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Two heavy impurities immersed in light few-boson systems with noninteger dimensions
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We investigate the spectrum and structure of two heavy bosonic impurities immersed in a light boson system
with noninteger dimensions D by means of the Born-Oppenheimer approximation. The ratio between the
energies of two consecutive many-body bound states, which follows an Efimov-type geometrical scaling law
when the heavy-light pair has a resonant s-wave interaction, is found to be a function of the mass asymmetry,
number of light bosons, and effective dimension D. Furthermore, the wave function is computed, and its behavior
is explored for different system configurations. To exemplify our results, we consider mixtures of two heavy
cesium atoms interacting with up to two lithium atoms, which are systems of current experimental interest.
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I. INTRODUCTION

The Efimov effect consists of the appearance of an infinite
tower of three-body bound states that follows a universal
geometrical scaling law for resonant short-range two-body
forces [1]. This effect was originally proposed in the nuclear
physics context; however, the first evidence of it was found by
Kraemer et al. [2] in trapped ultracold atomic systems. In their
work, the Feshbach resonance technique was applied to an
ultracold gas of cesium atoms, and they observed three-body
recombination losses when the strength of the two-body inter-
action was varied and the weakly bound Efimov state turned
into a continuum resonance (see also [3–7]). Nowadays, it is
known that the Efimov effect is present in several systems,
such as atomic gases [8], polarons [9], dipolar molecules [10],
and strong interacting photons [11], and in general atomic and
nuclear physics contexts [12–16].

The Efimov effect is closely related to the collapse of the
three-body bound energy discovered by Thomas in 1935 [17].
By decreasing the range of the interaction, Thomas found
that the three-body bound-state problem admits a solution at
any energy with a spectrum “unbounded from below.” Both
phenomena are affected by changes in the effective dimension
D in which the system is embedded. For example, just like
the Thomas collapse, the Efimov effect is absent for D =
2. It has been theoretically demonstrated for homonuclear
systems that the Efimov effect survives only for dimensions
in the range 2.3 < D < 3.8 [12]. Considering heteronuclear
systems, recent works have shown how the mass imbalance
changes the range of dimensions where the Efimov effect is
present [18–20].

Although technically simple to implement, the D-
dimensional approach presents a key issue, i.e., the connection
of the dimension D to the geometry properties of traps used
in experiments. Recently, it was suggested that a relation
between noninteger dimensions and the trap deformation in-
duced by an external harmonic potential could be given by

3(D − 2)/(3 − D)(D − 1) = b2
ho/r2

2D, (1.1)

where bho is the oscillator length and r2D is the rms radius of
the three-body system in two dimensions [21]. This relation
was found by associating the three-body bound-state energies
obtained within two different contexts, that is, by squeezing
the system in an external harmonic potential and embedding it
in D dimensions. The validity of the connection was tested for
Gaussian and Morse short-range two-body potentials, show-
ing the universal nature of the connection regardless of the
details of the two-body potential. It is worth mentioning that
this translation has not yet been computed for a larger number
of particles. Despite the advances that led to the possibility of
compressing and expanding the atomic cloud, creating effec-
tively two- [22] and one-dimensional [23] setups, to the best
of our knowledge, there are not yet experiments designed to
measure the effect of continuously changing the trap geometry
in the geometrical scaling parameter.

Besides the Efimov effect, in the literature we find studies
dedicated to the universal properties of systems with more
than three particles at the unitary limit, where the dimer bind-
ing energy vanishes or, equivalently, the scattering length is
driven to infinity [24–32]. In these studies, universal corre-
lations between the binding energies of successive tetramers
was discovered by solving the Faddeev-Yakubovsky equa-
tions. The findings corroborate the existence of a four-body
limit-cycle beyond the Efimov one [31]. Following that, the
shift in the four-body recombination peaks due to the finite-
length corrections was studied [33], explaining experimental
observations for ultracold gases of cesium atoms. Recently,
the independence between few-body scales was demonstrated
for many-boson systems composed of two heavy atoms inter-
acting with N − 2 light ones at the unitary limit [34], showing
different limit cycles, each one associated with a given number
of bosons present in the system.

In the present work, we extend the investigation of the
many-boson system in Ref. [34] by embedding it in an en-
vironment defined by an effective dimension D. The mass
imbalance and the number of light atoms are also varied
to study how these changes impact the geometrical ratio of
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consecutive many-body bound states. In addition to results
presented at the unitary limit, we also analyze finite-range
corrections for the many-body spectrum and structure. To
accomplish this, we obtain an expression for the two-body
bound energy as a function of the scattering length and effec-
tive dimension D, which can also provide a more direct way
to link theoretical and experimental results. In addition, we
obtain the wave function of the two heavy atoms, as well as
an analytical expression for the wave function of the N − 2
lighter ones, where N is the total number of atoms in the
system. In the case where it applies, we associate the effective
dimension D with the trap deformation.

