to perform accurate multidetector measurements, while
the system of atoms in the BEC trap processes its own per-
sistent equilibrium fluctuations and does not require any fine
tuning or adjustment of various input, coupling, processing,
or interaction parameters. This is not the case for the usually
discussed nonequilibrium quantum simulators or processors,
including setups based on Gaussian boson sampling in a
linear interferometer, which require sophisticated on-demand
sources of photons in squeezed states, lossless propagation
through numerous beam splitters, couplers, phase shifters, etc.

In other words, the excited atoms naturally fluctuate and
are squeezed inside the trap even in a thermal state. This
allows one to eliminate the nonequilibrium state or dy-
namics and sophisticated external sources of squeezed or
single bosons (required for photonic sampling) from the
atomic sampling experiments. So, the losses of bosons on the
input-output propagation, which constitute the main limita-
tion factor in photonic sampling, are no more an issue for
atomic sampling. It remains just to measure the distribution
of atoms over the excited state subset by means of appropriate
detectors.

In fact, an absence of the synchronized, on-demand
single-photon sources for feeding the input channels of the
interferometer is the reason for a recent shift from an original
proposal [1,2] to a Gaussian boson sampling scheme that
utilizes a squeezed (or more general, Gaussian) photon input
provided by already available on-demand sources based on
a parametric down-conversion [9,10,31]. For the BEC-trap
platform, such a squeezed input is provided by nature itself
due to the Bogoliubov coupling even in the box trap as has

been shown in Ref. [33]. So, the BEC-trap platform is closer
to and should be compared with the Gaussian boson sampling.

It would be very interesting to study experimentally various
phenomena associated with atomic boson sampling by simul-
taneously measuring the occupations of the excited states or
coarse-grained groups of them, say, via a multidetector imag-
ing based on the light transmission through or scattering from
the atomic cloud. The transmission imaging is based on the
absorption or dispersion caused by atoms [48,58,81,113,114].
A scattering or fluorescence imaging [115], including a Ra-
man one, could be facilitated by exciting modes, mimicking
excited states, via lasers and cavities. Such experiments could
be devised similar to optical imaging of the local atom-
number fluctuations [57,58,73,74,114–117].

Detecting a particle number in each excited state or group
of states can be facilitated by raising the total number N of
particles loaded into the trap since the excited-state occu-
pations scale as (N − 〈N0〉)/M. Raising N − 〈N0〉, say, from
102 to 104 multiplies the occupations by 100. The asymptotic
parameter of complexity depends on the number of excited
states or groups of states involved in the squeezing (due to
interaction) and interference (due to mixing) as well as on
the number of the excited atomic states or their groups to be
measured by detectors, M, which is similar to the number of
channels in the interferometer. That parameter is neither the
total number of atoms in the trap N nor the number of bosons
(noncondensed atoms) in the system N − 〈N0〉.

Measuring with a single atom resolution is challenging, but
a nearly single atom resolution had been achieved [115–118],
though it is not required for showing quantum advantage
since boson sampling is �P-hard for computing even if it is
done with threshold detectors. Such detectors provide just two
measurement outcomes—either zero or nonzero occupation in
a given mode. The threshold boson sampling is described by
torontonians (their computing is not easier than computing the
Hafnians) and still possesses a quantum advantage [11,22,32].

Technically, such experiments could be devised similar to
recent experiments on the optical imaging of the local atom-
number fluctuations in BEC gases [57,58,73,74,114,115]. An
optical imaging with a multidetector recording could give
information on the joint simultaneous occupations of different
cells or modes of the trap. Of course, particles in the conden-
sate ψ0, which is orthogonal to the excited states ψk , should
not be countered. The cells or modes could represent groups of
the excited states selected and composed from any basis in the
single-particle Hilbert space. Importantly, the result for their
joint occupation probability distribution in Eqs. (23)–(29) and
(33) is universal relative to a choice of such a basis. A basis
change amounts to just an additional unitary rotation, i.e., to
an appropriate choice of the symplectic Bogoliubov matrix R,
Eq. (1).

