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High-order harmonic generation in the water window from mid-IR laser sources
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We investigate the harmonic response of neon atoms to mid-IR laser fields (2000–3000 nm) using a single
active electron (SAE) model and the fully ab initio all-electron R matrix with time dependence (RMT) method.
The laser peak intensity and wavelength are varied to find suitable parameters for high-harmonic imaging in
the water window. Comparison of the SAE and RMT results shows qualitative agreement between them as
well as parameters such as the cutoff frequency predicted by the classical three-step model. However, there are
significant differences in the details, particularly in the predicted conversion efficiency. These details indicate the
possible importance of multielectron effects, as well as a strong sensitivity of quantitative predictions on specific
aspects of the numerical model.
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I. INTRODUCTION

The so-called water window is a region of the electromag-
netic (EM) spectrum spanning from the K-absorption edge of
carbon at 282 eV to the K edge of oxygen at 533 eV. Impor-
tantly, water is nearly transparent to soft x rays in this region,
while carbon, and thus organic molecules, are absorbing. This
enables the imaging of biologically important molecules in
their typical aqueous environments [1].

Light sources in this region of the EM spectrum are gen-
erally produced by synchrotron radiation from an accelerator
such as a free-electron laser [2]. However, a major problem
with this approach is the inability to conduct time-dependent
imaging of live cells without freezing due to the typically low
instantaneous power of synchrotron radiation [3]. An alter-
native approach is high-order harmonic generation (HHG),
which employs a few-cycle laser system to generate coherent
soft x rays by producing odd harmonics of a mid-range in-
frared (IR) fundamental frequency [4–6]. Such HHG sources
could lead to the generation of single-shot absorption spectra
and live-cell imaging with a femtosecond time resolution [3].

HHG can qualitatively be understood in terms of the semi-
classical “three-step model” suggested by Corkum [7]. In this
model, an electron (1) tunnel ionizes and (2) is accelerated by
a strong electric field. As the electric field changes sign, the
electron is accelerated back towards its parent ion, where it
(3) recollides and releases some of its energy in the form of
a high-energy photon. The recollision can also excite another
electron with a higher energy, and the process can be repeated
over several cycles of the electric field.

From the above model, one can obtain a formula for the
maximum photon energy, or cutoff energy, producible by
HHG from a single laser source. This cutoff energy is given
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by [7]

Ec = Ip + 3.17Up, (1)

where Ip is the atomic ionization potential and Up is the
ponderomotive potential. The ponderomotive potential can
be approximated in terms of the laser peak intensity and
wavelength as

Up = 2e2

cε0m

I0λ
2

16π2
. (2)

Here e is the electron charge, ε0 the vacuum permittivity, c
the speed of light, m the electron mass, I0 the laser peak
intensity, and λ the (central) wavelength of the driving laser.
The ponderomotive potential scales linearly with the intensity
and quadratically with the wavelength.

At first sight, one might just increase the intensity or the
wavelength to generate harmonics in the water window. How-
ever, there are a number of problems with this assumption.
Experimentally, increasing the intensity results in more ion-
ization, which leads to depletion of the target. On the other
hand, if the wavelength is increased instead, the conversion
efficiency decreases, following approximately a λ−5 or even
λ−6 scaling [8]. Two or more color fields have been used to
extend the harmonic cutoff at lower laser wavelengths [9,10],
but the generation of water-window harmonics typically relies
on the use of mid-IR lasers [6,11,12], which suffer from
the aforementioned reduced conversion efficiency. However,
in recent years nanojoule water-window sources have been
realized from mid-IR HHG schemes [3,13].

The computational side of HHG is not without challenges
either. The largest of these is an extensive angular momentum
expansion needed to obtain partial-wave convergence in a
fully quantum-mechanical treatment of the process. The com-
putational load for the calculation requires large computers
and significant run times. Furthermore, longer wavelengths
mean larger excursion distances for the electron, thus
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requiring a large configuration space to correctly describe the
electron’s motion far away from the nucleus.

These aforementioned computational challenges are typi-
cally overcome by applying some approximations to reduce
the overall complexity of the problem. They include the semi-
classical strong-field approximation [14] or single active elec-
tron (SAE) models [15], both of which neglect multielectron
effects. However, such effects have been shown to signifi-
cantly change the harmonic cutoff and/or the intensity of the
generated harmonics through phenomena such as the giant
resonance in xenon [16]. Multielectron effects on the produc-
tion of HHG were reported in a variety of studies over the
years [17–21], including recent works on He [22] and Be [23].

