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Quantitative numerical analyses of interacting dilute Bose-Einstein condensates are most often based on
semiclassical approximations. Since the complex-valued field-theoretic action of the Bose gas does not offer
itself to the direct application of standard Monte Carlo techniques, simulations beyond their scope by now
almost exclusively rely on quantum-mechanical techniques. Here we explore an alternative approach based on
a Langevin-type sampling in an extended state space, known as the complex Langevin (CL) algorithm. While
the use of the CL technique has a long-standing history in high-energy physics, in particular in the simulation
of QCD at finite baryon density, applications to ultracold atoms are still in their infancy. Here we examine
the applicability of the CL approach for a one- and two-component, three-dimensional nonrelativistic Bose
gas in thermal equilibrium, below and above the Bose-Einstein phase transition. By comparison with analytic
descriptions at the Gaussian level, including Bogoliubov and Hartree-Fock theory, we find that the method allows
computing reliably and efficiently observables in the regime of experimentally accessible parameters. Close to
the transition, quantum corrections lead to a shift of the critical temperature which we reproduce within the
numerical range known in the literature. With this work, we aim to provide a first test of CL as a potential
out-of-the-box tool for the simulation of experimentally realistic situations, including trapping geometries and
multicomponent (or multiple species) models.
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I. INTRODUCTION

Interacting Bose-Einstein condensates are at the center
of contemporary experimental as well as theoretical studies.
Although much of the interest nowadays focuses on nonequi-
librium properties, many open questions still remain for Bose
gases in equilibrium. A tremendously successful description
of the weakly interacting Bose gas is provided by Bogoliubov
theory [1]. However, there are many situations of interest
where Bogoliubov theory is not very straightforward or even
unfeasible to apply. These include Bose gases in trapping
potentials [2], in lower dimensions [3], with spin interactions
[4], and at phase transitions, to name only a few.

For such scenarios it would be convenient to have a method
at hand to simulate the Bose gas from first principles. Unfortu-
nately, the field-theoretic path integral describing the Bose gas
in equilibrium may not be simulated by straightforward Monte
Carlo methods because the action is complex in general, an
obstacle known as the sign problem and that is plaguing nu-
merical computations in a wide range of physical scenarios
[5–8].

One possibility to circumvent this problem is to avoid
the field-theoretic (coherent state) path integral description
of the nonrelativistic Bose gas altogether. This approach is
pursued by the path integral Monte Carlo (PIMC) technique
[9,10], which treats the problem of interacting bosons in
a quantum-mechanical rather that a field-theoretic frame-
work. This method provides exact simulations also for
strongly interacting bosons, while its computational cost

increases polynomially with the number of particles to be
captured.

Other methods stick to the field-theoretic formulation,
where there is no limitation on particle number, but employ
a semiclassical approximation. These include the truncated
Wigner [11,12] as well as the projected Gross–Pitaevskii
equation (PGPE) algorithm [13,14].

On the other hand, there are numerical methods avail-
able that promise to directly tackle the sign problem in the
evaluation of path integrals. These include, inter alia, the
diagrammatic Monte Carlo method [15,16], the density of
states algorithm [17,18], the dual variables approach [18,19],
and the fixed node Monte Carlo method [20–22]. Two partic-
ularly promising, completely general and model-independent
approaches are the Lefschetz thimbles [23,24] as well as the
complex Langevin (CL) algorithm [25–27]. Both involve the
artificial complexification of real fields, thereby doubling the
number of degrees of freedom of the original problem, some-
what similar in spirit to the positive P-representation approach
[28–30].

In this work we focus on the complex Langevin algorithm.
The method has a long-standing history in the simulation
of lattice QCD at finite chemical potential [31–34]. More
recently, it has also found applications in condensed-matter
physics, mainly in the simulation of nonrelativistic fermions
[35,36]. In contrast, works applying CL in the context of
bosonic ultracold atoms are scarce, with the notable exception
of Refs. [37,38].
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By performing a systematic study of the three-dimensional
interacting Bose gas we here want to demonstrate that CL
can also be a useful tool for simulations of ultracold bosonic
atoms, in particular because it provides a possibility to per-
form exact simulations within the field-theoretic description
of interacting bosons. This paves the way for evaluating
observables in equilibrium Bose-Einstein condensates of ar-
bitrary particle number from first principles, without the need
of employing any approximation scheme.

II. THE COMPLEX LANGEVIN METHOD

The path integral

Z =
∫

Dφ exp (−S[φ]), (1)

for a theory described by the action S[φ] for the variable or
field φ, generalizes the partition sum in statistical mechanics
and thus offers itself for the numerical evaluation of observ-
ables according to

〈O〉S = Z−1
∫

Dφ exp (−S[φ])O(φ). (2)

In contrast with classical statistical mechanics, where the
measure involves a positive-definite probability distribution,
the action S in the quantum path integrals (1) and (2) is in
general, however, not real-valued. This renders a straightfor-
ward Monte Carlo evaluation of the expectation value (2)
unfeasible, an obstacle known as the sign problem. Many
contributions, by order of magnitude large but positive and
negative, can contribute to the sum, both in the real and imag-
inary parts, to give an eventually comparatively small result.
Evaluating this sum generically is exponentially hard [39].

A particular approach developed for tackling this diffi-
culty is the complex Langevin (CL) method [39]. It exploits
the well-known equivalence between path integrals and the
stochastic Langevin equation as well as the fact that the latter
can be formulated also for complex actions. The Langevin
approach is well established in statistical mechanics, corre-
sponding to the case of a real-valued action S[φ] describing,
in the simplest case, the dynamics of a real-valued field φ. Ex-
pectation values of the form (2) can be computed by evolving
the field φ along a fictitious time ϑ according to the stochastic
Langevin equation

∂φ

∂ϑ
= − δS

δφ
+ η(ϑ ), (3)

with η(ϑ ) being a Wiener noise averaging to 〈η(ϑ )〉 = 0 and
subject to the Markovian covariance 〈η(ϑ )η(ϑ ′)〉 = 2δ(ϑ −
ϑ ′), and by taking the average of O(φ(ϑ )) along the direction
of ϑ . Eq. (3) can be discretized as

φi+1 = φi − �ϑ
δS

δφ
+

√
2�ϑηi, (4)

with the ηi being Gaussian random variables with zero mean
and standard deviation 1 and �ϑ being the discretization of
the Langevin time.

The CL method extends this scheme for the case of a
complex action S ∈ C. Observing that Eq. (3) leads into the
complex plane even for the case of a real-valued field φ, one

complexifies each field component, φ → φR + iφI , which are
evolved according to twice as many Langevin equations as
before,

∂φR

∂ϑ
= −Re

[
δS

δφ

]
+ ηR(ϑ ), (5)

∂φI

∂ϑ
= −Im

[
δS

δφ

]
+ ηI (ϑ ), (6)

with the noise being subject to

〈ηR(ϑ )〉 = 〈ηI (ϑ )〉 = 0,

〈ηR(ϑ )ηR(ϑ ′)〉 = 2NRδ(ϑ − ϑ ′), NR − NI = 1, (7)

〈ηI (ϑ )ηI (ϑ ′)〉 = 2NIδ(ϑ − ϑ ′).

Hence, the CL equations involve, in general, a stochastic
force in both the real and imaginary directions. The two noise
contributions must fulfill the condition NR − NI = 1 in order
to ensure that the path integral involves a single integration
“direction” as in a line integral [40]. It has been shown, how-
ever, that it is numerically most convenient to set NR = 1 and
NI = 0 [41].

While it is a straightforward exercise to demonstrate the
equivalence of the Langevin approach to the original path inte-
gral for real actions, its validity in the case of complex actions
cannot be established rigorously. It is known to fail in certain
cases, either because of the occurrence of runaway trajectories
in the complex plane or because the process converges to an
unphysical result [41–43], which both represent characteristic
consequences of the sign problem. Several methods have been
developed to at least ameliorate the problem of runaways
[44–47]. Furthermore, there is substantial numerical evidence
that the method can indeed give reliable results in a broad
range of physical settings [39]. While the sign problem even-
tually traces back to the unavoidable complexity of Hilbert
space, there have been several attempts to settle the issue by
defining criteria for the correctness of the method [41,48–52].

In this paper we rather adopt a hands-on approach and test
the complex Langevin approach at the exemplary system of a
dilute Bose gas in three dimensions above and below the con-
densation phase transition. Since the upper critical dimension
of the dilute Bose gas is dup = 2, the three-dimensional system
is expected to be well-described by mean-field theory close to
the phase transition, and thus also further away from it. Hence
we evaluate momentum distributions and dispersion relations
at different chemical potentials and compare them to analyt-
ical predictions from quantum field theory at the mean-field
level, using the Bogoliubov and Hartree-Fock approximations
below and above the transition, respectively. We moreover
explore the more intricate properties near the phase transition
and reproduce the shift of the critical temperature within the
limits reported in the literature.