This work is organized as follows. In Sec. II, we present the
Born-Oppenheimer formalism used to solve the bound-state
problem of two heavy impurities within a system of light
bosons embedded in an effective dimension D. In addition,
we analytically compute the wave function of the N − 2 light
bosons, which can be used to parametrize the many-body
large-distance tail of the total wave function. Furthermore,
we explicitly write the scaling parameter related to successive
ratios of many-body bound states for different mass ratios
and dimensions considering zero bound heavy-light energies.
For three-body systems, the results are compared with the
ones found by solving the Skorniakov and Ter-Martirosyan
equations. In Sec. IV B, for the two heavy impurities, we
present bound-state energies and wave functions considering
corrections of finite heavy-light bound energies. We focus on
the limit of discrete scale symmetry at the point where the
continuum one takes place. Correlations between the many-
body bound-state energies as a function of dimension and
mass imbalance are discussed as possible limit cycles. Finally,
we apply the present approach to molecules of 6LiN−2 - 133Cs2

for N = 3 and N = 4. In Sec. V, we summarize our work.

II. BORN-OPPENHEIMER APPROACH

In this section, we present the formalism used to study the
many-body system embedded in D dimensions composed of
two heavy particles with masses mA and N − 2 light bosonic
atoms with masses mB. This system is depicted in Fig. 1.

We are interested in the relative motion between the par-
ticles of the system, so that, ignoring the movement of the
center of mass, the Hamiltonian can be written in relative
coordinates as

H = − h̄2

2μAA
∇2

R + VB(|R|) +
N−2∑
i=1

[
− h̄2

2μB,AA
∇2

ri

+
2∑

j=1

VA

(∣∣∣∣ri + (−1) j μAA

mA
R

∣∣∣∣
)⎤

⎦, (2.1)

where μAA = mA/2 and μB,AA = 2mAmB/(2mA + mB) are the
reduced masses of the system and VA and VB denote the AB
and AA two-body interactions, respectively.

In order to apply the Born-Oppenheimer (BO) approxima-
tion, let us consider mB � mA. Within this approach, the total
wave function of the system is given by a product between the
wave functions of the N − 2 light fast atoms (�) and of the

FIG. 1. Representation of the AABB · · · B structure forming the
N-body system composed of two identical heavy atoms with masses
mA and N − 2 light atoms with masses mB.

heavy slow ones (φ), which can be written as

�(r1, r2, . . . , rN−2, R) = φ(R)�R(r1, r2, . . . , rN−2). (2.2)

Since there is no interaction between the light bosons, we
assume that the wave function of the light atoms is a product
of single-particle states, given by

�R(r1, r2, . . . , rN−2) =
N−2∏
i=1

ψR(ri ). (2.3)

In the lowest order of approximation, the action of the
Laplace operator ∇2

R on the total wave function � can be
written as

∇2
R

[
φ(R)

N−2∏
i=1

ψR(ri )

]
≈

N−2∏
i=1

ψR(ri )∇2
Rφ(R). (2.4)

Here, it is possible to make this approximation because the
other terms generated by the operator action are suppressed by
the mass factor ratio. By adopting the BO approximation and
our particular choice of Hamiltonian where the light-light po-
tential vanishes, we can write two independent equations for
each light particle and for the two heavy ones as⎡

⎣− h̄2

2μB,AA
∇2

ri
+

2∑
j=1

VA

(∣∣∣∣ri + (−1) j R
2

∣∣∣∣
)⎤

⎦ψR(ri )

= ε(R)ψR(ri ) (2.5)

and [
− h̄2

2μAA
∇2

R + VB(|R|) + (N − 2)ε(R)

]
φ(R)

= ENφ(R), (2.6)

respectively. The eigenvalue ε(R) of Eq. (2.5) depends on the
relative position of the heavy atoms and enters as an effective
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potential in Eq. (2.6), while the eigenvalue EN of the heavy-
atom equation gives the many-body energy.

As the total wave function is symmetric under the inter-
change of the heavy atoms and the interaction is not dependent
on the spin, the formalism developed here is suitable to de-
scribe many-body systems formed by bosonic or fermionic
heavy impurities, with the latter occurring in antisymmetric
spin states.