Importantly, various coarse-grained measurements are also
fully appropriate. In other words, the experiments could be
aimed at boson sampling of occupations of any-basis ex-
cited states, not necessarily, say, single-particle states of an
empty trap, and even any subset of states (irrespective to
the other states) or a set of groups (bunches) of states, that
is, not necessarily all states or each state, respectively, of,
for instance, the lower miniband formed by the qubit-well
states discussed in Sec. II. Such incomplete experiments on
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a marginal or coarse-grained, respectively, particle-number
distribution constitute a set of realistic tests on manifestations
of �P-hardness of computing joint occupations statistics of
excited states. A related incomplete statistics is given by the
same general formula for the characteristic functions (23)
and (28) due to its universality as is explained in the end of
Sec. IV.

Remarkably, separation of the noncondensate from the
condensate, counting the total number of atoms in the excited
states (noncondensate) and accumulating its statistics has
been demonstrated experimentally [48]. The only additional
step, required for the atomic boson sampling experiments, is
to split the noncondensed atoms into some smaller groups and
measure atom numbers in the preselected states or groups of
states. That splitting could be based, for example, on splitting
the entire volume of the trap into a set of spatial cells (as dis-
cussed for the multiqubit trap in Sec. II, Fig. 1) or on splitting
atoms into the groups with different subsets of velocities (cells
in the momentum space). In both cases, the atom-number
measurement could be done with some kind of multidetector
imaging. For instance, one could switch off the confining trap
and let the cloud of atoms expand freely, similar to the usual
time-of-flight experimental technique. Then, one just needs
to take a sequence of multidetector images in short intervals
of time and fitly interpret them via the expansion kinetics.
Such a technique would allow one to distinguish different
spatial and/or momentum groups of atoms and measure their
occupations. However, neither an experimental demonstration
of the suggested atomic boson sampling nor a design of a
setup and atom number detectors for such an experiment is
the subject of the present paper.

VIII. CONCLUSIONS

(i) We find the characteristic function (23) for the fluc-
tuations of the excited-particle-state occupations. It is the
universal determinantal function of the normally ordered co-
variance matrix (24). The function (23) is easy to compute in
polynomial time by means of Gaussian elimination for any
given values of its variables {zk}. We calculate the covariance
matrix (24) and present its irreducible form, Eqs. (40)–(42),
via the eigenvalues and eigenvectors of the squeezing matrix
given in Eqs. (17).

(ii) We formulate the Hafnian master theorem (28), which
is a Hafnian’s analog and generalization of the classical
MacMahon master theorem on matrix permanents.

(iii) Computing a Fourier transform of the characteris-
tic function (23), that is, the corresponding joint probability
distribution (27) for any given values of the occupation num-
bers {nk}, amounts to computing the matrix Hafnians as per
Eq. (28) (see Appendix B) and is �P-hard. Despite a paradigm
stating that a function and its Fourier transform contain the
same information, it is clear that this �P-hardness appears
due to multiple Fourier integration (cf. a permanent’s inte-
gral representation [40]). The point is that the information
encrypted in the probability of occurrence of just one set of
the occupation numbers {nk} corresponds to the information
encrypted in the values of the characteristic function at an
exponentially large (with respect to n =∑k nk) number of

points, that is, an exponentially large subset of points in the
space of Fourier variables {zk}.

(iv) Conceptually, the particle sampling in the excited
states of a BEC trap and the Gaussian photon sampling in an
interferometer are on the same footing. However, due to the
presence of the interparticle interaction and the condensate
in the BEC gas, the Bogoliubov coupling (6) results in a
self-induced multimode squeezing in the many-body system
of noncondensed atoms. It is described by the Bogoliubov
transformation (14)–(18) that, in general, includes not only
the diagonal squeezing parameters rk,k corresponding to the
intramode squeezing but also all of the off-diagonal squeezing
parameters rk,k′ corresponding to the intermode squeezing
between any two excited atomic modes k and k′.

(v) There is a remarkable difference between the atomic
and photonic boson samplings: Due to many-body fluctua-
tions and interparticle interaction, the atomic sampling in the
BEC trap is associated with the �P-hard Hafnians even for a
thermal, equilibrium state (without any particle source) while
a nonthermal source of squeezed or Fock photons is required
to get �P-hard Hafnians in the linear interferometer.

