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Tunneling and revival of Anderson localization in a Bose-Einstein condensate
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We provide an analytical model to fabricate an exponential localization of a Bose-Einstein condensate under
a bichromatic optical lattice. Such localization is famously known as Anderson localization. The degree of
localization is investigated using the participation ratio to recognize the laser parameter domain for Anderson
localization. The exponential nature of the localization is proved, and we also identify the localization length. The
tunneling of an Anderson-localized condensate with time is observed, and the revival phenomenon of Anderson
localization is reported. Slowing down of Anderson localization is noticed for higher laser intensity. We also
study the dynamical and structural stability of the condensate during Anderson localization, which suggests the
preferred values of laser power and the time instance to encounter a minimal mean difference in the presence of
noise.
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I. INTRODUCTION

In 1958, Anderson demonstrated exponential localization
when the on-site energies of the lattice were randomly shuf-
fled [1]. Since then, there has been an extensive search for
ways in condensed-matter systems to manifest exponentially
localized wave functions in spatial coordinates [2–5]. How-
ever, the condensed-matter system did not turn out to be a
favorable candidate, and scientists also started looking for
possibilities in ultracold atoms. Billy et al. were the first to
report exponential localization in ultracold matter waves [6],
followed by various other groups [7–11]. In recent work,
Sbroscia et al. observed Anderson localization for a two-
dimensional quasicrystalline optical lattice [12]. The study
of ultracold atoms in quasicrystalline optical lattices like the
bichromatic optical lattice (BOL) has become the center of
attention for quantum simulation research [13–16]. When two
optical lattices of different wavelengths and depths overlap,
one may obtain a geometrically frustrated potential BOL [17].
A variety of interesting physics have emerged using ultra-
cold atoms trapped in a BOL potential [18–23]. There are
numerous theoretical studies about ultracold atoms in BOLs
utilizing the Bose-Hubbard model and numerical solutions of
the Gross-Pitaevskii equation (GPE) [24–28]. Adhikari and
Salasnich carried out numerical studies on the localization of
Bose-Einstein condensate (BECs) in BOLs of one, two, and
three dimensions with different nonlinearities [29]. The exact
analytical model for BECs inside a BOL was reported by Nath
et al. [30,31], who studied the solutions for both attractive and
repulsive nonlinearities with precise trap engineering.

Anderson localization in BECs is thought of as a highly
localized condensate cloud of an exponentially varying profile
that is formed inside a disordered potential like a BOL with
periodic lattice frustrations. However, Anderson localization
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happens only in the frustrated lattice sites instead of other
potential minima for a highly intense BOL trap. Identifying
a precise parameter regime of Anderson localization is defi-
nitely a matter of concern in experiments. A natural question
is whether this sharply localized cloud in the frustrated site
can be transported to the other frustrated sites by overcoming
the high potential barrier of the intense BOL. Second, dur-
ing transportation, if any, additional questions include what
the temporal dynamics of the Anderson-localized condensate
might be and whether such localization disappears forever
after tunneling.

In this work, we address all these issues with an exact
analytical, time-dependent model for BECs under a BOL
potential. We prove the exponential localization through an
analytical approach and predict the localization length for
BECs. The trap engineering of such localization is also re-
ported for experimental feasibility. The parameter regime of
Anderson localization is demarcated by the nature of the par-
ticipation ratio (PR). Tunneling of such an Anderson-localized
cloud is studied for the condensate in the presence of an initial
drift [32–34]. The nature of the tunneling is illustrated by
time snapshots of condensate density and the rise or decay of
localization inside the frustrated site. The periodic occurrence
of Anderson localization with time is observed and reported
as the revivals of such localization during tunneling. More-
over, we demonstrate the variation of the revival time with a
tunable BOL parameter and deceleration of the exponentially
localized cloud. The numerical stability of the exponentially
localized condensate is studied at different times, establishing
the present model as a sufficiently stable configuration.