III. LIGHT-ATOM STRUCTURE

In the present model, as we have described, the zero-range
potential acts only in the heavy-light pairs, which allows us to
use the analytical expression for ε(R) obtained in [35], where
three-body systems in D dimensions were studied. Within this
approach, the energy eigenvalue of the light bosons comes
from the solution of a transcendental equation, given by

2
D
2

(√
|ε(R)|
R

) D−2
2

K D−2
2

(R
√

|ε(R)|)

− π csc (Dπ/2)

�(D/2)
(1 − |ε(R)| D−2

2 ) = 0, (3.1)

where |ε(R)| = |ε(R)|/|E (D)
2 | and |E (D)

2 | is the two-body
bound-state energy of each pair of heavy-light atoms. The
dimensionless relative distance between the heavy atoms is

R = R/L, with L =
√

h̄2/2μB,AA|E (D)
2 |. Kα (z) and �(z) are the

modified Bessel function of the second kind and the gamma
function, respectively.

The effective potential between the heavy particles from
the solution of Eq. (3.1) assumes quite simple forms in the
limits of large and small distances, R � 1 and R � 1. These
forms are given by

lim
R→∞

|ε(R)| = ∣∣E (D)
2

∣∣ + ∣∣E (D)
2

∣∣K D−2
2

(R) 2
(D+2)

2 �(D/2) R
2−D

2

(2−D)π csc(Dπ/2)

(3.2)

and

lim
R→0

|ε(R)| = h̄2 g(D)

2μB,AAR2
, (3.3)

where g(D) is the solution of the transcendental equation,

g(D) =
⎡
⎣− π csc(Dπ/2)

2
D
2 �(D/2)K D−2

2
(
√

g(D))

⎤
⎦

4
2−D

. (3.4)

At the unitary limit, where the heavy-light binding energy
vanishes for any finite distance between the heavy atoms, only
the contribution proportional to 1/R2 from Eq. (3.3) survives.
This form of the potential allows the presence of the Thomas
collapse for dimensions 2 < D < 4, restricted to conditions
of mass configuration and effective dimension D. For illustra-
tion, in Fig. 2 we plot the effective potential between the two
heavy atoms for two different dimensions. Basically, the value
of the two-body energy defines the tail of the potential and the
relative distance at which the two heavy atoms are under the
action of the inverse-square interaction. In the unitary limit,
region II disappears, and we have the g(D)/R2 behavior of the
effective potential represented in region I.

FIG. 2. Effective potential between the two heavy atoms
as a function of the dimensionless distance, R = R/L (L =
[h̄2/2μB,AA|E (D)

2 |] 1
2 ). The results for the effective potential from the

solution of Eq. (3.1) are presented for D = 3 (black long-dashed line)
and D = 2.5 (black solid line). The asymptotic form of the potential
at large distances (R � 1) from Eq. (3.2) is shown for D = 3 (blue
short-dashed line) and D = 2.5 (blue dot-dashed line). Regions I and
II are separated by the vertical line, and region I corresponds to R�1,
where the potential is dominated by the asymptotic form given in
Eq. (3.3) with g(D = 3) = −0.322 and with g(D = 2.5) = −0.081.

We will now turn our attention to the wave function. The
Fourier transform of ψR(ri ) can be analytically calculated
from

ψR(ri ) =
∫

dD pi

(2π )D

eipi .(ri+R/2) + eipi .(ri−R/2)

ε(R) − p2
i /2μB,AA

, (3.5)

which gives

ψR(ri ) = − 2μB,AA

h̄2(2π )
D
2

(√
2μB,AA|ε(R)|

h̄2

) D−2
2

×
[(∣∣∣∣ri + R

2

∣∣∣∣
) 2−D

2

K D−2
2

(√
2μB,AA|ε(R)|

h̄2

∣∣∣∣ri+R
2

∣∣∣∣
)

+
(∣∣∣∣ri− R

2

∣∣∣∣
) 2−D

2

K D−2
2

(√
2μB,AA|ε(R)|

h̄2

∣∣∣∣ri−R
2

∣∣∣∣
)]

.

(3.6)

In the unitary limit, where E (D)
2 goes to zero and R �

h̄/

√
m E (D)

2 , |ε(R)| is given by Eq. (3.3), and the wave function
written in Eq. (3.6) is given by

ψR(ri ) = − R2−D

(2π )
D
2

2μB,AA

h̄2 g(D)
D−2

4

×[
ζ

2−D
4+ K D−2

2
(
√

g(D)ζ+) + ζ
2−D

4− K D−2
2

(
√

g(D)ζ−)
]
,

(3.7)

where

ζ± = r2
i

R2
+ 1

4
± ri

R
cos(θriR). (3.8)

In Fig. 3, which considers two different dimensions,
namely, D = 3 and 2.5, we show the light-particle wave
function at the unitary limit considering a system composed
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cos