In this way we can demonstrate that the CL method
represents a promising and easy-to-implement technique for
computing many-body observables for interacting bosonic
quantum gases in thermal equilibrium. The method can be
straightforwardly extended to trapped configurations, multiple
components, and more intricate interaction terms, and in prin-
ciple also lower dimensions where quantum correlations are
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expected to play a stronger role and are expected to provide a
more stringent test bed of the method.

Since CL is not the only method in the context of ultracold
bosonic atoms that employs Langevin-type field equations,
some remarks about other stochastic approaches to Bose-
Einstein condensates are in order. These mainly include
methods based on the positive-P representation, which were
already mentioned above, as well as the stochastic Gross–
Pitaevskii equation (SGPE) [53–57]. What distinguishes CL
from both of them is that it attempts to directly compute
the Feynman path integral. The stochastic dynamics thus
takes place in a fictitious, unphysical time, during which the
Langevin process explores the space of field configurations,
i.e., samples from the possible values of the quantum field
at each point in space and physical time (the physical time
can be either imaginary as in thermal equilibrium or real as
in nonequilibrium). In contrast, both the positive-P method
and the SGPE are formulated in the physical time of the
system, and the stochastic dynamics can be regarded as an
actual physical evolution. A further distinctive feature of CL
which it shares with the positive-P method but not with the
SGPE approach is that it attempts to transform the computa-
tionally hard problem of sampling from a nonpositive-definite
distribution (as it arises generally when one wants to perform
full quantum simulations) to sampling from a positive-definite
distribution in a phase space with twice as many degrees of
freedom. Thus, for a complex Bose field ψ , both CL and the
positive-P method require to evolve four real fields instead
of two. In contrast, the SGPE does not feature any artificial
extension of the number of degrees of freedom. The stochastic
term here arises from the coupling of the condensate to the
cloud of thermally excited particles. By virtue of including
this interaction with the thermal background, the SGPE goes
beyond a pure mean-field description, but it does not attempt
to solve the full quantum problem from first principles and
can rather be classified as a semiclassical method [55]. In this
regard it differs from CL and the positive-P approach, which
both in principle provide exact simulations of the full quantum
problem but are not applicable in all situations of interest due
to the intrinsic and inevitable complexity of quantum physics.

III. COMPLEX-LANGEVIN SIMULATIONS
OF A THERMAL DILUTE BOSE GAS

A. The dilute N -component Bose gas

We study a nonrelativistic N -component Bose gas with
U(N ) symmetric interactions in thermal equilibrium at in-
verse temperature β = 1/T and chemical potential μ.1 The
action, expressed in terms of the complex Bose fields ψa(τ, x),
a = 1, . . . ,N , defined on the four-dimensional Euclidean
manifold of imaginary time τ and position x, reads

S[ψa, ψ
∗
a ] =

∫ β

0
dτ

∫
d3x[ψ∗

a ∂τψa + H(ψa, ψ
∗
a )], (8)

1Throughout the paper we use natural units where h̄ = kB = 1.

with Hamiltonian density

H(ψa, ψ
∗
a ) = 1

2m
∇ψ∗

a · ∇ψa − μψ∗
a ψa + g

2
(ψ∗

a ψa)2, (9)

where summation over the field components, a = 1, . . . ,N ,
is implied, and m is the mass of the particles. For a dilute
atomic gas in d = 3 dimensions, the dimensionful coupling
g = 4πa/m is commonly defined in terms of the s-wave scat-
tering length a, while the relevant measure for the coupling
strength is the dimensionless gas parameter

η ≡
√

ρa3. (10)

Being defined in terms of the average density of particles,
ρ, it relates a to the mean interparticle spacing ρ−1/3 and
evaluates, in typical experimental settings, to a number on the
order of η ≈ 10−3. Hence, the model is weakly interacting
and expected to be well described by low-order perturbative
approximations, at least substantially below and above the
condensation phase transition.

B. Observables

We are eventually interested in computing correlation func-
tions of operators O as

〈O1 · · ·On〉

=
∫
DψaDψ∗

a e−S[ψa,ψ
∗
a ]O1(ψa, ψ

∗
a ) · · ·On(ψa, ψ

∗
a )∫

DψaDψ∗
a exp(−S[ψa, ψ∗

a ])
.

(11)

Since the action (8) is, in general, not purely real-valued due
to the “Berry phase” term ψ∗

a ∂τψa, a straightforward Monte
Carlo evaluation of the path integral (11) is unfeasible, which
thus forms an exemplary problem we plan to tackle using the
complex Langevin approach.

In the following, we focus on uniform dilute Bose gases in
cubic spatial volumes subject to periodic boundary conditions,
such that we can evaluate observables most conveniently in
momentum space. The main object we consider is the occu-
pation number of the mode with wave number k,

f (k) = β−1
∫ β

0
dτ 〈ψ∗

a (k, τ )ψa(k, τ )〉, (12)

where summation over a = 1, . . . ,N is implied. Exploiting
the homogeneity in the τ direction, we average the τ -local
expectation value over imaginary time in order to gain a higher
statistical accuracy.

Close to the transition and in the condensate phase, f
is expected to be much larger than one, f (k) � 1, for all
modes in the semiclassical regime of momenta below the
temperature scale k2/2m � T , where also classical statis-
tical methods such as the truncated Wigner approximation
[11,58], or the PGPE algorithm [13] are applicable. At larger
momenta, however, where occupancies are small, f (k) �
1, the quasiclassical approximation is expected to fail, and
one needs either genuine quantum statistical methods or
single-particle techniques as the path-integral Monte Carlo
(PIMC) algorithm [9]. The PIMC approach is formulated in
a quantum-mechanical rather than a quantum field-theoretic
framework and thus is limited to comparatively small total
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particle numbers. We demonstrate that the CL method is ap-
plicable in both the strongly and the weakly occupied regimes.

For the single-component system, N = 1, we additionally
extract the dispersion by evaluating

ω(k) = β−1
∫ β

0
dτ

√
−∂τ ∂τ ′ 〈ψ∗(k, τ )ψ (k, τ ′)〉|τ ′=τ

〈ψ∗(k, τ )ψ (k, τ ′)〉|τ ′=τ

. (13)

The dispersion will give a first measure of the energy of
elementary excitations of the system. Also here, exploiting the
homogeneity in τ direction, we average ω(k) over τ in order
to gain a higher statistical accuracy.

C. Implementation of the complex Langevin simulations

All our simulations of a one- (N = 1) and a two-
component (N = 2) Bose gas were performed on an
NxNyNzNτ = 643 × Nτ space-time lattice, with varying dis-
cretization aτ = β/Nτ along the imaginary-time direction,
ranging between Nτ = 16 and Nτ = 64. Details on the dis-
cretization of the action (8) and the derivation and form
of the corresponding Langevin equations are provided in
Appendix A. For simplicity, we fix the temporal units by
choosing (2m)−1 = as in terms of the inverse of the lattice
spacing as. The temperature and thus β are then given in units
of as, fixing, for a given Nτ , also the imaginary-time lattice
length aτ in units of as. The Langevin time step is set to
�ϑ = 10−3as.

In each run, we prepared the system in some initial state, as
described in the subsequent sections. For example, above the
transition, we chose the vacuum state, setting ψ (τ, x) = 0 at
each point on the spatial and temporal lattice. We then prop-
agated the discretized Langevin equations, details of which
are provided in Appendix A. After a certain equilibration
time that varies with the physical scenario, we can compute
averages of the observables along the field trajectories.

The computational cost of a single Langevin time step
scales as the total space-time lattice size. In addition to this,
also the Langevin evolution time required to reach a fixed
statistical precision scales as Nτ , such that the total compu-
tational cost scales as ≈NxNyNzN2

τ . The latter can be inferred
from the fact that the action, discretized in τ direction, is of
the form

S =
Nτ∑
i=1

∫
d3x{ψ∗

i+1(ψi+1 − ψi ) + aτ H (ψ∗
i+1, ψi )}, (14)

where aτ = β/Nτ is the imaginary-time step size and H is
the discretized Hamiltonian, cf. Appendix A for details. In-
creasing Nτ for fixed β implies a correspondingly smaller
drift term and thus a slower exploration of the space of field
configurations, such that a longer Langevin evolution time is
required for obtaining the same statistical accuracy.

To speed up the simulation, we parallelized the compu-
tation of the Langevin drift and the propagation of the field
according to the Langevin equations on GPUs, in a way such
that every GPU thread updates a single lattice point. Working
on NVIDIA V100 cards, it takes about 40 hours of wall time
to evolve a one-component 643 × 16 lattice for 107 time steps
and to extract the momentum spectrum after each time step.
While for most scenarios we evolved for ≈107 steps, we

increased this number to 108 steps for the simulations close
to the transition in order to gain a higher statistical accuracy
needed for the precise determination of the transition point.

Statistical errors are generally estimated from the variance
of several independent runs. For further details on the numer-
ical extraction of observables, see Appendix B 1.