The R matrix with time dependence (RMT) method
accounts for multielectron effects in HHG by employing
a highly efficient code specifically designed for high-
performance computing [24]. RMT is indeed suitable for
serious computational challenges such as HHG from mid-IR
lasers, and has previously been used to describe HHG from
1800-nm sources [25]. In the present project, we significantly
extend previous RMT calculations by employing driving laser
wavelengths of up to 3000 nm, resulting in harmonic cutoffs
within the water window for realistic peak intensities of the
driving laser.

The harmonic spectra from our RMT calculations are also
compared with those obtained by an SAE approach. This
provides us with means to determine the influence of multi-
electron effects, as well as other aspects of the numerical
model and the subsequent extraction of the results, on the
predicted spectra in this energy region. Furthermore, when
pushing a complex method like RMT into previously unchar-
tered territory, it is certainly advisable to have an entirely
different approach available for comparison.

Section II gives an overview of the numerical methods
and the parameter space investigated. This is followed by
the presentation and discussion of the predicted harmonic
spectra for a neon atom in laser fields of various intensities
and wavelengths in Sec. III. Conclusions and an outlook are
given in Sec. IV. Unless specified otherwise, atomic units are
used below.

II. NUMERICAL METHODS

Below we describe the methods used in the present paper.
We start with a brief summary of our own SAE approach in
Sec. II A, which is followed by a more detailed description
of the RMT method in Sec. II B. The parameter space inves-
tigated is presented in Sec. II C. The section concludes with
a discussion of “windowing” in Sec. II D, a technique that
has been widely used to improve the qualitative appearance
of the final results. However, we then show that there can
be substantial changes in the quantitative predictions, such
as the conversion efficiency, if such windows are applied.
Consequently, they should only be employed with great care
and most likely not when absolute values of the spectral HHG
density are of interest.

A. Single active electron approach

We use the same basic method and the associated computer
code as described by Pauly et al. [26]. Briefly, we solve the

time-dependent Schrödinger equation for the active electron,
which is initially in the 2p orbital of the neon ground state.
We use the potential suggested by Tong and Lin [27], in
which we calculate the 2p and other bound orbitals (only used
here to check the quality of the structure description), as well
as the continuum orbitals to represent the ionized electrons.
The above potential produces the first ionization potential of
neon, i.e., the binding energy of the 2p electron, very well.
We employ a finite-difference method with a variable radial
grid, with the smallest step size of 0.01 near the nucleus and
a largest step size of 0.05 for large distances. The time step
is held constant at 0.005. The calculations are carried out in
the length gauge of the electric dipole operator. Partial waves
up to angular momenta � = 300 were included in order to
ensure converged results. Tests carried out by varying the
time step, the radial grid, and the number of partial waves
give us confidence that any inaccuracies in the predictions are
due to the inherent limitations of the SAE model rather than
numerical issues.

We then calculate z(t ) ≡ 〈�(r, t )|z|�(r, t )〉, i.e., effec-
tively the dipole moment for linearly polarized light with the
electric-field vector along the z direction, at each time step
and numerically differentiate it once with respect to time to
obtain the dipole velocity v(t ) and again to obtain the dipole
acceleration a(t ). Following Joachain et al. [28] and Telnov
et al. [29], the spectral density S(ω) is obtained as

S(ω)= 2

3πc3
|ã(ω)|2 = 2

3πc3
ω2 |ṽ(ω)|2 = 2

3πc3
ω4 |z̃(ω)|4,

(3)
where

ã(ω) =
∫ +∞

−∞
a(t ) eiωt dt (4)

with similar definitions for ṽ(ω) and z̃(ω). The 1/
√

2π factor
that makes the Fourier transform symmetric is absorbed by
the prefactor in Eq. (3), the numerical value of which is
approximately 8.25 × 10−8 in atomic units. When a discrete
Fourier transform is used, the resulting spectrum needs to be
multiplied by the appropriate scaling factor to account for the
time grid on which the sample function is available.