FIG. 3. We show, in units of h̄ = mA = 1, (a) the wave func-
tion of each light atom in the system 6LiN−2 - 133Cs2 considering
two different dimensions, D = 3 (blue surfaces) and D = 2.5 (green
surface), or, in the last case, trap geometry bho/r2D = 1.414 and
(b) the wave function for fixed cos θriR and different dimensions as
a function of the ratio ri/R.

of 6Li and 133Cs. In Fig. 3(a), the peak at ri/R = 1/2 and
cos(θriR) = ±1 comes from the logarithmic divergence of the
Bessel function K D−2

2
when its argument approaches zero. This

situation corresponds to the light particle being on top of one
of the heavy particles. It is noticeable that at large distances
the light-particle wave function for D = 2.5 decreases slower
than that for D = 3. This behavior follows from g(2.5) < g(3)
in Eq. (3.4), which leads to a decrease in the light-heavy dimer
binding energy when squeezing the system. In Fig. 3(b), we
detail the behavior of the wave function with respect to ri/R
for two fixed values of cos(θriR) (1 and 0.8) and D (2.5 and
3). The results are arbitrarily normalized to 1 at ri/R = 1 and
cos(θriR) = 1. Two properties seen in Fig. 3(a) are highlighted
in Fig. 3(b): (i) the peak vanishes quickly with the decrease of
the cosine, and (ii) the exponential tail of the wave function is
less damped for D = 2.5 than for D = 3.

IV. IMPURITIES STRUCTURE

In this section, we study the many-body bound-state prop-
erties by solving the energy eigenvalue equation for the heavy
pair of atoms. By defining a reduced wave function χ (R) =
R(D−1)/2φ(R) and considering the presence of N − 2 light

atoms that generate the effective potential between the heavy
ones, the energy eigenvalue equation (2.6) can be rewritten as[

− d2

dR2
− (N − 2)

mA

h̄2 ε(R) + (D − 3 + 2l )(D − 1 + 2l )

4R2

+mA

h̄2 VB(R)

]
χ (R) = mA

h̄2 E (D)
N χ (R). (4.1)

The solutions are determined by the two-body energy E (D)
2 ,

the mass ratio mB/mA, the angular momentum l , the effective
dimension D, and the number of light atoms present in the
system. For identical heavy atoms in the same spin state, l
will be even for bosons and odd for fermions.

A. Unitary limit

First, we investigate the many-body problem in the case
of the Landau fall to the center [36], which corresponds to
the Thomas collapse when the potential has the form U (r) ≈
−β/r2 , with β > 0. To achieve that, we take the unitary
limit in Eq. (3.3), so that the effective potential becomes
proportional to 1/R2 with a strength that depends on the mass
ratio mB/mA and dimension D. In this context, we consider
the most excited state, where E (D)

N is close to zero, so that the
heavy-particle eigenvalue equation (4.1) becomes[

− d2

dR2
− mA

2μB,AA
(N − 2)

g(D)

R2

+ (D − 3 + 2l )(D − 1 + 2l )

4R2

]
χ (R) = 0, (4.2)

where we have considered null heavy-heavy interaction
(VB = 0). Assuming the ansatz χ (R) = Rδ for the heavy-atom
reduced wave function, we can write the second-order equa-
tion

− δ(δ − 1) − mA

2μB,AA
(N − 2)g(D)

+ (D − 3 + 2l )(D − 1 + 2l )

4
= 0, (4.3)

whose solutions have the form δ = 1/2 ∓ is, with

s =
√

mA

2μB,AA
(N − 2)g(D) − (D − 2 + 2l )2

4
, (4.4)

where s can be either real or imaginary. For real values of
s, we have the manifestation of log-periodic oscillations in
χ (R), with the system exhibiting a discrete scale invariance.
In the situation where s is purely imaginary, a continuous scale
invariance occurs, and the wave function has a power-law
behavior instead of the log-periodic one. In this case, the
nature of the system belongs to nonrelativistic nonparticle
physics [37,38] in the context of cold atoms, which is an in-
teresting and fairly new area of research and will be explored
in future works.

To obtain real values of s we have to satisfy the condition

mA

2μB,AA
(N − 2)g(D) >

(D − 2 + 2l )2

4
. (4.5)

The expression above gives the critical dimensions where
the geometrical scaling regime vanishes as a function of l
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FIG. 4. Regions for the existence of the Efimov effect in the
unitary limit for different dimensions, angular momenta, and total
numbers of atoms. Lower blue and upper yellow regions present
results for mB/mA = 6/133 and mB/mA = 0.01, respectively.

and N for a given mass ratio. Figure 4 shows two surfaces,
which represent light-heavy mass ratios of 0.01 (upper yellow
surface) and 6/133 (lower blue surface). Once the mass ratio
decreases for a given number of light atoms, the region where
the geometrical scaling law manifests gets larger. In addition,
by increasing the number of light bosons, the maximum value
of angular momentum that allows the existence of the discrete
geometrical scaling parameter increases, while lower values
of D becomes accessible.