D. Ideal gas: Dependence on time discretization

Before we move on to evaluating the observables defined
above for an interacting dilute Bose gas at and away from the
condensation transition, we perform, as a first benchmark of
our approach, CL simulations of an ideal Bose gas. We use
this, in particular, to discuss the errors induced by the dis-
cretization of imaginary time, corresponding to a truncation
of the Fourier representations beyond a highest Matsubara
frequency.

For the ideal gas, the coupling vanishes, g = 0, and we
tune the chemical potential to μ = −0.1a−1

s , above the phase
transition, where the condensate fraction vanishes. We choose
the temperature to be T = 1.25a−1

s , which, together with μ

corresponds to a total density ρ = 0.054a−3
s and thus a critical

temperature Tc = [ρ/ζ (3/2)]2/32π/m = 0.95a−1
s and a ther-

mal de Broglie wavelength of λT = √
2π/mT = 3.17as.

We simulate for a Langevin time of ϑmax = 106as and
begin the averaging after an equilibration time ϑ0 = 105as.
Additionally, we average over 10 independent runs. In each
run, we prepare the system in the vacuum state, setting
ψ (τ, x) = 0 at each point on the lattice. The resulting, an-
gular averaged momentum distribution fCL(k) = fCL(|k|) =
〈 fCL(k)〉�k for Nτ = 16 is shown in Fig. 1. At large, the
results for the distribution agree excellently with the analytic
expression,

fBE(k) = 1

eβ[ε(k)−μ] − 1
, (15)

with free single-particle dispersion

ε(k) = k2

2m
, (16)

over the whole range of momenta, while a weak deviation
is seen at the smallest occupancies in the Boltzmann tail.
We amplify this discrepancy by showing, in the inset, the
relative deviation (� f / f )CL

BE = ( fCL − fBE)/ fBE on the same
logarithmic momentum scale.

As we recall from Appendix B 3, the occupation number
of the ideal gas, on a discrete imaginary-time lattice, can be
written as

fBE(k; Nτ ) =
Nτ −1∑
n=0

1

Nτ (e2π in/Nτ − 1) + β[ε(k) − μ]
. (17)

We show the relative deviation (� f / f )Nτ

BE = [ fBE(k) −
fBE(k; Nτ )]/ fBE(k) as a dotted line in the inset of Fig. 1,
which agrees on average with the deviation (� f / f )CL

BE be-
tween the CL data and the exact result. This, in particular,
demonstrates that the systematic increase of the relative nu-
merical error in the low-occupancy region at large momenta
can be attributed to the truncation of the Matsubara series.

To further corroborate this observation, we have per-
formed runs with a different number of lattice points Nτ
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FIG. 1. Angle-averaged momentum spectrum fCL(k) of a single-
component, noninteracting gas above the Bose-Einstein phase
transition, at a temperature T = 1.25a−1

s and chemical potential
μ = −0.1a−1

s (in units of the lattice constant as ), as obtained by
means of the complex Langevin method on a 643 × Nτ lattice,
with Nτ = 16 imaginary-time points. The momentum is measured
in units of the inverse thermal de Broglie wavelength kT = λ−1

T =√
mT/2π = 0.315a−1

s . The black dashed line represents the Bose-
Einstein distribution fBE(k). The inset shows the relative deviation
(� f / f )CL

BE = ( fCL − fBE )/ fBE of the numerical and continuum ana-
lytic distributions. Note that the statistical error is generally higher
for smaller k because the corresponding momentum shells contain
less modes to average over. The dotted black line in the inset repre-
sents the relative deviation as predicted from the analytical finite-Nτ

computation. Note that here (and in all plots above the transition)
for better visibility the spectrum is shown only up to kmax = 2a−1

s ,
i.e., excluding the “corners” of the momentum lattice. A version
including the corners, i.e., up to kmax = 2

√
3a−1

s , is shown in Fig. 15,
Appendix B.

along the imaginary-time direction. The respective deviations
(� f / f )CL

BE and (� f / f )Nτ

BE for Nτ = 16, 24, 32 are compared
with each other in Fig. 2. As one can see, the deviation of the
CL data from the exact Bose-Einstein distributions decreases
with increasing Nτ , as predicted by the analytical finite-Nτ

results shown as dashed lines.
The dispersion of the ideal Bose gas, ωCL(k) = ωCL(|k|) =

〈ωCL(k)〉�k , obtained as an angular average over (13), is
shown for Nτ = 16 in Fig. 3. The continuum dispersion is
given by the basic free-gas kinetic energy, shifted by the
chemical potential,

ωBE(k) = ε(k) − μ, (18)

while the finite-size dispersions result, as described in Ap-
pendix B 3, as

ωBE(k; Nτ )

=
√√√√ −N2

τ T 2

f (k; Nτ )

Nτ −1∑
n=0

2e−2π in/Nτ − e−4π in/Nτ − 1

Nτ (e2π in/Nτ −1) + β[ε(k) − μ]
. (19)

The deviation between the CL and continuum analytic results
is visibly larger, but can be attributed, as for the momentum

FIG. 2. Comparison between the relative deviation (� f / f )CL
BE =

( fCL − fBE )/ fBE of the numerical and analytic, (15), Bose-Einstein
distributions (CL, points) and the finite-size deviation (� f / f )Nτ

BE =
[ fBE(k; Nτ ) − fBE(k)]/ fBE(k) due to the truncation of the Matsubara
series (MS, dashed lines), as a function of β(ε(k) − μ). The data are
obtained for the same parameters as in Fig. 1, but for three different
Nτ ∈ {16, 24, 32}.

spectrum f , to the finite lattice resolution in imaginary-time
direction and thus to the corresponding truncation of the sum
over the Matsubara frequencies. This is again corroborated by
a comparison of the deviation for different Nτ , as shown in
Fig. 4.

FIG. 3. Dispersion ωCL(k) of the ideal Bose gas, as obtained ac-
cording to Eq. (13) from the same data as used in Fig. 1 and averaged
over the angular orientations of k, in units of ET ≡ k2

T /2m. Note
that, for better visibility, we doubled the width of the momentum
bins in comparison to Fig. 1. The black dashed line indicates the
free-gas dispersion (18), whereas the corresponding prediction (19)
on a discrete temporal lattice is shown as a dotted black line. The
momentum is measured in units of the inverse thermal de Broglie
wavelength kT = 0.315a−1

s .
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FIG. 4. Comparison between the relative deviation (�ω/ω)CL
BE =

(ωCL − ωBE )/ωBE of the numerical and analytic, (18), free gas
dispersion and the finite-size deviation (�ω/ω)Nτ

BE = [ωBE(k; Nτ ) −
ωBE(k)]/ωBE(k) due to the truncation of the Matsubara series, as a
function of β[ε(k) − μ]. The data are obtained for the same param-
eters as in Fig. 1, but for three different Nτ ∈ {16, 24, 32}.

E. Interacting gas above the Bose-Einstein
condensate phase transition

Having performed first benchmark computations for an
ideal Bose gas, we now turn to a weakly interacting, i.e.,
dilute gas and use the complex Langevin approach to calculate
momentum spectra and dispersions for chemical potentials
and temperatures away from and near the condensation phase
transition. We start with considering the case above the transi-
tion, where we can compare our numerical results to analytic
predictions on the basis of the Hartree-Fock (HF) Gaussian
approximation. Subsequently, we benchmark our CL results
to Bogoliubov theory below the transition, for both one- and
two-component systems. Finally, we explore the vicinity of
the phase transition, where we can obtain a benchmark be-
yond mean-field theory by computing the relative shift of the
critical temperature due to interactions, a quantity that is sen-
sitive to non-Gaussian fluctuations. Above the critical point,
we use the CL approach to compute the observables for the
same choice of temperature and chemical potential, but with a
nonvanishing, positive coupling constant g = 1a2

s , quantifying
the repulsive contact interactions between the bosons. Our
simulations return, for the chosen parameters, a density of ρ =
(0.0447 ± 0.002)a−3

s , where we have extracted ρ as described
in Appendix B. The corresponding diluteness parameter η,
Eq. (10), is found to be η ≈ 1.7 × 10−3, which is within the
range typically reached in cold-gas experiments. Note, that,
with the basic implementation of the method as described
here, in the grand-canonical ensemble formulation, we can
freely choose temperature and chemical potential, while the
mean energy and density are obtained from the numerical
data. This procedure can be straightforwardly extended to
systematically determine the Lagrange parameters from given
mean thermodynamic quantities.