II. ANALYTICAL MODEL FOR LOCALIZATION

The dynamics of BECs are analytically modeled using
the GPE, a modified form of Schrödinger’s equation with a
nonlinearity term [35,36]. The nonlinearity can be controlled
by modulating the atomic scattering length using the Feshbach
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resonance technique. The exact analytical model for BECs has
been obtained for various external traps, including harmonic,
double well, periodic, and quasiperiodic [37–40]. The present
work focuses on obtaining the time-varying solution to the
one-dimensional (1D) GPE for a stationary BOL and studying
the transport of Anderson localization. We obtain solutions
that cover a wide range of situations, such as periodic or lo-
calized, based on modulus parameters of the elliptic function.
The bright or dark solitary excitations are obtained based on
interatomic interactions, and we study how they propagate
across the lattice. To build the exact analytical model, we start
with a dimensionless 1D GPE of weakly interacting ultracold
atoms with cubic nonlinearity:

i
∂ψ (z, t )

∂t
+ 1

2

∂2ψ (z, t )

∂z2
− g(z, t )|ψ (z, t )|2ψ (z, t )

− V (z)ψ (z, t ) − iτ (z, t )ψ (z, t ) = 0. (1)

Here, ψ (z, t ) is the 1D condensate wave function, g(z, t ) de-
notes the space- and time-modulated nonlinearity, and τ (z, t )
represents the space- and time-modulated loss or gain of the
condensate atoms. For the purpose of illustration, we have
exploited experimentally feasible parameters of 7Li BECs
trapped in a 1D waveguide of transverse frequency ω⊥ =
2π×710 Hz, optical lattice wavelength λ = 10.62 µm, and
s-wave scattering length as = −0.21 nm, and the harmonic

oscillator length in the transverse direction is a⊥ =
√

h̄
Mω⊥

=
1.4245 µm [41]. The dynamics of the condensate can effi-
ciently be controlled by the axial external trap V (z), which
can be engineered by varying the applied magnetic field and
the angle between the overlapping laser beams [42]. To obtain
an Anderson localization, we require a BOL, which possesses
frustrated potential sites. A BOL potential is created by the
application of two laser beams of different wavelengths and
different powers. The potential under consideration is given
by

V (z) = V1 cos(2lz) + V2 cos(lz). (2)

The potential depths V1 and V2 are related to the recoil
energy of the constituent lasers of wavelength λ. The exact
spatially localized solution of the variable coefficient nonlin-
ear Schrödinger equation [Eq. (1)] is nontrivial in the presence
of a trap, and thus, we perform a similarity transformation,
which connects it to a known solvable nonlinear equation with
constant coefficients, leaving behind a set of consistency con-
ditions. The corresponding ansatz is written as

ψ (z, t ) = A(z, t )F [Z (z − vt )]eiθ (z,t ), (3)

such that the traveling coordinate is taken in a simple form:
Z (z − vt ) = B(z) + D(t ). Here, v is a uniform speed, which
can be associated with experimental situations where the
BEC is moved horizontally, either by coherently moving
the lattice [32] or by imparting momentum using a pulsed
standing-wave laser field [33,34]. The condensate density
F [Z (z − vt )] and the phase θ (z, t ) are expected to depend
on the trap parameters of the external BOL potential and
initial velocity of the cloud. The real part of the equation,
upon substituting the above ansatz with traveling coordinates,

becomes

− A(z, t )F [Z (z − vt )]θ (z, t )t + 1

2
Azz(z, t )F [Z (z − vt )]

+ A(z, t )z
∂F [Z (z − vt )]

∂Z (z − vt )

∂Z (z − vt )

∂z

+ 1

2
A(z, t )

∂2F [Z (z − vt )]

∂Z (z − vt )2

(
∂Z (z − vt )

∂z

)2

+ 1

2
A(z, t )

∂F [Z (z − vt )]

∂Z (z − vt )

∂2Z (z − vt )

∂z2

− 1

2
A(z, t )F [Z (z − vt )]θ (z, t )z

2

− g(z, t )A(z, t )3F [Z (z − vt )]3

− V (z)A(z, t )F [Z (z − vt )] = 0. (4)

The subscript variables imply partial differentiation. To ex-
plore the connection between the trap parameters and the
nonlinearity, we mapped the dynamics with the following
known nonlinear differential equation, which also helps us
find the proper consistency conditions:

∂2F [Z (z − vt )]