By replacing the value of s in Eq. (4.2), we can go for-
ward in the exploration of the many-body system, this time,
for finite bound-state energies. In this case, we can write a
differential equation of the form[

− d2

dR2
− s2 − 1/4

R2

]
χ (R) = −κ2

N χ (R), (4.6)

where mAE (D)
N /h̄2 = −κ2

N . Assuming bound-state solutions
and implementing the corresponding boundary condition, we
find that

χ (R) =
√

RKis(κN R). (4.7)

To completely define the solution, we choose the boundary
condition where χ (Rc) = 0, resulting in discrete values for
κN such that Kis(κ

(n)
N Rc) = 0. For shallow bound states, where

κ
(n)
N Rc � 1, the zeros of the Bessel function are given by

κ
(n)
N Rc = 2e−γ exp

(
−nπ

s

)
[1 + O(s)], (4.8)

where γ is the Euler constant. Taking the ratio of consecutive
N-body energies gives

E (n)
N

E (n+1)
N

= exp

(
2π

s

)
n → 0, 1, 2, . . . . (4.9)

As we can observe, following a geometrical law like the
one found for the Efimov effect, the above equation gives
the ratios between successive N-body bound energies, even

though the system under study is in a generic dimension D. In
addition, we stress that the scale parameter depends on the
number of light bosons and is different from that found in
the three-body problem. Therefore, the log-periodic behavior
of the wave function and the interwoven limit cycles [34]
associated with correlations between observables in the N-
body system build a complex pattern which survives under
squeezing of the system until a critical effective dimension.
It is interesting to observe that the log periodicity of the
wave function survives for lower values of dimensions with
an increasing number of light bosons, such that, in principle,
one could arrive at a situation tuned by the trap deformation
in which the Efimov effect vanishes but geometrical scaling
laws are still present for more than three particles.

The critical dimension for the manifestation of the Efimov
effect was already investigated by solving the Skorniakov and
Ter-Martirosyan (STM) equations at the unitary limit [18].
Here, we adapt this approach by restricting it to the present
situation of only heavy-light-atom resonances to allow com-
parison with the results from the BO approximation. In the
present context, there is only one STM integral equation,
which reads

χA(q) = τA

(
E3 − 1

2μA,AB
q2

)

×
∫

dDk
χA(k)

E3 − (k2 + q2)/2μAB − k · q/mB
,

(4.10)

where q and k are defined such that their origin is the center of
mass of a given pair and point towards the remaining particle,
with τA being the heavy-light transition amplitude. In the limit
of large momentum, the integral equation admits solutions
for the spectator function in the form χA(z) = CA z1−D+is,
where CA is the normalization constant. Substituting this ho-
mogeneous function in Eq. (4.10), we arrive at the following
transcendental equation for s:(

2μA,AB

mB

)(
μAB

μA,AB

)D/2

= FD I(D)(s), (4.11)

where

FD = 1

�(D/2 − 1)�(2 − D/2)
(4.12)

and

I(D)(s) =
∫ ∞

0
dz

4 zis

(mB/mA)(z2 + 1) + (z − 1)2

× 2F1

(
1;

D − 1

2
; D − 1;

− 4z

(mB/mA)(z2 + 1) + (z − 1)2

)
, (4.13)

with 2F1(a; b; c; d ) being the ordinary (Gauss) hypergeometric
function.

Figure 5(a) compares the Efimov geometric ratio calcu-
lated by means of the BO and STM equations as a function
of the mass ratio for different dimensions. As expected,
the results of the BO approximation improve as the heavy-
light mass ratio increases. In addition, we find that the BO
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e
x
p

FIG. 5. Efimov effect properties for different mass ratios and
dimensions for fixed null angular momentum in units of h̄ = 1.
(a) Efimov scale parameter in the unitary regime by means of the
BO approximation compared to the solutions of Skorniakov-Ter-
Martirosyan equations. (b) Critical dimensions for the manifestation
of the Efimov effect as a function of mass ratios.

approximation overestimates the geometric ratio, making the
effective potential in Eq. (4.6) less attractive, while this be-
havior is reversed when approaching the critical dimension, as
observed in Fig. 5(b). These differences occur mainly because
of the assumptions made in the two methods; that is, in the
BO, the heavy-atom degrees of freedom are frozen, while
in the STM approach all bosons are free to move. Finally,
considering a three-body system formed by 6Li - 133Cs2, we
found that the critical dimension shown in Fig. 5(b) is under-
estimated on the order of 5%.