Figure 5 shows the momentum spectrum of the dilute gas
in analogy to the ideal-gas spectrum depicted in Fig. 1, on a

FIG. 5. Angle-averaged momentum spectrum fCL(k) of an in-
teracting single-component gas above the BEC phase transition.
Temperature and chemical potential are chosen as in Fig. 1, the
coupling strength is g = 1.0a2

s , giving rise to a diluteness η ≈ 1.7 ×
10−3. The momentum is measured in units of the inverse thermal
de Broglie wavelength kT = λ−1

T = √
mT/2π = 0.315a−1

s . The CL
data are shown on a 643 × Nτ lattice, with Nτ = 16 and averaged over
10 runs. The spectrum fits well with the one calculated within the
Hartree-Fock approximation (dashed black line). For comparison we
include the Bose-Einstein distribution of the corresponding noninter-
acting system (dash-dotted black line). The inset shows the relative
deviation (� f / f )CL

HF = [ fCL(k) − fHF(k)]/ fHF(k). The dotted black
line in the inset represents the deviation (� f / f )Nτ

HF = [ fHF(k; Nτ ) −
fHF(k)]/ fHF(k) of the finite-Nτ from the Nτ → ∞ version of the HF
spectrum.

643 × Nτ lattice, with Nτ = 16. The main panels demonstrates
good agreement with results obtained within the Hartree-Fock
(HF) approximation [59], as described in the following.

Expanding the Hamiltonian (9) in leading order of a mean-
field approximation corresponds to replacing the quartic term
by

(ψ∗ψ )2 → 4〈ψ∗ψ〉ψ∗ψ + (〈ψ∗ψ∗〉ψψ + c.c.). (20)

Above the transition, we can neglect the in general complex
anomalous densities 〈ψψ〉 such that the resulting Hamilto-
nian describes, again, a noninteracting Bose gas, albeit with a
shifted chemical potential

μ′ = μ − 2g〈ψ∗ψ〉. (21)

The mean particle density ρ = 〈|ψ |2〉, which equals the mo-
mentum integral over the Bose-Einstein distribution, hence
must be determined self-consistently; that is, by solving the
equation

ρ =
∫

d3k

(2π )3
fBE(k; μ′) = λ−3

T g3/2(eβ(μ−2gρ) ). (22)

To determine ρ and from this μ′, we numerically solve
Eq. (22), evaluating the polylogarithm directly. We obtain
ρHF = 0.0454a−3

s which can be compared with the den-
sity obtained from our CL simulations as indicated above.
The density corresponds to μ′ = −0.191a−1

s , which gives
the ideal-gas Bose-Einstein distribution fHF(k) shown as the
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dashed line in Fig. 5, which significantly deviates from the
dash-dotted distribution fBE for μ.

The inset of Fig. 5 shows the relative deviation
(� f / f )CL

HF = [ fCL(k) − fHF(k)]/ fHF(k) from the expected
Hartree-Fock result and compares it to the deviation
(� f / f )Nτ

HF = [ fHF(k; Nτ ) − fHF(k)]/ fHF(k) of the finite-Nτ

from the Nτ → ∞ version of the HF spectrum, on a temporal
lattice of Nτ = 16 points. This demonstrates good agreement
over the whole range of momenta.

F. Bose gas in the condensed phase

Before we move on to studying the region close to the
BE phase transition, we repeat the previous analysis away
from criticality, in the condensed phase. In a condensate,
the pattern of possible collective excitations fundamentally
changes due to spontaneous symmetry breaking. While the
Hugenholtz-Pines (or Goldstone) theorem implies the elemen-
tary excitations to be gapless in the zero-energy limit, the
interactions suppress density vs phase fluctuations, such that
long-range phase coherence prevails which renders the long-
wavelength excitations sound like. In the case N > 1 of more
than one internal component of the U(N ) symmetric model
(9), however, additional Goldstone excitations are possible,
which correspond to relative density variations between the
components. These excitations are not subject to the sup-
pression by interactions, which depend on the total density∑N

a=1 ψ∗
a ψa only and are therefore similar to the motion of

noninteracting bosons. To explore our algorithm for this case,
too, we consider, in the following, systems with both N = 1
and N = 2.

1. One-component system

We start again with the single-component system, N = 1,
for which we now choose a temperature T = 0.625a−1

s , chem-
ical potential μ = 0.5a−1

s , and coupling constant g = 0.1a2
s .

This results in a total density of ρ ≈ μ/g = 5a−3
s , correspond-

ing to a diluteness η = 0.56 × 10−3. As before, we work on a
643 × Nτ lattice, with different choices of the imaginary-time
size Nτ = 16.

It turns out, though, that initializing the field as ψ (τ, x; ϑ =
0) = 0 for the Langevin evolution, as we did for all runs above
the phase transition, the Langevin process is not able to build
up a condensate, i.e., a highly over-occupied k = 0 mode even
at temperatures far below the transition, at least not within the
limited simulation time available. This could be expected for
large systems as the relative size of the phase space covered
by the condensate mode is inversely proportional to the system
size.

When starting instead from a spatially uniform, nonvanish-
ing field configuration given by the semiclassical mean-field
value ψ (τ, x) ≡ √

μ/g, the CL process leads to only a slight
modification, which consists in a thermal depletion of the
condensate mode and the buildup of the corresponding dis-
tribution of momentum excitations shown in Fig. 6.

From Bogoliubov mean-field theory one expects the mo-
mentum distribution of the single-component gas to be [1]

fBog(k) = 1 + 2v2
k

eβωBog(k) − 1
+ v2

k, (23)

FIG. 6. Momentum spectrum of the interacting single-
component gas below the phase transition, at temperature
T = 0.625a−1

s , chemical potential μ = 0.5a−1
s , and for a coupling

g = 0.1a2
s , corresponding to a diluteness η ≈ 0.56 × 10−3. It is

obtained from CL dynamics on a 643 × (Nτ = 32) lattice, averaged
over four runs starting from a state with constant density ρ0 = μ/g =
5a−3

s . The CL process leads to a slightly larger condensate
density ρ0 = f (0)/V = (5.0309 ± 0.0002)a−3

s , corresponding
to f (0) ≈ 1.32 × 106, while the condensate depletion becomes
ρ ′ ≡ ρ − ρ0 = (0.0149 ± 0.0001)a−3

s . Momenta are given in units
of the healing momentum kξ = √

2mgρ0 = 0.71a−1
s . The dashed

black line represents the spectrum (23) predicted by Bogoliubov
theory, consisting of a thermal (dotted gray line) and a quantum
depletion (dashed gray line) part. The inset shows the relative
deviation (� f / f )CL

Bog = ( fCL − fBog)/ fBog of the CL data from the
Bogoliubov spectrum. The dotted black line indicates an estimate
of the deviation (� f / f )Nτ

Bog = [ fBog(k; Nτ ) − fBog(k)]/ fBog(k) of the
finite-Nτ from the Nτ → ∞ version of the Bogoliubov spectrum, cf.
the main text.

where

vk =
√

1

2

[
ε(k) + gρ0

ωBog(k)
− 1

]
, (24)

in which ρ0 denotes the condensate density

ρ0 = ρ − V−1
∑
k �=0

fBog(k), (25)

with spatial volume V . The Bogoliubov dispersion of the
elementary excitations is given in terms of the free dispersion
ε(k), Eq. (18), by

ωBog(k) =
√

ε(k)[ε(k) + 2gρ0]. (26)

Note that the quasiparticle dispersion is soundlike, ωBog(k) �
cs|k|, at momenta below the healing-length scale kξ =√

2mgρ0.
The second contribution to (23), v2

k , gives rise to the quan-
tum depletion, i.e., it accounts for all particles that are not in
the condensate mode due to the interactions even at T = 0.
The first term, which is proportional to the thermal occupancy
of the quasiparticles, approximated as being noninteracting,
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FIG. 7. Comparison between the relative deviation (� f / f )CL
Bog =

( fCL − fBog)/ fBog of the numerical and Bogoliubov, (23), distri-
butions (CL, points) and the finite-size deviation (� f / f )Nτ

Bog =
[ fBog(k; Nτ ) − fBog(k)]/ fBog(k) due to the truncation of the Matsub-
ara series (MS, dashed lines), as a function of βωBog. The data are
obtained for the same parameters as in Fig. 6, but for three different
Nτ ∈ {32, 48, 64}. Note that for better visibility we doubled the width
of the momentum bins in comparison with Fig. 6.

accounts for the fraction of particles, which are noncondensed
due to thermal excitations.

In Fig. 6, we show the spectrum (23) as a black dashed line,
which hardly deviates from our numerical data, as reflected
by the relative deviation (� f / f )CL

Bog = ( fCL − fBog)/ fBog de-
picted in the inset. The gray dotted and dashed lines indicate
the contributions to the analytic spectrum (23), which account
for the thermal and quantum depletion of the condensate,
respectively.

We estimate the deviation caused by a finite Nτ by replac-
ing the thermal distribution of noninteracting quasiparticles in
Eq. (23) by the finite-Nτ expression, as we did this for the
ideal gas,

1

eβωBog(k) − 1
→

Nτ −1∑
n=0

1

Nτ (e2π in/Nτ − 1) + βωBog(k)
. (27)

As can be inferred from the inset of Fig. 6, this captures
the residual deviation between the CL and Bogoliubov dis-
tributions up to momenta above which the quantum depletion
becomes more relevant than the thermal one.