(vi) It is worth employing the characteristic function and
cumulant analysis, which constitutes a well-known compre-
hensive tool in statistics [90–93] and is sketched above for
the boson sampling in Eqs. (26)–(36), for (a) ruling out
mockups, such as with nonsqueezed states or distinguishable
bosons, (b) verifying that incoherent processes, boson loss,
technical noise, detector dark counts, or other imperfections
do not wash out the �P-hardness of sampling. The tools
currently in use are based on the Bayesian test for a subsys-
tem of modes [31,103], lower-order marginal distributions,
truncation of high-order correlations and polynomial ap-
proximations [31,32,104–106], quasiprobability distributions,
grouped correlations and phase-space methods [29,107], gen-
eralized bunching [14,15], etc.

(vii) The results in Eqs. (23)–(27) show that boson-
sampling experiments could be based on any general-case
BEC trap, for example, the multiqubit BEC trap formed by
a finite number of single-qubit cells (Fig. 1).

After a recent successful experiment [48] on measuring
fluctuations in the total occupation of the noncondensate,
it remains just to split the noncondensate into a few sepa-
rate fractions and measure, via some multidetector imaging
technique, the joint fluctuations in the atom numbers of
these fractions. Such experiments promise discovery of new
quantum many-body effects which are manifestations of the
computational �P-hard complexity of quantum many-body
statistics and are beyond simple particle analogs of the effects
like a Hong-Ou-Mandel one. They are doable at the present
stage of the magneto-optical trapping and detection technol-
ogy and would be valuable for understanding fundamental
properties of the interacting many-body quantum systems
directly relevant to quantum advantage. The ultimate experi-
ments with an increasingly large number of the noncondensate
fractions are very challenging. Of course, at the current, initial
phase of this field of research, it remains unknown exactly
how to achieve the quantum advantage using the BEC ex-
periments. The main open problem is a development of a
multidetector imaging technique for simultaneous measure-
ment of excited-state occupations.
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Overall, the analysis above goes far beyond the existing
photon sampling studies in a linear interferometer. It ush-
ers researchers from different fields to initiate exploring and
designing the �P-hard complexity in their own interacting
systems of various particles and fields.
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APPENDIX A: CHARACTERISTIC FUNCTION
OF THE JOINT PROBABILITY DISTRIBUTION

OF THE EXCITED-STATE ATOM NUMBERS

Here we derive the characteristic function in Eq. (23):

�({zk}) = 1√
det[1 − (Z − 1)G]

, Z ≡
M⊕

k=1

[
zk 0

0 zk

]
,

G = RDR† + RR† − 1

2
, D =

M⊕
j=1

1

eEj/T − 1

[
1 0

0 1

]
.

(A1)

The diagonal matrix D is determined by the mean occupation
numbers of the quasiparticle excitations with energies Ej .
The 2M×2M matrix R describes the Bogoliubov transforma-
tion from the vector Vb̂ ≡ (.., b̂†

j, b̂ j, ..)T of the quasiparticle
creation and annihilation operators to the vector Vâ ≡
(.., â†

k, âk, ..)T of the particle creation and annihilation oper-
ators:

Vâ = R Vb̂. (A2)

First, we formulate the symplectic property of the matrix R:
Since the Bogoliubov transformation preserves the canonical
Bose commutation relations for the creation and annihilation
operators, it obeys the following relation, involving the block-
diagonal matrix �:

R � RT = �, � ≡
M⊕

j=1

[
0 +1

−1 0

]
. (A3)

Taking into account that the Bogoliubov transformation (A2)
simultaneously alters the pairs of Hermitian conjugated oper-
ators and, hence, satisfies the relation

RT = AR†A, A ≡
M⊕

j=1

σx, σx =
[

0 1

1 0

]
, (A4)

the symplectic property may also be rewritten as follows:

R

(
M⊕

j=1

[+1 0
0 −1

])
R† =

M⊕
j=1

[+1 0

0 −1

]
. (A5)

Next, we prove that the matrix G = (GK ′
K ) in Eqs. (A1) is

the covariance matrix defined as the statistical average of the
normally ordered product of two particle creation or annihila-

tion operators:

(
Gr′,k′

r,k

) = (〈: â†
r,k âr′,k′ : 〉) =

⎡
⎢⎢⎢⎢⎢⎣

. . .
...

...