B. Finite-range corrections

Experimentally, the access to regimes where the system
exhibits discrete scaling symmetry is made by controlling the
scattering length via Feshbach resonances, so it is interesting
to write the two-body energy in terms of the respective scat-
tering length in a generic dimension D. In addition, within the
real possibilities of experimental cold-atom setups, the unitary
limit is elusive, such that one has to consider finite scattering
lengths in order to obtain the properties of the N-body system
close to the Feshbach resonances. Taking this into account,

our study is now devoted to quantifying corrections out of
the unitary limit while varying the effective dimension in
which the system is embedded. In order to accomplish this,
we consider the heavy-light pair in our system to be two non-
relativistic particles with a rotationally invariant zero-range
interaction. In this context, we follow closely Ref. [39].

In the zero-range model, the radial wave function for
r > 0 is

R(r) =
√

π

2p
r

2−D
2 [cot δ(D)(p) J D

2 −1(p r) − YD
2 −1(p r)],

(4.14)

where r is the distance between the pair of particles and
p2/2μAB is the relative energy. The phase shift is written
in terms of the scattering length by assuming that the wave
function vanishes at the relative distance aD, which gives

cot δD(p) = YD
2 −1(p aD)/J D

2 −1(p aD). (4.15)

For small energies, we can write

cot δD(p) = cot

(
D

2
π

)
− 2D−2

π
�

(
D − 2

2

)

×�

(
D

2

)
(aD p)2−D. (4.16)

The S matrix in D dimensions is written as

S = 1 +
(

i p

2π

) D−1
2

fD(p), (4.17)

where the scattering amplitude is given by

fD(p) = 1

pD−2

1

cot δD(p) − i
. (4.18)

The two-body binding energies are located at the poles of the
S matrix on the real axis. At the lowest order of the effective
range expansion, Eq. (4.16) gives

p = 1

aD

(
2D−2

π

�(D/2 − 1)�(D/2)

cot (Dπ/2) − i

) 1
D−2

. (4.19)

For p = iκ2 with κ2 > 0, we can write E (D)
2 = −h̄2κ2

2 /2μAB,
which reproduces the results in Ref. [40].

In order to obtain the bound states of the two heavy-boson
impurities in the cloud of N − 2 light atoms, the effective
potential obtained from Eq. (3.1) has to be regularized at short
distances, which is done by associating a distance R0, named
the van der Waals length, with the repulsive region of real po-
tentials. This is necessary to avoid the Thomas collapse when
the condition given by Eq. (4.5) is satisfied. As an example,
in cold atomic systems, R0 is of the order of the Van der
Waals radius, which determines to some extent the position
of the three-atom recombination resonance, as in the case of
three identical atoms [41]. Within this approach, the effective
potential becomes

ε(R) → sgn(R0 − R)ε(R), (4.20)

obtained with an appropriate choice of VB(R) in the eigenvalue
equation (4.1).
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FIG. 6. Effective potential for different dimensions D as a func-
tion of R = R/L (L = [h̄2/2μB,AA|E (D)

2 |] 1
2 ). The band corresponds to

the region where the short-range potential is repulsive to avoid the
Thomas collapse.

In Fig. 6, we illustrate the effective potential focusing on
the 1/R2 behavior for different values of the effective dimen-
sion D. As we can observe, the region where the effective
potential exhibits the 1/R2 behavior diminishes as the ef-
fective dimension is decreased, so that, in principle, as the
trap geometry asymmetry increases, the ratio R0/aD has to
be tuned to lower values in order to accesses the geometrical
scaling regime.

In Figs. 7(a) and 7(b), we present the ratio of two succes-
sive bound-state energies as a function of R0/a3 for three- and
four-body systems embedded in three dimensions for some
mass ratios, respectively. As shown in the diagrams, when
a3 � R0, the bound states present a geometric ratio of the
form exp(2π/s) that can be represented by a unique limit
cycle. In addition, we can see that the magnitude of the scat-
tering length necessary to obtain discrete scale symmetry is
larger for systems that present greater light-heavy mass ratios.
This can be explained by means of the strength of the effective
potential between the heavy atoms generated by the presence
of the light ones, which is proportional to the inverse of the
reduced mass μB,AA [see Eq. (3.3)]. Finally, as we see by
comparing Figs. 7(a) and 7(b), the ratio between the energy of
successive states depends on the number of light bosons. This
property was also found in the four-boson system with zero-
range interactions [31], and in the present model it comes from
the increase in the strength of the inverse-square potential in
the BO approach from increasing the number of light atoms.