Next, we found that using ω4|z̃(ω)|2 without further manip-
ulation causes numerical problems, since the distribution of
the ejected electrons leads to a remaining net dipole moment
at the end of the pulse, which actually varies slowly with time.
If the above method is used, the acceleration form is least
affected and results in the sharpest cutoff.

Finally, we need to account for the fact that the actual
ground state of Ne is (1s22s22p6) 1S. Hence, if we look at the
2p electron, we need to perform calculations for the possible
magnetic sublevels, i.e., m = 0 and ±1, respectively. Due to
the symmetry properties of the process, the results for m = −1
and +1 for a linearly polarized driving field are identical.
In order to account for all six electrons, we multiply the
contributions from the m = 0 sublevel by 2 and from m = 1
by 4, respectively, to obtain the final spectral density. We
will see below, however, that for the process of interest in
this paper, the contribution from m = 0 dominates that from
m = ±1. Hence, in practice it is sufficient to only perform the
calculation for m = 0.
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Even though these aspects are not relevant for the quali-
tative description of the spectrum, we believe it is important
for theory to put the predictions on an absolute scale using the
procedure outlined above. This also allows us to calculate the
conversion efficiency:

C ≡
∫ ∞

−∞
S(ω) dω /

∫ ∞

−∞
E2(t ) dt . (5)

We calculate the latter for both the entire spectrum (where
the contribution is dominated by the first harmonic) and the
plateau region, which is the important part in generating the
high harmonics.

We also note in passing that (i) the first harmonic does not
peak at exactly the same wavelength as the central driving
frequency for short pulses and (ii) the plateau is not really
flat for the extreme parameters shown in this paper. These
outcomes are due to the nonvanishing contribution from the
time derivative of the envelope function and complex inter-
ference effects from emission at slightly different times. Since
the induced dipole moment follows the driving field almost
adiabatically, which would suggest the dominant frequency
in the emission spectrum to be the central frequency of the
driving field, the peak is actually shifted to slightly higher
frequencies.

Furthermore, the theoretical spectrum is often smoothed to
improve its look by convolving it with something that might
resemble the energy resolution of a spectrometer. We decided
to refrain from doing this and will present our original results
below.

B. R matrix with time dependence method

RMT is an ab initio technique that solves the time-
dependent Schrödinger equation by employing the R-matrix
paradigm, which divides the configuration space into two
separate regions over the radial coordinate of a single ejected
electron [30].

In the inner region, close to the nucleus, the time-
dependent N-electron wave function is represented by an
R-matrix (close-coupling) basis with time-dependent coeffi-
cients. In the outer region, the wave function is expressed
in terms of residual-ion states coupled with the radial wave
function of the ejected electron on a finite-difference grid. The
solutions in the two separate regions are then matched directly
at their mutual boundary. The wave function is propagated in
the length gauge of the electric dipole operator. For the typical
atomic structure descriptions used in RMT, this converges
more quickly than the velocity gauge [31]. On the other hand,
propagation in the length gauge usually requires more angular
momenta to obtain partial-wave-converged results [32,33].
Investigating the optimum procedure for long wavelengths,
therefore, might be a worthwhile future project.

In the RMT calculations presented here, the neon target is
described within an R-matrix inner region of radius 20 and
an outer region of up to 65 000. The finite-difference grid
spacing in the outer region is 0.08 and the time step for the
wave-function propagation is 0.005, except for one case. We
found that careful checks of these numerical parameters need
to be performed, if quantitative rather than qualitative results
are desired.

The target was described with the single-electron orbitals
generated by Burke and Taylor [34], using the RMATRX-II

suite of codes [35]. In order to assess the sensitivity of our
predictions, we set up close-coupling expansions with just the
ionic ground state (2s22p5) 2P (labeled “1st”) or a two-state
(2st) model to include the most important coupling to the
(2s2p6) 2S state. Next, we checked the dependence of our pre-
dictions on the number of configurations employed to describe
these states. Specifically, we tested just the ground state with
its dominant configuration (1st-1cf), an improved description
involving seven configurations (1st-7cf), the two-state model
of Burke and Taylor (2st-13cf) with 13 configurations, and fi-
nally a two-state model with 23 configurations (2st-23cf). The
latter is the best we could do with the available computational
resources.