∂Z (z − vt )2
− GF [Z (z − vt )]3 = 0, (5)

where the constant G = 2g(z, t )A2(z, t )/Z2
z (z, t ) is the nonlin-

earity constant. G is −1 for attractive interatomic interactions
and 1 for repulsive ones. This nonlinear equation is taken
in the form of the elliptic equation, which is known to
manifest solitary-wave excitations [43]. The elliptic equa-
tion has 12 solutions as Jacobi elliptic functions, among which
cn[Z (z − vt ), m] and sn[Z (z − vt ), m] are widely used. The
modulus parameter m controls the nature of excitations, such
that m = 0 manifests a periodic solution, 0 � m � 1 produces
cnoidal waves, and m = 1 manifests a localized solution. The
latter is the case under consideration. After connecting Eq. (5)
with the elliptic equation, the real part is left with the follow-
ing consistency conditions, relating the amplitude, phase, and
spatial part of the traveling coordinate:

Azz(z, t )

2A(z, t )
− θt (z, t ) − θz(z, t )2

2
− V (z) = 0, (6)

[A2(z, t )Bz(z)]z = 0. (7)

We carry out a similar calculation for the following imaginary
part of Eq. (1) after the substitution of the ansatz with the
traveling coordinate:

At (z, t )F [Z (z − vt )] + A(z, t )
∂F [Z (z − vt )]

∂Z (z − vt )

∂Z (z − vt )

∂t

+ A(z, t )zF [Z (z − vt )]θz(z, t )

+ A(z, t )
∂F [Z (z − vt )]

∂Z (z − vt )

∂Z (z − vt )

∂z
θz(z, t )

+ 1

2
A(z, t )F [Z (z − vt )]θzz(z, t )

− τ (z, t )A(z, t )F [Z (z − vt )] = 0, (8)
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which brings out another set of consistency equations:

Dt (t ) + Bz(z)θz(z, t ) = 0, (9)

2A(z, t )At (z, t ) + [A2(z, t )θz(z, t )]z − 2τ (z, t )A2(z, t ) = 0.

(10)

The consistency equations are carefully solved to obtain
the following solutions, subject to the substitution of the form
of the BOL trap:

D(t ) = −vt + a1, θz(z, t ) = v

Bz(z)
, A2(z, t ) = c(t )

Bz(z)
,

g(z, t ) = GB2
z (z)/2A2(z, t ), τ (z, t ) = 1

2

ct (t )

c(t )
. (11)

Here, a1 signifies the center-of-mass position of the conden-
sate at the initial time, and c(t ) is an arbitrary positive-definite
function of time, which is taken as a constant, c(t ) = c, in our
illustration to account for zero loss or gain, i.e., τ (z, t ) = 0.
The above equations have a direct dependence of phase and
nonlinearity on the spatial derivative of the traveling coordi-
nate Bz(z) of the system, which will be decided by the external
trap. We aim to find the exact form of the traveling coordinate
Z (z − vt ) to find the explicit expression for all the related
physical parameters by simplifying the above expressions
along with Eq. (6). We arrive at the expression for the spatial
function of the traveling coordinate B(z), which helps us write
the traveling coordinate as

Z (z − vt ) = γ ea2

∫ z

0
eβ cos(lz′ )dz′ − vt + a1, (12)

where the first term is the function B(z) and a1 and a2 are
constants of integration. The phase of the wave function is
obtained by combining the coordinates of Eqs. (6) and (9) by
using the form of B(z) and D(t ):

θ (z, t ) = v

γ
e−a2

∫ z

0
e−β cos(lz′ )dz′ + β2l2

16
t + a3. (13)

Here, a3 is an integration constant signifying an initial phase
at the origin if there is any. One can also write the amplitude
A(z, t ) and the nonlinearity g(z, t ) by substituting the evalu-
ated expression of B(z). The most crucial expression as far
as the experimental utility is concerned is for the physical
parameters of the constituent lasers forming the BOL, and we
obtain the potential parameters as

V1 = −β2l2

16
, V2 = βl2

4
. (14)

These equations suggest that any arbitrary potential param-
eters may not support exciting solitary waves in BECs. Our
analytical model contributes to that issue by identifying the

FIG. 1. The potential profile (dotted lines) of BOL for vari-
ous potential parameters: (a) β = 0.05 and (b) β = 5. Solid lines
represent condensate density. z is scaled by harmonic oscillator
length a⊥ = 1.4245 µm, and V (z) is scaled by h̄ω⊥, where ω⊥ =
2π×710 Hz.