· · · 〈â†
k âk′ 〉 〈â†

k â†
k′ 〉 · · ·

· · · 〈âk âk′ 〉 〈â†
k′ âk〉 · · ·

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦.

(A6)

Its entries GK ′
K are enumerated by the double indices K =

(r, k) for rows and K ′ = (r′, k′) for columns. A Nambu-type
index r (or r′) acquires two values: 1, 2. For any operator
Ô , it denotes that the same operator, Ôr = Ô , if r = 1 or its
Hermitian conjugate, Ôr = Ô†, if r = 2. It is related to the
(2×2)-block structure of the matrix. We assume 〈âk〉 = 0. The
diagonal matrix Z = diag({zK}) consists of the pairs of the
same variable zr,k = zk = eiuk along the diagonal.

We mostly consider the system of a finite number, M, of
the excited particle modes. So, the A, D, R, G,�, and Z are
essentially the 2M×2M matrices. Yet, the method below can
be easily extended to the case of an arbitrary countable set of
an infinite number of excited modes.

Calculation of the characteristic function (for details of its
definition and properties, see Refs. [90–93] and references
therein) is similar to the calculation described in Ref. [34]
and is based on the Wigner transform technique [99–101].
The Wigner transformation casts an operator-valued function
F (â†, â) of the creation and annihilation operators â† and â
into a complex-valued function WF of the associated variables
α∗ and α as follows:

WF (α∗, α) =
∫
C

e−γα∗+γ ∗α Tr[eγ â†−γ ∗âF (â†, â)]
d2γ

π
. (A7)

It allows one to represent the trace of an operator product F̂ Ĝ
via a complex integral, Tr (F̂ Ĝ) = π−1

∫
WF WG d2α. The

above formulas are written in the single-mode case. In the
multimode case, they include the multiple integrals. In par-
ticular, the characteristic function, �({uk}) ≡ Tr(ei

∑
k uk n̂k ρ̂ ),

has the following Wigner representation:

�
({uk}

) =
∫
CM

W{nk}({α∗
k , αk})Wρ({α∗

k , αk})
M∏

k=1

d2αk

π
. (A8)

It is easy to calculate the Wigner transform of the statistical
operator ρ̂ = e−∑ j E j b̂

†
j b̂ j/T /Tr{e−∑ j E j b̂

†
j b̂ j/T } as follows:

Wρ

({β∗
j , β j}

) =
M∏

j=1

(
2 tanh

Ej

2T

)
exp

[
−2β∗

j β j tanh
Ej

2T

]

= e−V T
β BVβ

M∏
j=1

(
2 tanh

Ej

2T

)
;

Vβ ≡ (. . . , β∗
j , β j, . . .)

T , B =
M⊕

j=1

σx tanh
Ej

2T
.

(A9)

Here the complex variables β∗
j and β j are associated with the

quasiparticle operators b̂†
j and b̂ j , respectively, and constitute
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vector Vβ of size 2M, which is the counterpart of vector Vb̂
introduced in Eq. (A2) above.

The Wigner transform of the operator exp (i
∑

k ukâ†
k âk ),

whose average equals the characteristic function, is

W{nk}({α∗
k , αk}) =

M∏
k=1

2

zk + 1
exp

(
2α∗

k αk
zk − 1

zk + 1

)

= exp

(
V T

α

Z − 1

Z + 1
AVα

) M∏
k=1

2

zk + 1
;

Vα ≡ (. . . , α∗
k , αk, . . .)

T ,

Z − 1

Z + 1
=

M⊕
k=1

zk − 1

zk + 1

[
1 0
0 1

]

=
M⊕

k=1

eiuk − 1

eiuk + 1

[
1 0
0 1

]
. (A10)

Similar to Eqs. (A9), the complex variables α∗
k and αk are

associated with the particle operators â†
k and âk , respectively,

and constitute vector Vα of size 2M, which is the counterpart
of the vector Vâ introduced in Eq. (A2) above. Each argument
of the characteristic function uk , k = 1, . . . , M, appears, in the
form of the exponential variable zk = eiuk , twice in the entries
of the kth (2×2)-block of the block-diagonal 2M×2M matrix
(Z − 1)(Z + 1)−1.