In Fig. 7 we compare the deviations of the distributions
obtained with CL and the Bogoliubov distribution with the
respective deviations of the finite-Nτ estimate from the full
Bogoliubov distribution, for three different Nτ ∈ {32, 48, 64}.
This demonstrates that the Matsubara series truncation also
affects the region of high momenta where v2

k dominates the
spectrum.

Also the Bogoliubov dispersion, which we show in Fig. 8,
is well reproduced by the CL simulations.

Finally, it is important to note that the CL method is
not only able to describe the part of the momentum spec-
trum which is dominated by thermal excitations but also to
reproduce the occupation numbers at high momenta where

FIG. 8. Dispersion of the interacting single-component gas be-
low the phase transition in units of Eξ ≡ k2

ξ /2m, as obtained
according to Eq. (13) from the same data as used in Fig. 6 and aver-
aged over the angular orientations of k. Note that for better visibility
we doubled the width of the momentum bins in comparison to Fig. 6.
For comparison we show the dispersion predicted by Bogoliubov
theory as a black dashed line.

the spectrum is dominated by the quantum contribution. To
further corroborate this observation, we also performed a sim-
ulation for a much smaller temperature, T = 0.156 25a−1

s , i.e.,
we increased Nτ to 128. For such low temperatures, the spec-
trum is almost entirely dominated by the quantum depletion.
Still, the spectrum is accurately reproduced by CL, see Fig. 9.
This gives hope that CL is a suitable tool for performing exact
simulations also in the quantum regime.

FIG. 9. The same as in Fig. 6, but for T = 0.15625a−1
s and

Nτ = 128. At this low temperature, large parts of the spectrum are
dominated by the quantum depletion, yet CL is still able to precisely
describe the spectrum.
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FIG. 10. Momentum spectrum of the interacting two-component
gas below the phase transition. The system is described by the U(2)-
symmetric Hamiltonian (9), i.e., N = 2. Parameters are, as before,
T = 0.625a−1

s , μ = 0.5a−1
s , and g = 0.1a2

s , Nτ = 32, averaging over
three runs. The spectrum (28) predicted by N -component Bogoli-
ubov theory is represented by the black dashed line. For comparison,
we have also plotted the quantum (dashed gray line) and thermal
(dotted gray line) contributions, as well as the contribution from the
free Goldstone relative number excitations between the two internal
components (dashed-dotted line). The inset shows the relative devia-
tion (� f / f )CL

Bog,tot = ( fCL − fBog,tot )/ fBog,tot of the CL data from the
Bogoliubov spectrum. The dotted black line shows an estimate of the
deviation (� f / f )Nτ

Bog,tot = [ fBog,tot (k; Nτ ) − fBog,tot (k)]/ fBog,tot (k) of
the finite-Nτ from the Nτ → ∞ version of the Bogoliubov spectrum,
cf. the main text.

2. Two-component system

We have repeated the above simulations for the case of
a two-component system, with U(2) symmetric Hamiltonian
(9). From Bogoliubov theory [see Appendix C for a summary
for the general U(N ) case], one obtains, as mentioned ini-
tially, besides the gapless elementary excitations of the total
density with dispersion (25), an additional free Goldstone
mode with dispersion given by (18) for each of the remaining
N − 1 degrees of freedom. For the case of general N , the total
momentum distribution reads

fBog,tot (k) =
N∑

a=1

〈|ψa(k)|2〉

= 1 + 2v2
k,N

eβωBog(k) − 1
+ v2

k,N + N − 1

eβε(k) − 1
, (28)

where

vk,N =
√

1

2

[
ε(k) + Ngρ0

ωBog(k)
− 1

]
, (29)

We show the results of our CL simulations in Fig. 10 and
compare them to the total Bogoliubov distribution (28), as
well as to the quantum and thermal contributions from the
Bogoliubov and free modes, respectively.

G. Interacting system at the transition

We finally would like to explore the CL approach to the
dilute Bose gas close to the Bose-Einstein phase transition.
We start by considering the occupation number spectrum to
show a pure Rayleigh-Jeans power law in the IR as a signature
of the phase transition, before we move on to determining the
shift of the critical temperature due to interactions in the real
Bose gas.

1. Rayleigh-Jeans scaling

At the transition, we expect the occupation number to show
Rayleigh-Jeans scaling,

f (k) ∼ 1

|k|2 , (30)

for small |k| in the infinite-volume limit. In principle, this
could provide a method for determining the transition point,
which, in practice, however, is suited only for obtaining a
rough estimate of where the phase transition occurs. On the
one hand, statistical errors are in general large for the relevant
small momentum modes; on the other hand, in finite-size
systems, even at the transition, Rayleigh-Jeans scaling is not
expected to be realized down to vanishing momenta.

As reported in the previous section, the formation of a
condensate by the Langevin process can take unrealistically
long computation times. Hence, for simulations below the
transition, a condensate must be seeded by choosing a non-
vanishing zero-mode population in the initial configuration
for the Langevin process. However, since we do not know
a priori at which chemical potential condensation occurs, it
is most convenient to approach the critical point from the
noncondensed phase. Nonetheless, the fact that the Langevin
equilibration time strongly increases for a condensed state
gives us a further (numerical) indication for determining the
transition point.

We choose a temperature T = 1.25a−1
s and a coupling

g = 0.5a2
s , resulting in a density ρ ≈ 0.08a−3

s and thus a di-
luteness of η ≈ 0.8 × 10−3. From HF theory, one obtains the
transition to occur at μ = 2gρ0

c , with ρ0
c the critical density in

the free system. This amounts to μHF
c /T = 0.066 for chosen

temperature and coupling. We perform simulations for five
values of the chemical potential between μ/T = 0.056 and
μ/T = 0.063. The Langevin time evolution of the accumu-
lated average of the zero-mode occupancy,

f (0) ≡ 〈 f (0, ϑ )〉ϑmax
ϑ0

= 1

ϑmax − ϑ0

∫ ϑmax

ϑ0

dϑ f (k = 0, ϑ ),

(31)

is shown in Fig. 11, as a function of the maximum Langevin
time ϑmax and for ϑ0 = 2.5 × 103as. While we observe a
fast convergence in ϑmax for μ/T = 0.056 and 0.06, i.e., still
rather far away from the transition, the convergence of f (0)
appears to be more and more slowed down for μ/T = 0.062,
0.0625, and 0.063, especially for the latter value of the chemi-
cal potential, giving a first hint that the system approaches the
transition. To make sure that our results are reliable and not bi-
ased by insufficient simulation time, we performed additional
runs with a nonzero seed of ψ = 0.075a−3/2

s , corresponding
to f (0) ≈ 1475, for the case of the largest chemical potential,
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FIG. 11. Langevin evolution of the zero mode occupancy f (0)
averaged over Langevin times ϑ = ϑ0, . . . , ϑmax, cf. (31), as a func-
tion of ϑmax, with ϑ0 = 2.5 × 103as, for five different chemical
potentials μ close to the transition, with chemical potential decreas-
ing from the uppermost to the lowermost curve, at a temperature T =
1.25a−1

s , coupling g = 0.5a2
s . The data are obtained on a 643 × (Nτ =

16) lattice and the resulting densities ρ ≈ 0.08a−3
s correspond to a

diluteness η ≈ 0.8 × 10−3. For μ/T = 0.056, 0.06, 0.062, 0.0625,
no seed of the zero mode was given. For μ/T = 0.063, we simu-
lated with a seed of f (0) = 0 (solid line) and f (0) ≈ 1475 (ψ =
0.075a−3/2

s ) (dashed line). Error bands are obtained from the variance
of ten independent runs.

μ/T = 0.063. The error bands indicate the variance over ten
independent runs and thus illustrate the demand for statistics
in the zero mode. The long-time zero-mode occupancy ap-
pears to converge for all chemical potentials and especially
the two simulations with different seed for μ/T = 0.063 are
consistent with each other within the error bands. All runs
used in the remainder of this chapter have been performed
without a seed in the zero-mode. The full spectra f (k) ≡
〈 f (k, ϑ )〉ϑmax

ϑ0
for three of the five configurations shown in

Fig. 11 are depicted in Fig. 12, as obtained from averaging
up to ϑmax = 104as. They approach the Bose-Einstein distri-
bution for μ = 0, while Rayleigh-Jeans scaling at low k is not
expected to be reached exactly in the finite-volume case.

2. Shift of the critical temperature

Let us now turn to the determination of the shift of the
transition temperature due to interactions. At leading order in
the dimensionless interaction strength, set by the diluteness η,
Eq. (10), the shift scales as η2/3 [60], and to next-to-leading
order in η, it takes the form [61]

�Tc

T 0
c

= cη2/3 + [c′ln(η2/3) + c′′]η4/3, (32)

where c, c′, and c′′ are numerical constants, T 0
c =

[ρ/ζ (3/2)]2/32π/m is the critical temperature of the ideal
Bose gas in d = 3 dimensions and �Tc ≡ Tc − T 0

c is the shift
of its value in the presence of interactions.