parameter related to obtaining a solitary wave that can mani-
fest Anderson localization. In fact, the ratio between the laser
amplitudes V1

V2
is obtained as β

4 . Hence, β controls the shape
of the potential by relative changes in the laser amplitudes.
This helps to manufacture an appropriate trap to investigate a
variety of solitary excitations. We depict the potential profiles
in Fig. 1 to show the preparation of the trap for Anderson
localization with higher β for a given l . The geometrical
lattice frustration appears and becomes dominant for larger β.
The difference between the lattice depth and frustrated depth
is �d = βl2

2 , which is responsible for the localization at higher
β values, as delineated by the condensate density in Fig. 1(b).
This depth difference, which is responsible for localization,
is similar to the depth difference in the tight-binding model
originally considered by Anderson for electronic systems [1].
To analytically establish such localization, we evaluate all the
functions required to express a time-dependent wave func-
tion of the condensate under a BOL trap. It is well known
that attractive interatomic interaction manifests bright solitary
waves, whereas repulsive interaction supports dark solitary
waves [29,36,44,45]. It was already mentioned that a non-
linear Schrödinger equation possesses solutions in the form
of Jacobian elliptic functions: cn[Z (z − vt ), m] and sn[Z (z −
vt ), m] for attractive and repulsive interactions, respectively.
Accordingly, we can write the final form of the wave functions
with appropriate elliptic functions:

ψ (z, t ) =
√

c(t )

γ eβ cos(lz)
cn

[(
γ ea2

∫ z

0
eβ cos(lz′ )dz′ − vt + a1

)
, m

]
eiθ (z,t ), (15)

ψ (z, t ) =
√

c(t )

γ eβ cos(lz)
sn

[(
γ ea2

∫ z

0
eβ cos(lz′ )dz′ − vt + a1

)
, m

]
eiθ (z,t ), (16)
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TABLE I. Critical number of atoms at two scattering lengths for
a set of aspect ratios of longitudinal and transverse trap frequencies
and their corresponding K values. The values of γ and c are taken to
be 0.1 and 104, respectively.

Nc for Nc for
� = ωz

ω⊥
K = Nc |as,max |

a⊥
|as,max| = 0.21 nm |as,max| = 0.15 nm

0.1 0.460 3120 4370
0.5 0.560 3800 5320

where the expression of θ (z, t ) is given in Eq. (13). The first
equation is for an attractive regime, and the latter represents
repulsive interaction. In both cases, a family of solutions is
found for various modulus parameters m. In the present work,
we are interested in the localization of the condensate and con-
sider the solution with cn[Z (z − vt ), m = 1] = sechZ (z − vt )
for further investigation.

It is also well known that bright excitations under attrac-
tive interaction are stable up to a certain critical number of
atoms Nc [41,46–51]. This critical number of atoms is evalu-
ated by comparing the nonlinearity obtained in Eq. (11) and
the general relation of nonlinearity with the space-distributed
scattering length [52]. Some obtained critical numbers are
tabulated in Table I. Two different scattering lengths are con-
sidered with their maximum values to obtain the limit. The
trap asymmetry � and K values are crucial for evaluating Nc.
The obtained nonlinearity in our model is space distributed,
and also g(z) = √

2π�Ncas(z)/a⊥. The nonlinearity attains
its maximum value in the vicinity of Anderson localization,
which can be further reduced to increase the critical number
of atoms. The experimental viability of our model will rely on
these critical numbers.

III. IDENTIFYING THE PARAMETER REGIME
OF LOCALIZATION THROUGH

THE PARTICIPATION RATIO

We are interested in the dynamics of Anderson localiza-
tion, which should occur for attractive interactions. However,
the solution covers various situations corresponding to the
potential parameters, β and, l , associated with the power and
wavelength of the laser. For a given wavelength of the laser,
we investigate the condensate cloud for various β to identify
the region of localization. The degree of localization is under-
stood in terms of the PR [53], which is defined in terms of the
obtained wave function as [54]

PR = 1∫ ∞
−∞ |ψ (z, t )|4dz

. (17)