Now we employ the property of the Wigner transform
highlighted in Ref. [101]: The linear similarity transformation
of the operator functions carries over to their Wigner
functions. It allows us to find the Wigner transform
Wρ ({α∗

k , αk}) for Eq. (A8) by substituting variables
Vβ = R−1Vα into Eqs. (A9). As a result, Eq. (A8) takes
the following explicit form:

�({zk}) =
∫
CM

exp

[
−V T

α (B̃ − Z − 1

Z + 1
A)Vα

]

×
M∏

k=1

4 tanh(Ek/2T )

zk + 1

d2αk

π
,

B̃ ≡ (RT )−1BR−1. (A11)

The matrix B̃ is matrix B written in the particle basis as
opposed to the quasiparticle basis.

Changing the integration variables to Re αk and Im αk and
applying a well-known formula for the Gaussian integral∫
Rn exp ( − xT Sx)

∏n
j=1 dx j = πn/2/

√
det S with a symmet-

ric matrix S = ST whose real part Re S is positively definite,
we get

� = 2M
∏M

j=1 tanh Ej

2T√
(−1)M det

(
B̃ − Z−1

Z+1
A
)∏M

k=1(zk + 1)2

= 2M√
(det B̃)−1 det

(
B̃ − Z−1

Z+1
A
)

det(Z + 1)
. (A12)

The last equality follows from representing the left-hand-side
products as the determinants of the appropriate matrices:

M∏
j=1

tanh2(Ej/2T ) = (−1)M det B = (−1)M det B̃,

M∏
k=1

(zk + 1)2 = det(Z + 1). (A13)

The matrices B and B̃ have equal determinants, det B = det B̃,
since the Bogoliubov transformation preserves the commu-
tation relations and, hence, its matrix R is simplectic, which
implies det R = det RT = 1. Multiplying the matrices in the
denominator, we get

�({zk}) = 1√
det
(

B̃−1A+1
2 − Z B̃−1A−1

2

)
= 1√

det
(
1 − (Z − 1) RB−1RT A−1

2

) . (A14)

The inverse of the block-diagonal matrix B is straightforward
to calculate as B−1 = A(1 + 2D). As a result, in virtue of
Eq. (A5), Eq. (A14) acquires the form of Eq. (A1). This
completes the proof of the first part of Eqs. (A1).

The formula for the characteristic function (A1) is derived
above for the case of a finite number of excited states M.
However, the final result does not explicitly depend on the di-
mension M of the Hilbert space on which the bosons live. So,
the formula in Eqs. (A1) can be also applied to a Bose system
with an infinite number of the excited states. Of course, the
finite-size matrix definitions and the finite products employed
above should be modified accordingly to fit the case of an
infinite countable dimension.

Derivation of the formula for the normally ordered covari-
ance matrix G [defined in Eqs. (A6)], that is, the second part of
Eqs. (A1), is straightforward. Consider unordered covariance
matrices G̃ of particle and quasiparticle operators which are
defined as follows:

G̃â ≡ 〈Vâ V †
â 〉 =

⎡
⎢⎢⎢⎢⎢⎣

. . .
...

...

· · · 〈â†
k âk′ 〉 〈â†

k â†
k′ 〉 · · ·

· · · 〈âk âk′ 〉 〈âk â†
k′ 〉 · · ·

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦,

G̃b̂ ≡ 〈Vb̂ V †
b̂
〉 =

⎡
⎢⎢⎢⎢⎢⎣

. . .
...

...

· · · 〈b̂†
j b̂ j′ 〉 〈b̂†

j b̂
†
j′ 〉 · · ·

· · · 〈b̂ j b̂ j′ 〉 〈b̂ j b̂
†
j′ 〉 · · ·

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦. (A15)

They Bogoliubov transformation establishes the following re-
lation between them:

G̃â = R G̃b̂R†. (A16)

The normally ordered covariance matrix differs from the un-
ordered one by a matrix representing the Bose commutator
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which has only one unity entry in each 2×2 block:

(〈 : â†
r,k âr′,k′ : 〉) = G̃â −

M⊕
j=1

[
0 0

0 1

]
,

(〈 : b̂†
r,k b̂r′,k′ : 〉) = G̃b̂ −

M⊕
j=1

[
0 0

0 1

]
. (A17)