While, in principle, a thorough determination of the
transition point requires carefully extrapolating to the infinite-

FIG. 12. Infrared part of the momentum spectrum of the inter-
acting single-component gas for three different chemical potentials
μ close to and below the transition obtained by averaging up to
ϑmax = 104as. All other parameters are as in Fig. 11. Note that here
only the k axis carries a log scale for better visibility.

volume limit, for the case of a weakly interacting gas we
can employ a somewhat simpler approach. Consider the con-
densate fraction ρ0/ρ in a free gas as a function of T/T 0

c ,
for a fixed temperature T , and system size V = L3, and thus
fixed ratio � = L/λT of the system size L and the thermal
wavelength λT = √

2π/mT . Varying the chemical potential
μ allows tuning the total density ρ = N/V as well as the
zero-mode density ρ0 = f (0)/V , and the critical temperature
T 0

c , such that

T/T 0
c = �2

(
ζ (3/2)

N

)2/3

, (33)

ρ0/ρ = z

1 − z
N−1, (34)

where z = exp(βμ) is the fugacity. The total particle number
as a function of z in the continuum limit can be determined as
the sum

N =
∑

mxmymz

1

z−1 exp
[
π�−2

(
m2

x + m2
y + m2

z

)] − 1
, (35)

where the sums are performed over mi = −Mi, . . . , Mi, with
Mx = My = Mz chosen large enough to ensure convergence.
The resulting dependence of the ideal-gas condensate fraction
ρ0/ρ on T/T 0

c is shown in Fig. 13 as a solid cyan line. For
comparison, the inset shows the same curve over a wider range
near the critical temperature, together with the critical scaling
ρ0/ρ = 1 − (T/T 0

c )3/2 (black solid line), which results in the
thermodynamic limit V → ∞.

For the weakly interacting Bose gas, we make use of the
approximation, that the functional form of the condensate
fraction as a function of T in units of the critical temperature
is the same as in the noninteracting case, albeit with a shifted
critical temperature, i.e.,

[ρ0/ρ]
(
T/T 0

c

) = [ρ0/ρ]free

(
αT/T 0

c

)
, (36)
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FIG. 13. Condensate fraction ρ0/ρ as a function of T/T 0
c , for

a fixed temperature T = 1.25a−1
s , coupling g = 0.5a2

s and system
size (64as )3. The values obtained from the CL simulation for the
five different chemical potentials μ from Fig. 11 (green data points)
are compared with the behavior of the ideal Bose gas (cyan solid
line). The dashed green line represents a fit of the ideal-gas be-
havior, with shifted critical temperature, to the simulation data as
described in the main text, which gives c = 0.58 ± 0.16 quantifying
the interaction-induced shift (32). The inset depicts the same curves
and data together with the near-critical condensate fraction in the
thermodynamic limit (black solid line).

with α = T 0
c /Tc and thus �Tc/T 0

c = 1/α − 1. Within errors,
this is confirmed by our data. For each of the chemical po-
tentials chosen in our CL simulations, we determine the total
density ρ from the sum over the occupation number spec-
trum over all points of the momentum-time lattice, which we
correct by the difference between the continuum and lattice
densities determined for the ideal gas at the same tempera-
ture and chemical potential, see Appendix B 4 for details. In
this way, we determine condensate fractions and correspond-
ing values of T/T 0

c for the five different near-critical μ ∈
{0.063, . . . , 0.056} considered above, which we can compare,
cf. Fig. 13, with the behavior of the ideal gas in the continuum.

A least-squares fit of the ideal-gas curve to the simulation
data (dashed green line) yields an interaction-induced shift of
the critical temperature of

�Tc/T 0
c = 1/α − 1 = 0.004 97 ± 0.001 38. (37)

Possible finite-size corrections to this result are discussed in
Appendix D. For the density at μ/T = 0.063 the diluteness
becomes η = 7.95 × 10−4. As a consequence, neglecting the
O(η4/3) corrections in Eq. (32), the constant c in Eq. (32) takes
the value

c = 0.58 ± 0.16. (38)

The determination of the constant c has a long and contro-
versial history [62–69], see Ref. [70] for a review. Within the
errors, our result (38) is in good agreement with the value c =
0.7 (no error provided) from Ref. [64], while it is larger than
c = 0.34 ± 0.03 from the PIMC simulations of Ref. [63] and
smaller than the average of more recent results which accumu-

late near c ≈ 1.3, compare c = 1.32 ± 0.02 from Ref. [67],
c = 1.29 ± 0.05 from Ref. [71] [Monte Carlo simulation of
classical O(2) field theory], c = 1.27 ± 0.11 from Ref. [68]
(variational perturbation theory), and c = 1.32 ± 0.14 from
Ref. [69] (PIMC simulation). Experiments with helium in
Vycor glasses have found c ≈ 5.1 [65], while this has been
disputed in Ref. [66].

We also note that in Ref. [61] the constants c′ and
c′′, which quantify the corrections to (32) of order
η4/3 were determined. The authors found c = 1.32 ± 0.02,
c′ = 19.7518, and c′′ = 75.7 ± 0.4, which for our dilute-
ness η = 7.95 × 10−4 yield an O(η4/3) correction to the
shift [c′ln(η2/3) + c′′]η4/3 = −0.001 35 ± 0.000 03 and a to-
tal shift of �Tc/T 0

c = 0.009 98 ± 0.000 17, which is to be
compared with (37). To distinguish numerically the leading-
order and next-to-leading-order contributions would require
an analysis for a range of different densities or interaction
strengths and thus dilutenesses, which is beyond the scope of
the present work.

In summary, our analysis demonstrates that the CL method
gives access to a beyond mean-field quantity (in the mean-
field approximation, there is no shift of the transition
temperature), consistent with previous results by order of
magnitude.

IV. CONCLUSION AND OUTLOOK

We have shown that it is possible to evaluate the coherent-
state path integral of the interacting Bose gas from first
principles by means of the complex Langevin (CL) method
in experimentally relevant coupling regimes. We found that
the spectra and dispersions obtained via the Hartree-Fock and
Bogoliubov approximations are well reproduced above and
below the transition, respectively. By determining the shift
of the critical temperature �Tc due to interactions, we could
show that the method is in principle capable of providing
corrections beyond mean-field approximations. This opens a
perspective on possibilities of using CL for ab initio simula-
tions of interacting Bose gases in a wide range of experimental
settings.

A remaining potential challenge is using the method in the
regime of strong-coupling strengths. Here we find CL to per-
form very well in the experimentally relevant regime of dilute
gases, with diluteness parameter η ≈ 10−3, without the need
for additional improvements such as adaptive time-step size or
regulators. Notwithstanding this, choosing a diluteness of one
order of magnitude higher (η ≈ 10−2, corresponding to a by
two orders higher particle density), we encounter runaways
into the complex plane of field values, which are typical for
the method in parameter regimes, in which the so-called sign
problem prevails. While such highly dense Bose gases are
experimentally difficult to realize, it remains an interesting
task beyond the scope of our work to determine the limits
up to which the CL method leads to meaningful results in an
efficient manner.

For dilute systems, the method promises to be useful
in many different contexts, e.g., trapped systems beyond
the local density approximation [72], two-dimensional gases
near the Berezinskii-Kosterlitz-Thouless transition [73,74],
or spinor gases beyond the U(N )-symmetric case [4], for
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exploring the phase diagram in comparison with mean-field
predictions [75,76], or the exploration of anomalous aver-
ages and their interplay with the gaplessness of the spectrum
[77]. In principle, one may consider CL also for simulating
real-time path integrals and thus time evolving systems. This,
however, poses a far more challenging sign problem, so far
providing access to short-time evolution only [78].
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APPENDIX A: DISCRETE LANGEVIN EQUATIONS

In this Appendix, we provide details of the discretization of
the action (8) and the complex Langevin equations (5) derived
from it.

We express the complex Bose fields in terms of its real and
imaginary parts as

ψa ≡ ϕa + iχa. (A1)

Discretizing these components on the N3
s × Nτ lattice,

ϕa(τ, x) = ϕa(iaτ , jas ) ≡ ϕa,i,j, etc. for χa, the action (8) can
be written as

Slat = a3
s aτ

∑
i,j

{∑
a

[
ϕa,i,j − ϕa,i−1,j

aτ

ϕa,i,j + χa,i,j − χa,i−1,j

aτ

χa,i,j + i
ϕa,i−1,jχa,i,j − ϕa,i,jχa,i−1,j

aτ

− 1

2ma2
s

(ϕa,i+1,j�
latϕa,i,j + χa,i+1,j�

latχa,i,j + iϕa,i+1,j�
latχa,i,j − iχa,i+1,j�

latϕa,i,j)

− μ(ϕa,i+1,jϕa,i,j + χa,i+1,jχa,i,j + iϕa,i+1,jχa,i,j − iϕa,i,jχa,i+1,j)

]

+ g

2

(∑
a

{ϕa,i+1,jϕa,i,j + χa,i+1,jχa,i,j + iϕa,i+1,jχa,i,j − iϕa,i,jχa,i+1,j}
)2

}
, (A2)

where the index i enumerates the imaginary time lattice sites with spacing aτ , the three-dimensional index vector j the spatial
lattice sites, with discretization as. �lat is the Laplacian on the lattice, i.e.,

�latAa,i,j ≡ Aa,i,j+ex + Aa,i,j−ex + Aa,i,j+ey + Aa,i,j−ey + Aa,i,j+ez + Aa,i,j−ez − 6Aa,i,j, (A3)

with ex,y,z being the unit vectors in three dimensions. Note that ψ∗
a must be evaluated infinitesimally later than ψa, i.e., at lattice

point i + 1 rather than at i, as can be seen from the construction of the coherent-state path integral where in each time step ψ∗
a is

evaluated with respect to the coherent state on the left while ψa acts to the right, on the state one step earlier. This is important
even in the analytical treatment where it ensures the right convergence in the complex Matsubara plane [79].