Physically, PR measures the number of lattice sites over which
the wave function is extended. A PR value of 1 denotes that
the wave function extends over all the lattice sites, and a
PR closer to zero denotes single-site participation. Figure 2
shows how PR changes with increasing laser power. There is
a smooth fall of PR for increasing β, and interestingly, one
could note a sudden descent towards zero after β reaches
4.16. This is an indication of the emergence of prominent
localization from extended states. The value of β at which
this transition occurs is denoted by βc. The insets in Fig. 2
show the condensate densities before, after, and at βc. It is
observed that at β = βc, the height of the density in the central
site is equal to that in neighboring sites. It is important to
discuss the change in the behavior of the condensate for lower
and higher β with respect to βc. We have studied these two
regimes by fitting them using suitable functions as shown in
Eq. (18). And the parameters for the best fit are estimated
as follows: A1 = 0.154, A2 = 0.842, A3 = 0.881, A4 = 0.166
for the β < βc regime and B1 = 0.0086, B2 = 0.152,

FIG. 2. Participation ratio for different β values. The dashed line indicates βc = 4.16, to the right of which is the domain for Anderson
localization. The insets show the condensate densities for (a) β = 4.15, (b) 4.16, and (c) 4.17. Others parameters are given in dimensionless
units: G = −1, t = 0, c = 104, l = 0.84, and γ = 0.1.
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FIG. 3. Participation ratio (dashed line) and its derivative with
respect to β (solid line) for various β values. We have used the same
parameters as in Fig. 2.

B3 = 17.83 for the β > βc regime:

PR(β<βc ) = A1 + A2e−A3β
2+A4β

3
,

PR(β>βc ) = B1 + B2e−B3(β−βc )2
. (18)

It is worth observing that, for β < βc, A3 dominates over
A4. However, the widths of the Gaussian fit for both regions
are quite dissimilar, such that B3 � A3. Hence, we infer that
when the laser power is below the critical value (β < βc), the
rate at which the PR saturates is much slower than the rate
at which it reaches saturation for β > βc. The two regimes,
β < βc and β > βc, are further understood by computing the
slope of PR with respect to β. Figure 3 shows the variation
of d (PR)

dβ
with respect to β along with the PR variation (dotted

curve). The two minima indicate the constant variation of PR
before it reaches saturation in the two regimes. The curves
in the β > βc regime are much narrower than in the first
regime since the rate at which PR saturates is faster in the
higher-β regime. The first regime implies localization towards
the first two neighboring lattice sites around the origin, z = 0.
However, this is neither an exponential localization in the
central frustrated site nor an Anderson localization. On the
other hand, the second domain for β > βc manifests a distinct
behavior, as shown by the variations of PR and its slope.
This emerges due to the localization in the central frustrated
site when the frustrated lattice depth is significant compared
to the main lattice depth. The transition point between these
two domains is identified by the transition of the slope from
positive to negative, which happens at β = βc = 4.16. The
minimum of the curve in the second domain corresponds to
50% occupancy of the central frustrated site around β = 4.48.
We will soon prove that the localization of the second do-
main is an exponential localization and call it Anderson
localization.

A. Characterizing the Anderson localization

Before getting into the time-dependent dynamics, explic-
itly for the Anderson-localized cloud, we need to characterize
it in terms of localization length to establish the exponential
localization property. In disordered physical systems, it is ob-

TABLE II. The fitting parameters for the exponential local-
ization: a, b, and ζ [Eq. (19)], with corresponding R2 values.
The localization length is scaled by the harmonic oscillator length
a⊥ = 1.4245 µm.

β a b ζ R2

4.2 −0.2021 9.4038 0.1274 0.9979
4.4 −0.1171 12.4731 0.0938 0.9979
4.6 −0.0687 16.7402 0.0707 0.9982
4.8 −0.0401 22.6492 0.0541 0.9987
5 1 31.2252 0.0413 0.9991
5.2 1 42.7321 0.0321 0.9995
5.4 1 58.6585 0.0252 0.9997
5.6 1 80.1018 0.0198 0.9999
5.8 1 107.73 0.0158 0.9999
6 1 141.523 0.0127 0.9999

served that the localization falls exponentially in space as e
−|z|
ζ ,

where ζ is called the Localization length [55]. In our work,
we consider the variation of the profile of the condensate
cloud with respect to z in the domain, demarcated by β > βc.
The variations are studied for many values of the potential
parameter β. In each case, the curve is examined to determine
whether it fits exponential nature:

a + be− |z|
ζ . (19)