In Figs. 8(a) and 8(b), the ratio between energies of two
successive states as a function of R0/aD is presented for
6Li - 133Cs2 and 6Li2 - 133Cs2 molecules, respectively. Consid-
ering the effective dimensions of 3, 2.75, and 2.5, with zero
angular momentum, we analyze up to three consecutive states,
with n = 0, 1, and 2. As we can observe in both plots, as the
effective dimension decreases, the geometric ratio between
successive energies increases until the critical dimension is
reached. Comparing Figs. 8(a) and 8(b), we can observe that
independent of the dimension, the discrete scale regime of the
6Li2 - 133Cs2 molecule is more resilient against the increasing
of R0/aD compared to the 6Li - 133Cs2 one. This can be un-
derstood since the 1/R2 potential has twice the strength in
the former case compared to the latter one. Another aspect

FIG. 7. Ratio between the energies of two successive states
E (n)

N /E (n+1)
N as a function of R0/a3 for dimension D = 3 and an-

gular momentum l = 0. We consider two heavy bosonic impurities
interacting with (a) one (6Li - 133Cs2) and (b) two (6Li2 - 133Cs2) light
bosons. The curves from top to bottom are obtained for mass ratios
of mB/mA = 0.1, 6/133, and 0.01; the solid lines correspond to
excitation quantum number n = 0, the long-dashed lines correspond
to n = 1, and the short-dashed lines correspond to n = 2.

observed in both plots that is also independent of the effec-
tive dimension is the behavior of the n + 1 energy state that
changes in magnitude slowly with respect to the n one when
the ratio R0/aD is increased. The reason for that is in the form
of the effective potential, which is deep and goes with the
behavior 1/R2 at short distances and is exponentially damped
at large separations of the two heavy atoms. The increase in
R0/aD raises the kinetic energy while pushing the states to the
shallow region of the potential. The excited state, although
it gains kinetic energy, does not lose considerable potential
energy, while the lower state, which initially is deeper and
localized in the 1/R2 region, gains less kinetic energy while
losing more potential energy when it is moved to the region
of the shallow potential. We should observe that the departure
from the geometrical scaling regime becomes more dramatic
when D is decreased. The reason for that is traced back to
Fig. 6, which shows that the region where the potential 1/R2

(R 
 R/aD) acts is narrowed by decreasing D.
In what follows, we stress the relation of the scattering

length with the effective dimension while studying the wave
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FIG. 8. Ratio between the energies of two successive states
E (n)

N /E (n+1)
N as a function of R0/aD for fixed angular momentum

l = 0. We consider two atoms of 133Cs interacting with (a) one and
(b) two 6Li atoms. The solid lines correspond to excitation quantum
number n = 0, the long-dashed lines correspond to n = 1, and the
short-dashed lines correspond to n = 2. The curves from top to
bottom are obtained for dimensions of 2.5, 2.75, and 3.

function of the heavy-heavy pair. In Figs. 9(a) and 9(b), for
different effective dimensions D = 3 and 2.5, respectively, we
illustrate the square modulus of the wave function of the pair
133Cs - 133Cs in the molecule 6Li2 - 133Cs2 for n = 0, 1, 2, and
3. The red dots represent the nodes of the highest excited
state when the system is at the unitary limit. These nodes
can be used as a reference on how close to the log-periodicity
behavior the wave function is. By comparing these plots, we
can observe that changing the effective dimension from D = 3
to D = 2.5, for a fixed ratio R0/aD, makes the deviation from
the logarithmic periodicity regime greater, which highlights
the relation between the magnitude of the ratio R0/aD and how
close the many-body energies are to the geometrical scaling
regime.

To finalize the analysis of the many-body bound states,
in Fig. 10 we show the scaling functions E (n+1)

N /E (n+2)
N vs

E (n)
N /E (n+1)

N for the 6Li - 133Cs2 and 6Li2 - 133Cs2 molecules
embedded in different dimensions, with the bound-state en-
ergies computed by changing the ratio R0/aD. Two scaling
functions for n = 0 and n = 1 are computed; the results fea-
ture the limit cycles for three and four particles. The black

FIG. 9. We compute the squared modulus of the bound-state
wave function of the heavy pair |χ (R/aD)|2 in the lowest angular
momentum state considering the molecule 133Cs2 - 6Li2 embedded in
two different dimensions, (a) D = 3 and (b) 2.5. The cutoff radius
in units of the scattering length is fixed at R0/a3 = 9 × 10−4. The
ground state n = 0 is the dashed line; the solid lines from top to
bottom are n = 1, 2, and 3. The red dots represent the nodes of the
highest excited state when the system is at the unitary limit.