The corresponding Langevin equations are obtained from (A2) by taking derivatives with respect to ϕ and χ ,

∂ϕa,i,j

∂ϑ
= a3

s (ϕa,i+1,j + ϕa,i−1,j − 2ϕa,i,j + iχa,i−1,j − iχa,i+1,j) + asaτ

2m
�lat(ϕa,i−1,j + ϕa,i+1,j + iχa,i−1,j − iχa,i+1,j)

+ μa3
s aτ (ϕa,i−1,j + ϕa,i+1,j + iχa,i−1,j − iχa,i+1,j)

− ga3
s aτ (�i−1,jϕa,i−1,j + �i,jϕa,i+1,j + i�i−1,jχa,i−1,j − i�i, j,k,lχa,i+1,j) + η(ϑ ) (A4)

and

∂χa,i,j

∂ϑ
= a3

s (χa,i+1,j + χa,i−1,j − 2χa,i,j − iϕa,i−1,j + iϕa,i+1,j) + asaτ

2m
�lat(χa,i−1,j + χa,i+1,j − iϕa,i−1,j + iϕa,i+1,j)

+ μa3
s aτ (χa,i−1,j + χa,i+1,j − iϕa,i−1,j + iϕa,i+1,j) − ga3

s aτ (�i−1,jχa,i−1,j

+ �i,jχa,i+1,j − i�i−1,jϕa,i−1,j + i�i,jϕa,i+1,j) + η(ϑ ), (A5)

where

�i,j ≡
∑

a

(ϕa,i+1,jϕa,i,j + χa,i+1,jχa,i,j + iϕa,i+1,jχa,i,j − iϕa,i,jχa,i+1,j). (A6)
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Note that both ϕ and χ must now be taken to be complex
variables, such that the complex Langevin method requires
to evolve four real fields per component instead of two as in
classical GPE simulations.

APPENDIX B: NUMERICAL EXTRACTION OF THE
OBSERVABLES

1. Spectrum and dispersion on the lattice

The translation of the occupation number 〈a†
kak〉 to the

lattice gives 〈ψ∗
k,i+1ψk,i〉, where, as for the action, ψ∗ must

be evaluated at the temporal lattice point i + 1 and ψ at i,
following from the construction of the coherent-state path
integral, cf. Appendix A. When computing the dispersion,
more care is in order. In the operator formalism, we can write
it as

ω(k) =
√

−∂τ ∂τ ′ 〈a†
k(τ )ak(τ ′)〉|τ=τ ′

〈a†
k(τ )ak(τ ′)〉|τ=τ ′

. (B1)

The discretization of ∂τ ∂τ ′ 〈a†
k(τ )ak(τ ′)〉|τ=τ ′ on the temporal

lattice is somewhat subtle. Since 〈a†
k(τ )ak(τ ′)〉|τ=τ ′ translates

to 〈ψ∗
k,i+1ψk,i〉, one is tempted to naively write 〈(ψ∗

k,i+2 −
ψ∗

k,i+1)(ψk,i+1 − ψk,i )〉/a2
τ . This, however, does not corre-

spond to the operator finite-time differences:

〈[a†
k(τ + aτ ) − a†

k(τ )][ak(τ + aτ ) − ak(τ )]〉/a2
τ , (B2)

which contain an anti-time-ordered term, and thus cannot be
simply translated to 〈(ψ∗

k,i+2 − ψ∗
k,i+1)(ψk,i+1 − ψk,i )〉/a2

τ .
Hence, a better choice is to discretize the product of deriva-

tives as

∂τ ∂τ ′ 〈a†
k(τ )ak

(
τ ′)〉|τ=τ ′ ≈ 〈[a†

k(τ + aτ ) − a†
k(τ )]

× [ak(τ ) − ak(τ − aτ )]〉/a2
τ ,

(B3)

which contains time-ordered terms only and implies the dis-
cretization

ω(k) =
√

−〈[ψ∗
k,i+2 − ψ∗

k,i+1][ψk,i − ψk,i−1]〉
a2

τ 〈ψ∗
k,i+1ψk,i〉 (B4)

of the dispersion, which we finally sum over i, in which is it
homogeneous, to gain statistics.

2. Momentum and integrals over momentum

On a lattice of size L = Nxas = Nyas = Nzas ≡ Nsas, the
kinetic energy associated with the momentum mode with
indices ( jx, jy, jz ) is not given by Ekin = (2π/L)2( j2

x + j2
y +

j2
z )/2m as in the continuum. The discretization (A3) of the

Laplacian rather implies the energy to be sine-spaced, i.e.,

Ekin = 2

ma2
s

[
sin2

(
π jx
Nx

)
+ sin2

(
π jy
Ny

)
+ sin2

(
π jz
Nz

)]
.

(B5)

Accordingly, the modulus k of the momentum associated with
mode ( jx, jy, jz ) reads

k = 2

as

√
sin2

(
π jx
Nx

)
+ sin2

(
π jy
Ny

)
+ sin2

(
π jz
Nz

)
. (B6)

In computing f (k) and ω(k) we perform angular averages
and accumulate the momenta into bins of width (64as )−1. For
the eight lowest bins, which contain only a single value of k,
we use this value as the k coordinate in plots of functions of
momentum, while for all other bins we choose the center of
the bin.

Integrals over momentum space such as necessary for de-
termining the mean density ρ are evaluated as sums as

ρ = 1

L3

∑
jx jy jz

∣∣∣∣cos

(
π jx
Nx

)
cos

(
π jy
Ny

)
cos

(
π jz
Nz

)∣∣∣∣ f jx jy jz ,

(B7)

where we choose again Nx,y,z ≡ Ns = L/as such that the
sums run over jx,y,z = 0, . . . , Ns − 1, and where f jx jy jz =
〈ψ∗

j,i+1ψj,i〉 is the occupation number of mode j = ( jx, jy, jz ),
averaged over imaginary time, cf. (12), i.e., summed over i, cf.
Appendix B 3. The factor in Eq. (B7) containing cosines is a
Jacobian that takes into account the sine-spacing of the lattice
momenta.

3. Truncated Matsubara expansion of particle
spectrum and dispersion

For the purpose of numerical simulations, the imaginary
time interval [0, β] must be discretized. Here we want to
discuss in more detail the errors induced by this discretization.
Consider, e.g., the expectation value f (k, τ ) = 〈a†

k(τ )ak(τ )〉
of the particle number operator in mode k, for a single-
component gas.

In the continuum, dropping any momentum indices, the
expectation value can be written as

f = 〈a†a〉 = Tr{e−βωa†aa†a}
Tr{e−βωa†a} . (B8)

Evaluating this expression in the number-state basis gives the
Bose-Einstein distribution,

〈a†a〉 = 1

eβω − 1
. (B9)

Within the path integral formulation, the thermal expectation
value of the number operator is represented by an imaginary-
time path integral, the discretized Feynman representation of
which reads

〈a†a〉 = lim
Nτ →∞

1

Nτ

∑
j

∫ ∏
i dψ∗

i dψie−SNτ [ψ]ψ∗
j+1ψ j∫ ∏

i dψ∗
i dψie−SNτ [ψ]

,

(B10)

with the time-discretized action (aτ = β/Nτ )

SNτ
[ψ] =

Nτ −1∑
i=0

(ψ∗
i ψi − ψ∗

i+1ψi + aτωψ∗
i+1ψi ), (B11)

where the index Nτ is identified with the index 0.
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FIG. 14. Relative error � f / f = [ f (Nτ ) − f ]/ f of the particle number f (Nτ ), Eq. (B15), with respect to the continuum value f , Eq. (B8),
(left panel) for different values of βω in dependence of the truncation order Nτ and (right panel) for different truncation orders Nτ as function
of βω, with Nτ increasing from the (on the left side) uppermost curve to the lowermost one.