We observe that the variations are indeed consistent with
the exponential nature. The localization length is obtained
by curve fitting in ζ as per Eq. (19). The parameters for
the best fit are estimated and are presented in Table II with
corresponding R2 values. The R2 values close to 1 indicate
the goodness of our fit, confirming the existence of exponen-
tial localization or Anderson localization. On the other hand,
the exponential function does not become a good fit for the

FIG. 4. Variation of the localization length ζ with respect to
β in the localization domain, i.e., β > βc. The other dimension-
less parameters are G = −1, t = 0, c = 104, l = 0.84, and γ = 0.1.
The localization length is scaled by harmonic oscillator length
a⊥ = 1.4245 µm.

063304-5



RAGHAV, HALDER, BASU, AND ROY PHYSICAL REVIEW A 106, 063304 (2022)

FIG. 5. Condensate density in coordinate space for β values of
(a) 0.5 and (b) 6. Condensate density in momentum space for β

values of (c) 0.5 and (d) 6. Here, the dimensionless parameters
include G = −1, c = 104, l = 0.84, γ = 0.1, and v = 1. z is scaled
by a⊥ = 1.4245 µm, and k is scaled by a−1

⊥ .

condensate at β < βc. The parameter ζ in the above fit gives
us the localization length, which is obtained for laser powers
β > βc, and the results are shown in Fig. 4. When one tries
to control Anderson localization by altering the external trap,
it becomes important to know the variation of the localization
length with β. The length of localization falls steadily with
increasing β, which also follows a regular pattern in the form
of an exponential function:

ζ = c1 + c2e−c3β. (20)

The parameters c1, c2, and c3 are evaluated as 0.0048, 38.04,
and 1.406, respectively. It is also observed that the localization
length tends to saturate at ζ = 0.0048, implying a very sharp
density spike for a very large value of β without deviating
from the exponential nature of the density profile.

B. Broadening of momentum distribution

The comparison of condensate density in coordinate
space with the momentum space gives us more insights
into the physics of matter-wave localization. It is expected
from the uncertainty principle that the momentum distribu-
tion for the localized states must be broadened, indicating
the range of momentum carried by the constituent atoms.
Figures 5(a) and 5(b) show the condensate density in coor-
dinate space for β = 0.5 and 6, respectively, and Figs. 5(c)
and 5(d) show the condensate density in momentum space
for β = 0.5 and 6, respectively. For low disorders such as
β = 0.5, the BOL resembles an optical lattice with the BEC
spread across various lattice sites corresponding to a single
momentum peak in reciprocal space. This situation is reversed
in higher disorders such as β = 6, where the condensate is
localized to a single site due to the scattering of component
waves by frustrated lattice sites.

IV. COLLAPSE AND REVIVALS OF ANDERSON
LOCALIZATION

In the previous section, we revealed the parameter do-
main for Anderson localization and how one can control it
by tuning the external trap. Here, we study the tunneling
of the Anderson-localized cloud across the BOL sites. The
time-dependent density of the condensate is obtained from
Eq. (15), which is a function of the traveling coordinate.
Hence, knowing the nature of the traveling coordinate is im-
portant for analyzing the tunneled cloud at the real position z
and time t . Variations of Z (z − vt ) in Eq. (12) with the real
position coordinate at times t = 0 and t = 13.5 (in units of
ω−1

⊥ ) are depicted in Figs. 6(a) and 6(b), respectively. Each
plot shows two β values, one below βc (2.5) and another
above βc (4.5). We observe that, for β → 0, the traveling
coordinate resembles a straight line with slope γ for all times.
However, higher β values resemble a staircaselike traveling
coordinate. The origin, z = 0, does not depend on β but cre-
ates an offset in the vertical axis due to the temporal drift of
the condensate. In Fig. 7, we closely observe the condensate

FIG. 6. Variation of the traveling coordinate with respect to z for times (a) t = 0 and (b) t = 13.5 and β values of 2.5 (dotted line) and 4.5
(solid line). Here, the dimensionless parameters include G = −1, c = 104, l = 0.84, γ = 0.1, and v = 1. The constants a1 and a2 are taken
to be zero for simplicity. z is scaled by harmonic oscillator length a⊥ = 1.4245 µm, and t is scaled by the inverse of transverse frequency
ω−1