FIG. 10. Results for the scaling function E (n+1)
N /E (n+2)

N vs
E (n)

N /E (n+1)
N considering the molecules 6Li - 133Cs2 and 6Li2 - 133Cs2

for n = 0 and n = 1. The three- and four-body systems are squeezed
in different effective dimensions. The straight line is the unitary limit.
The red dot is the limit where the states reach the continuum.
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solid line denotes the geometric scaling ratio at the unitary
limit, and the red dot represents the limit where the energies
of the three- and four-body systems become equal to the
two-body energy and two times it, respectively, reaching the
continuum at this point. The limit cycles are characteristic
of the dimension and also the number of light bosons. It is
worthwhile to mention that the detailed form of the correla-
tion between E (n+1)

N /E (n+2)
N and E (n)

N /E (n+1)
N depends on the

effective potential ε(R), which varies from the short-distance
behavior, 1/R2 (3.3), to the long-distance one with an expo-
nential tail proportional to the two-body energy (3.2).

V. SUMMARY

In this work, we have explored the problem of two heavy
bosonic impurities immersed in a system of light bosons by
means of the Born-Oppenheimer approximation. The many-
body system was embedded in D dimensions in order to
mimic squeezed traps. Correlations between the many-body
bound-state energies and wave function for different di-
mensions, mass ratios, and numbers of light bosons were
discussed. The study focused on the regime of discrete scale
symmetry up to the point of transition to the continuum one,
considering both zero and finite heavy-light two-body bound
energies.

We placed our study in the context of the 6LiN−2 - 133Cs2

molecule, where the 6Li - 6Li interaction is weak, which is the
case when the scattering length vanishes. In the particular case
of N = 3 by means of the Born-Oppenheimer approximation
in different dimensions, we computed for the lowest angular
momentum state at the unitary limit the critical dimension
where the Efimov effect vanishes (Dc 
 2.188), which rep-
resents an overestimation of 5% over the Skorniakov and
Ter-Martirosyan result (Dc 
 2.298). For N = 3 and N = 4,
we also studied the 133Cs - 133Cs wave function up to three
excited states for some effective dimensions and different
ratios between the short-range cutoff R0 and the heavy-light
scattering length aD. In addition, we found that the tuning of
R0/aD, which is necessary to place the system into the discrete
scale regime, is strongly correlated to the effective dimension
in which the system is embedded.

Furthermore, we found that the effective dimension where
the discrete scale symmetry transitions to the continuum one
depends on several system variables, such as the angular
momentum, number of light bosons, and mass imbalance be-
tween heavy and light atoms. As a consequence, we can find
situations in squeezed traps where systems with three bosons

are not in the discrete scaling symmetry regime, while four
or more bosons are still in it. Furthermore, we found that an
increase in the angular momentum of the heavy-heavy pair,
which tends to destroy the discrete scale symmetry regime,
can be balanced by increasing the number of light bosons in
order to preserve discrete scaling properties.

Below the critical dimension where the discrete scaling
symmetry ceases to exist and the continuum one occurs, a
phenomenon closely related to the nonparticle physics [37]
can be explored. Already studied in the context of nuclear
physics [38], the key to observe particle physics in cold atomic
traps is the presence of a power-law behavior with a nontriv-
ial exponent related to the few-atom recombination rate. In
Ref. [42] the possible manifestation of anatomic physics in
cold-atom physics was already pointed out, giving interesting
features to take into account when planning and developing
future experiments with the aim of observing the transition
between the discrete and continuum scale symmetry regimes.

In summary, our study corroborates the existence of ge-
ometrical scaling laws for N-body systems with different
log-periodicity properties for each system configuration. Such
properties were also found in Ref. [31] for four identical atoms
with nonzero interactions in momentum space. Hence, for
future works, we plan to introduce a nonzero interaction be-
tween the light particles into our system in coordinate space,
which will make the problem much more difficult to solve in
mathematical terms and could lead to some corrections to the
quantities that we have found in the present paper. In principle,
the three-body threshold that appears when the light parti-
cles interact among themselves should not affect the deeper
four-boson bound states in the discrete scale regime once it
is located below this threshold. Indeed, this was verified for
four identical bosons in Ref. [31]. In addition, the physics of
few-atom recombination rates below the critical dimension,
where nonrelativistic nonatomic phenomena are expected to
arise, looks very interesting, and we also aim to investigate it
in future works.
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