Expanding the fields on the finite time interval [0, β] in
terms of Matsubara modes,

ψ j = 1√
β

Nτ −1∑
n=0

ψ̃neiωn jaτ , (B12)

with the Matsubara frequencies ωn = 2πn/β, n =
0, . . . , Nτ − 1, the path integral (B10) becomes

〈a†a〉 = lim
Nτ →∞

1

β

Nτ −1∑
m=0

∫ ∏
n dψ̃∗

n dψ̃ne−SNτ [ψ̃]ψ̃∗
mψ̃me−iωmaτ∫ ∏

n dψ̃∗
n dψ̃ne−SNτ [ψ̃]

,

(B13)

with

SNτ
[ψ̃] =

Nτ −1∑
n=0

(
1 − e−iωnaτ

aτ

+ ωe−iωnaτ

)
ψ̃∗

n ψ̃n. (B14)

Performing the Gaussian integrals yields

〈a†a〉 = lim
Nτ →∞

1

β

∑
n

e−iωnaτ

a−1
τ (1 − e−iωnaτ ) + ωe−iωnaτ

= lim
Nτ →∞

∑
n

1

Nτ (e2π in/Nτ − 1) + βω

≡ lim
Nτ →∞

f (Nτ ). (B15)

One shows in a similarly way that the dispersion ω, defined in
Eq. (B4), for finite Nτ becomes

ω(Nτ ) = Nτ

β

√
− 1

f (Nτ )

∑
n

2e−2π in/Nτ − e−4π in/Nτ − 1

Nτ (e2π in/Nτ − 1) + βω
.

(B16)

In the continuum limit, Nτ → ∞, the series (B15) converges
to 1/(eβω − 1). On the lattice, however, the series needs to be
truncated at some finite Nτ , such that an error occurs which de-
pends on Nτ , but also on the value of βω. Figure 14 shows the
numerically computed truncation error for several combina-
tions of Nτ and βω. In the right panel, one sees that the relative

error for small βω is positive but turns negative at some point
and quickly becomes rather large (while the absolute error still
decreases). This illustrates the needs in temporal resolution for
a precise evaluation of small occupation numbers as well as of
the corresponding dispersions, the limits of which can be seen
in Figs. 1–8. In fact, for large enough βω, the relative error on
the particle number can even become −100%, as can be seen
from Fig. 15, which shows a version of Fig. 1 including the
part of the spectrum up to kmax = 2

√
3a−1

s .

4. Finite-resolution corrections near criticality

On the computational lattice, systematic deviations of ob-
servables from their continuum counterparts are caused by
both the finite number of Matsubara modes and the finite
spatial lattice resolution. Both mainly affect the UV properties
of the system and therefore, in describing the critical behavior
near the phase transition, are expected to give a small correc-

FIG. 15. The same angle-averaged momentum spectrum as
shown in Fig. 1, but including the highest momenta in the “corners”
of the momentum lattice, i.e., up to kmax = 2

√
3a−1

s .
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tion only. Furthermore, for a weakly interacting gas above the
transition, the spectrum is well approximated by an ideal-gas
Bose-Einstein distribution with a shifted chemical potential,
see Sec. III E. It is thus reasonable to account for the described
systematic errors in the following way: For a free gas at
μ → 0 in a box of fixed size V = L3, we numerically deter-
mine the deviation δρ = ρ(Ns → ∞, Nτ → ∞) − ρ(Ns, Nτ )
between the density on the lattice and in the continuum (but
for finite system size V). δρ is then added to the density
determined from numerical data for the interacting system.
For the parameters as chosen in Sec. III G, i.e., a 643 × 16
lattice at T = 1.25a−1

s , we obtain δρ = 0.001 54a−3
s . This is a

rather small correction, but it is significant in determining the
constant c.

APPENDIX C: BOGOLIUBOV THEORY OF U(N )
SYMMETRIC BOSE GAS

In this Appendix, we provide, for conciseness, some details
on the Bogoliubov mean-field description of an N -component
Bose gas described by the U(N ) symmetric Hamiltonian (9).
For a complete discussion in the context of spinor Bose gases,
see, e.g., Refs. [4,76]. In momentum space, the “Kamiltonian”
entering the grand-canonical ensemble reads

K̂ ≡ Ĥ − μN̂ =
∑

k

∑
α

(
k2

2m
− μ

)
a†

k,αak,α + g

2V
∑
kk′q

∑
αα′

a†
k+q,αa†

k′−q,α′ak,αak′,α′ , (C1)

where α, α′ = 1, . . . ,N enumerate the different field components, g is the coupling, and V is the volume. Making the Bogoli-
ubov ansatz ak,α = √

Vρ0δk0 + ak,α (1 − δk0) and expanding to quadratic order in the nonzero mode operator, this becomes

K̂ =
(Ng

2
ρ0 − μ

)
NVρ0 +

∑
k �=0

∑
α

(
k2

2m
+ Ngρ0 − μ

)
a†

k,αak,α

+ gρ0

∑
k �=0

∑
αα′

[
a†

k,αak,α′ + 1

2
(ak,αa−k,α′ + a†

k,αa†
−k,α′ )

]
+ O

(
a3

k,α

)
, (C2)

where ρ0 is the condensate density, which is chosen equal in each component, such that the total condensate density is Nρ0. To
diagonalize in the component degree of freedom, we introduce

Bk = 1√
N

∑
α

ak,α, (C3)

bk,β =
∑

α

wα
βak,α, β = 1, . . . ,N − 1, (C4)

where the vectors wβ form an arbitrary orthonormal basis of the N − 1 dimensional orthogonal complement of the N -component
vector (1, 1, . . . , 1)T /

√
N . Thereby we obtain

K̂ =
(Ng

2
ρ0 − μ

)
NVρ0 +

∑
k �=0

(
k2

2m
+ 2Ngρ0 − μ

)
B†

kBk + Ngρ0

2

∑
k �=0

(BkB−k + B†
kB†

−k )

+
∑
k �=0

∑
β

(
k2

2m
+ Ngρ0 − μ

)
b†

k,βbk,β + O
(
a3

k,α

)
. (C5)

The equivalence of (C2) and (C5) can be easily seen by plugging the transformation (C3) and (C4) into (C5) and exploiting
the fact that (1, 1, . . . , 1)T /

√
N and the wβ form an orthonormal set. In leading-order mean-field approximation the energy is

minimized at the chemical potential μ = Ngρ0. Upon inserting this, (C5) becomes

K̂ = − g

2
N 2ρ2

0V +
∑
k �=0

(
k2

2m
+ Ngρ0

)
B†

kBk + Ngρ0

2

∑
k �=0

(BkB−k + B†
kB†

−k ) +
∑
k �=0

∑
β

k2

2m
b†

k,βbk,β + O
(
a3

k,α

)
, (C6)

which describes Bogoliubov modes Bk and N − 1 free Goldstone excitations bk,β . The total occupation number f (k) =∑
a〈|ψa(k)|2〉 for k �= 0 can then be written as

f (k) =
∑

α

a†
k,αak,α = B†

kBk +
∑

β

b†
k,βbk,β = 1

2

[
ε(k) + Ngρ0

ω(k)
− 1

]
+ ε(k) + Ngρ0

ω(k)(eβω(k) − 1)
+ N − 1

eβε(k) − 1
, (C7)

with Bogoliubov and free dispersions

ω(k) =
√

ε(k)(ε(k) + 2Ngρ0), (C8)

ε(k) = k2

2m
. (C9)
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FIG. 16. The same as in Fig. 13, but on a 483 (upper panel) and
323 (lower panel) lattice.

APPENDIX D: POSSIBLE FINITE-SIZE EFFECTS
IN EXTRACTION OF �Tc

In our extraction of the transition temperature shift due to
interaction effects we refrained from performing a system-
atic finite-size analysis. Numerical results by Ref. [71] (who
performed such a systematic analysis and defined the shift in
the finite system in a manner similar to ours) suggest that for
the system size that was employed here (20.2 thermal wave-
lengths λT ), finite-size corrections are already significantly
smaller than our statistical error. Namely, they find the shift
of the critical temperature to scale with system size L as

�Tc

T 0
c

∼ 1

1 + b0g(2m)3/2T 1/2 + a1+b1g(2m)3/2T 1/2

(Lm2T g)1.038

, (D1)

with a1 = 1.29, b0 = 0.123, b1 = 0.744.2 For our parameters
and system size, we obtain from this formula a deviation of
14.6% between the finite-L and the L → ∞ value for the shift,
which is only half our statistical error (27.8%), which justifies
our procedure.

Our own simulations corroborate said weak dependence on
L. To demonstrate this, we perform the same analysis as in the
main text but for the smaller 483 and 323 lattices, for the exact
same chemical potentials. The result is shown in Fig. 16. Here
we obtain for the shift

�Tc/T 0
c = 0.0036 ± 0.0014 (483lattice), (D2)

�Tc/T 0
c = 0.0031 ± 0.0008 (323lattice). (D3)

Within the errors, this agrees with the result for the 643 lattice,
suggesting that finite-size effects already play a minor role.

2Note that, in Ref. [71], constants were chosen 2m = T = 1 in the
factors multiplying b0 and b1.
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