The quasiparticles are the independent, noninteracting bo-
son excitations. The average occupation of their en-
ergy levels {Ej} in the thermal, equilibrium state, ρ̂ ∼
exp (−∑ j E j b̂

†
j b̂ j/T ), is given by the Bose-Einstein distribu-

tion 〈b̂†
j b̂ j〉= (eEj/T − 1)

−1
. So, the covariance matrix of the

quasiparticle operators is exactly matrix D defined in Eq. (25),
D = (〈 : b̂†

r,kb̂r′,k′ : 〉).
Equations (A16) and (A17) immediately lead to the explicit

formula for the normally ordered covariance matrix:

(〈 : â†
r,kâr′,k′ : 〉) = RDR† + R

(
M⊕

j=1

[
0 0
0 1

])
R†

−
M⊕

j=1

[
0 0
0 1

]
. (A18)

The last relation we need is

R

(
M⊕

j=1

[
0 0
0 1

])
R† −

M⊕
j=1

[
0 0
0 1

]

= R

(
M⊕

j=1

[
1 0
0 0

])
R† −

M⊕
j=1

[
1 0
0 0

]
,

which is equivalent to the symplectic property of the Bo-
goliubov transform written in terms of matrices R and R†,
Eq. (A5). It ensures that the last two terms in Eq. (A18) equal
(RR† − 1)/2, which yields the required result for the normally
ordered covariance matrix:

(〈 : â†
r,kâr′,k′ : 〉) ≡ G = RDR† + RR† − 1

2
. (A19)

This completes the proof of the second part of Eqs. (A1).
The relation R† = ART A linking transposed and Hermitian

conjugated Bogoliubov transform matrices makes it obvious
that the matrix AG is symmetric. Thus, the matrices C̃({nk})
appearing under the Hafnian in the occupation probabilities
(27) and in the Hafnian master theorem (28) are all symmetric.

APPENDIX B: THE HAFNIAN MASTER THEOREM

Here we give a simple derivation of the Hafnian master
theorem for an arbitrary covariance matrix G, Eqs. (A6):

1√
det (1 + (1 − Z )G)

=
∑
{nk}

haf (C̃({nk}))√
det(1 + G)

∏
k

znk
k

nk!
,

C = AG(1 + G)−1. (B1)

It establishes the Taylor series of the determinantal function
1/

√
det(1 + (1 − Z )G) over its M variables {zk|k = 1, ..., M}

at the point of origin {zk = 0} and is the Hafnian’s analog of

the permanent master theorem of MacMahon [35]. Here the
(2n×2n)-matrix C̃({nk}), n =∑k nk , is built from matrix C
via replacing the kth pair of rows with the nk copies of the
kth pair of rows for all k = 1, ..., M and then replacing the
k′th pair of columns in the (n×2M ) matrix, obtained at the
first step, with the nk′ copies of the k′th pair of columns for all
k′ = 1, ..., M.

The multiple Gaussian integrals have been intensively used
in quantum field theory, many-body physics, and quantum
optics for decades. An example is a neat analysis [108] of the
intensity distribution among the vibronic bands in electronic
spectra of polyatomic molecules, taking into account the rota-
tion of the excited-state normal coordinates relative to those of
the ground state (the Dushinsky effect). It involves the Gaus-
sian integrals similar to the ones employed in the derivation
of the Hafnian master theorem. In principle, the latter could
be derived by an appropriate expansion of such integrals over
the variables {zk}. However, previous works did not target
a generating function for the Hafnians and did not present
the explicit general formula (B1), or (28), that expresses the
Hafnian master theorem for an arbitrary symmetric matrix. It
is worth noting also that a few first terms on the right-hand
side of Eq. (B1) become elementary in the case of a small size
of the 2n×2n matrix under the Hafnian in the coefficients of
the Taylor expansion of the characteristic function since they
can be represented via explicit polynomials of the G-matrix
entries. The Hafnian master theorem in the explicit general
form of Eqs. (B1), valid in the case of an arbitrarily large
matrix size and aimed at the analysis of the �P-hardness of
computing, has been missing until now. Yet, the large-size
case and the formula (B1) are crucially important for the anal-
ysis of the �P-hardness of computing atomic boson sampling.