⊥ = 0.2242 ms.
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FIG. 7. Time evolution of the Anderson-localized condensate in
the frustrated site for β = 4.5. Here, the dimensionless parameters
includes G = −1, c = 104, l = 0.84, v = 1, and γ = 0.1. Here, z is
scaled by harmonic oscillator length a⊥ = 1.4245 µm, and t is scaled
by the inverse of the transverse frequency ω−1

⊥ = 0.2242 ms. |ψ (z)|2
is in units of a−1

⊥ .

density at the frustrated site (z = 7.47a⊥) in the domain of
Anderson localization (β = 4.5); we observe a rise and a
decay of the localization with a small change in evolution
time from t = 11.1 to t = 15.1 (in units of ω−1

⊥ ). As we are
dealing with a normalized density, the rise and decay of the
localization signify that the cloud tunneled in and tunneled
out of the frustrated lattice site, respectively. Such tunneling
of an Anderson-localized cloud for a highly intense BOL trap
(large β) seems interesting and encourages us to study the
cloud postdecay with time.

A. The revival dynamics of Anderson localization

The rise and decay of the Anderson-localized condensate
in the frustrated site is a clear signature of quantum-
mechanical tunneling across the lattice sites. However,
Anderson localization happens at the frustrated lattice sites,
which appear in spatially periodic intervals in a BOL trap. As
each frustrated site is surrounded by two main lattice sites,
the immediate tunneling of the density will happen to the
neighboring lattice site instead of a frustrated one. In Fig. 8,
we show the time evolution of Anderson-like localization
for β = 4.5 and l = 0.84. The nature of tunneling remains
the same even for a very high value of β, where the con-
densate is just a sharp spike. Various density snapshots are
shown at different times, t = 0, 6.55, 13.1, 19.65, and 26.2,
in units of ω−1

⊥ . One can observe that the Anderson localiza-
tion in the frustrated lattice site revives after every 13.1ω−1

⊥ ,
and the density becomes a replica of the initial Anderson-
localized condensate. This time is designated as the revival
time tR of Anderson localization. During the half integrals
of the revival time (i.e., t = tR/2, 3tR/2, . . . ), we can see an
intermediate accumulation of the condensate density at the
main lattice sites. Therefore, the Anderson-localized cloud
not only tunnels across the lattice sites but also reappears
at the next frustrated site after a time tR. In general, the
reoccurrence times are t = ntR for n = 0, ±1, ±2, ±3, . . . ,

FIG. 8. Snapshots of the condensate density with β = 4.5 at
specific times: 0, tR/2, tR, 3tR/2, and 2tR, where tR = 13.1. The di-
mensionless parameters are G = −1, c = 104, l = 0.84, v = 1, and
γ = 0.1. Here, z and t are scaled by harmonic oscillator length a⊥ =
1.4245 µm and the inverse of transverse frequency ω−1

⊥ = 0.2242 ms,
respectively, whereas |ψ (z)|2 is in units of a−1

⊥ .

where n = 0 corresponds to the central frustrated site. In
Figs. 9(a) and 9(b), we present the occurrences of Anderson-
like localization with respect to t for β = 4.5 and β = 5,
respectively. The occurrences are represented by the conden-
sate fractions at the frustrated lattice sites with time relative
to the revival time, tR ± t . The maximum of each peak signi-
fies a revival of Anderson localization, with the central peak
corresponding to tR. Two important aspects are worth noticing
here: (i) The widths of all the peaks are constant for a given β,
and this constant width manifests the lifetime of the Anderson
localization in any one of the frustrated lattice sites for an
initially prepared BOL trap. Figure 9 suggests that the lifetime
is greater for larger β [Fig. 9(b)], in spite of having a sharper
Anderson localization. (ii) The revival time (distance between
two consecutive peak maxima) is different for different β.
A larger β or a sharper Anderson localization has a longer
revival time. We also calculate the revival times for a tunable
BOL (different β) and delineate the variation in Fig. 10 for the
localization region (β > βc). The revival time tR increases ex-
ponentially with β and takes a very high value for a very large
β. This signifies a slowing down of tunneling with increasing
β and finally reaching a stationary Anderson localization of
width ζ = c1 = 0.0048 [Eq. (20)].