In fact, Eq. (B1) is an immediate consequence of the
Wick’s theorem, well-known in the quantum field theory
[94,95]. One just needs to apply the Wick’s theorem to the
mixed partial derivatives of the characteristic function (A1):

∏
k

∂nk

∂znk
k

1√
det(1 + (1 − Z )G)

∣∣∣∣∣
{zk=0}

= Tr

⎧⎨
⎩ρ̂
∏

k

⎡
⎣zn̂k−nk

k

nk−1∏
j=0

(n̂k − j)

⎤
⎦
⎫⎬
⎭
∣∣∣∣∣∣
{zk=0}

;

ρ̂ = e−Ĥ/T

Tr{e−Ĥ/T } . (B2)

If taken under the quantum-mechanical statistical average
in the definition of the characteristic function �({zk}) =
Tr{ρ̂∏k zn̂k

k }, the mixed derivative can be written as above,
via the products of nk shifted occupation operators n̂k − nk +
1, ..., n̂k = â†

k âk . For each mode k, in virtue of the Bose com-
mutation relation [âk, â†

k′ ] = δk,k′ , such a product is equal to
the normally ordered product of the nk annihilation oper-
ators and nk creation operators,

∏nk−1
j=0 (n̂k − j) = (â†

k )nk ânk
k .

It suffices to find the trace in Eq. (B2) for equal variables
zk = z = eiu → 0, k = 1, ..., M. If the operator of the total
number of excited particles N̂ =∑k n̂k commuted with the
Bogoliubov Hamiltonian Ĥ , then we would get a usual aver-
age of a product of the creation or annihilation operators over

063312-15



KOCHAROVSKY, KOCHAROVSKY, AND TARASOV PHYSICAL REVIEW A 106, 063312 (2022)

a density matrix ρ̂μ ∝ e−(Ĥ−μN̂ )/T for a system with a related
grand canonical Hamiltonian Ĥ − μN̂ and a chemical poten-
tial μ = iuT . Since N̂ and Ĥ do not commute, the average is
a bit more involved but still can be easily calculated:

∏
k

∂nk

∂znk
k

1√
det(1 + (1 − Z )G)

∣∣∣∣∣
{zk=0}

= 1√
det(1 + G)

Tr

{
ρ̂eμ(N̂−n)/T

Tr{ρ̂eμ(N̂−n)/T }

×
∏

k

[
(â†

k )nk ânk
k

]}∣∣∣∣∣
z=0

. (B3)

According to Wick’s theorem, the average (the trace) in the
right-hand side of Eq. (B3) is equal to the sum of all possible
products of n two-operator contractions (averages)

Tr

{
ρ̂eμ(N̂−n)/T

Tr{ρ̂eμ(N̂−n)/T } : âr,kâr′,k′ :

}∣∣∣∣∣
z=0

= Cr′,k′
r,k (B4)

of a given product of 2n creation or annihilation operators.
As a result, and in virtue of the Hafnian’s definition [37,96],

originally given in the quantum field theory by Caianiello
[97,98], we immediately get a concise final formula,

Tr

{
ρ̂eμ(N̂−n)/T

Tr{ρ̂eμ(N̂−n)/T }
∏

k

[
(â†

k )nk ânk
k

] }∣∣∣∣∣
z=0

= haf (C̃({nk})),

(B5)

in terms of the same Hafnian as the one in Eqs. (B1). Calcu-
lation of the two-operator average in Eq. (B4) via the Wigner
transforms and Gaussian integrals is a straightforward exer-
cise similar to the calculation of the characteristic function
outlined in Appendix A. The result for the matrix (Cr′,k′

r,k ) in
Eq. (B4) is C = AG(1 + G)−1. It is precisely the matrix C
employed in the theorem (B1).

The only additional, though obvious trick here is to rep-
resent the nk pairs of the k-mode’s creation or annihilation
operators in Eq. (B3) via the nk independent, completely de-
generate (with exactly the same correlation properties) modes
entering the matrix C̃({nk}) in Eq. (B1) as the nk identical or
degenerate pairs of the kth rows and the kth columns.

This completes the proof of the Hafnian master theorem,
Eq. (B1). The latter immediately yields Eq. (27) for the joint
probability distribution.
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