V. DYNAMICAL AND STRUCTURAL STABILITY
OF THE ANDERSON-LOCALIZED CONDENSATE

Anderson localization of a BEC happens for a very strong
BOL trap, which may hinder the condensate from being sta-
ble enough for experimental testing. Hence, we study the
numerical stability of the Anderson-localized cloud for their
occurrence at t = 0 and t = tR. These stability analyses are
repeated for various BOL traps with different β and are
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FIG. 9. Occurrence of Anderson localization with time for two β values: (a) 4.5 and (b) 5. They are calculated by evaluating the condensate
fraction at the frustrated site. The dimensionless parameters are G = −1, c = 104, l = 0.84, v = 1, and γ = 0.1. Here, t is scaled by the inverse
of the transverse frequency ω−1

⊥ = 0.2242 ms.

depicted in Figs. 11 and 12. We perform a dynamical stabil-
ity check, where the free evolution of the condensate with
and without noise is compared at different times. We exe-
cuted these analyses by numerically solving the GPE using
the split-step Fourier method [31,56–58]. The mean absolute
difference of condensate density with noise from that without
noise is estimated. We introduced a random noise � to our
wave function ψ (z, t ) at times t = 0 and t = tR:

ψnoise(z, t = 0) = ψ (z, t = 0) + �,

ψnoise(z, t = tR) = ψ (z, t = tR) + �. (21)

FIG. 10. The variation of revival time tR of Anderson localization
with respect to β. Asterisks show evaluated points. The dimen-
sionless parameters are G = −1, c = 104, l = 0.84, v = 1, and
γ = 0.1. Here, t is scaled by the inverse of the transverse frequency
ω−1

⊥ = 0.2242 ms.

In Fig. 11, we show the mean absolute difference given
by Mean[||ψnoise(z, t )|2 − |ψ (z, t )|2|] with respect to β, which
follows a decreasing trend. We have calculated the mean
absolute difference for times t = 0 and t = tR, indicated by
red dashed and black solid lines, respectively. It is interesting
to find that at specific β values, the curves cross each other,
thus making them equally stable. The most relevant point we
observe is that the mean difference is always below 5% for
the localization regime, even with a noise of 10% added to the
condensate.

In the case of the structural stability analysis, the evolution
of the condensate in the noise-added potential is compared
with that in a noiseless potential. Figure 12 shows the mean
absolute difference of condensate density in the presence and
absence of random noise added to the potential for different
β values. The red dashed and black solid lines indicate the
mean absolute difference for times t = 0 and t = tR. It is
worth noting that the mean difference is below 5% even for

FIG. 11. The variation of the mean difference of the condensate
density with and without noise with respect to β. The black line
indicates the mean difference at t = tR, and the red dashed line
indicates the mean difference at t = 0.
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FIG. 12. The variation of the mean difference of the condensate
density with and without a noisy potential with respect to β. The
black line indicates the maximum difference at t = tR, and the red
dashed line indicates the maximum difference at t = 0.

the deeper BOL trap (β � 4.5) with 10% noise considered
in this work. Further, the cloud seems to be more robust to
the fluctuations in potential compared to the fluctuations in
the wave function. However, in both cases, the mean absolute
difference decreases for higher β values corresponding to the
localization regime. Hence, the whole analysis presented in
this work deals with a very stable Anderson-localized con-
densate under a BOL.

VI. CONCLUSION

We have presented the time-varying solutions of the 1D
GPE for a stationary BOL with a special focus on the
dynamics of localized solutions. We have discussed the na-
ture of traveling coordinates and their role in the localization
regime. The behavior of localization length and PR with
respect to laser power indicates the emergence of strong lo-
calization. We proved that the localization that emerges inside
the frustrated lattice site varies exponentially and is nothing
but Anderson localization. The tunneling of Anderson local-
ization from one site to another is thoroughly understood
from the time snapshots of the condensate density. The dy-
namics of localization in the frustrated site were analyzed
separately. The times of occurrence of localization were pre-
sented, and the revivals of the Anderson localized cloud were
reported. The corresponding revival time was shown to in-
crease with a stronger BOL, implying a slowing down of the
tunneling. The dynamical stabilities of the initial time and first
revival time were compared, and the values of β for stable
localization were reported. This work may be extended for
other trap configurations and for a time-varying one.
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