We then included all available 2s22p5ε� and 2s2p6ε� chan-
nels up to a maximum total orbital angular momentum of
Lmax = 240. For the majority of the calculations presented
here the continuum functions were constructed from a set
of 60 B splines of order 13 for each angular momentum of
the outgoing electron. For the results presented in Fig. 8,
corresponding to the highest cutoff energies achieved in this
paper, 64 splines and a time step of 0.003 were needed for
convergence.

The harmonic spectra from RMT calculations are obtained
by Fourier transforming and squaring the time-dependent ex-
pectation value of the dipole operator [36], and scaling by the
appropriate power of ω. Both the length and velocity forms
can be applied to obtain the final spectrum, as the length and
velocity matrix elements generated from the time-independent
structure calculation can be utilized by the RMT code. We
emphasize that the RMT results in the velocity gauge are not
those obtained by differentiating the time-dependent dipole
moment from the length form with respect to time. Instead, the
necessary matrix elements are calculated independently. Con-
sequently, the level of agreement between the results obtained
in the two gauges provides some (albeit indirect) assessment
regarding the numerical quality of the implementation. To
check our results once again, we nevertheless performed the
differentiations and thereby obtained two versions of the ve-
locity results, one directly from the velocity-matrix elements
and one by differentiation of the length-form result. Similarly,
we generated two versions in the acceleration gauge. The
overall excellent agreement between these results provides
confidence in their numerical accuracy.

C. Calculation parameters

The primary laser pulse is a six-cycle, 2000–3000-nm
linearly polarized pulse with peak intensities ranging from
1.0 × 1014 to 2.0 × 1014W/cm2. A three-cycle, sine-squared
ramp-on or ramp-off profile approximates the more realistic
Gaussian profile sufficiently well, while providing some nu-
merical advantages over the Gaussian. The short duration of
the pulse was chosen to isolate the generation of the cutoff
harmonics to a single trajectory of a single IR cycle [37] and
to mimic a recent experiment that used HHG from mid-IR
sources to generate soft-x-ray pulses [38]. We used a “cosine
pulse” with the carrier envelope phase chosen to ensure a
vanishing displacement, i.e.,

∫ T
0 A(t ) dt = 0.

063113-3



KEEGAN FINGER et al. PHYSICAL REVIEW A 106, 063113 (2022)

When trying to simulate an experimental setup even more
realistically, the carrier envelope should be averaged over. In
order to avoid possibly unphysical pulses when doing so, it
is better to set the vector potential instead [39] and calculate
the electric field via its time derivative. The RMT calculations
performed for this paper, however, are computationally too
expensive to do the averaging with our currently available
computational resources. Hence, we decided on the present
procedure and thus avoided a further disturbance of the sinu-
soidal electric field that would result from setting the vector
potential in a simple form and then also differentiating the
envelope function.

Calculations were performed on the Stampede2 [40] and
Frontera [41] supercomputers, both based at the Texas Ad-
vanced Computing Center at the University of Texas at Austin,
and Bridges-2 [42] at the Pittsburgh Supercomputing Center.
Each RMT calculation required about 500 cores for 8–10 h,
with variations depending on intensity and wavelength. Cal-
culations performed with the SAE code took at most a few
hours on a single node using all available cores of that node
via OpenMP parallelization.

D. Windowing

Another issue worth mentioning concerns the use of win-
dowing functions. In the RMT suite of codes [30], a Gaussian
mask is applied to the wave function when determining the
expectation value of the dipole length, ensuring that its cal-
culation is limited to the physically most meaningful region
of almost no ionization, i.e., excursion ranges from where the
electron can actually return. Thus we can directly determine
the time-varying expectation values of both the dipole opera-
tor and the dipole velocity.

After calculating the dipole expectation values, typically a
Blackman window [43] is applied to ensure a smooth trend
of both the dipole moment and its time derivative towards
zero at the end of the pulse. Using the Blackman window
significantly reduces the numerical noise arising from the
Fourier transform needed to calculate the harmonic spectrum,
and also improves the visibility of the cutoff. On the other
hand, for short pulses where the dipole moment does not
exhibit sufficient repetition, the window severely affects the
absolute value of the spectral density, as shown in Fig. 1. The
reduction in the absolute values is particularly evident at the
beginning of the “plateau” from about 20 to 50 eV, where it
can exceed an order of magnitude and will severely affect the
integral under the curve. Since we are interested in obtaining
a quantitative value for the conversion efficiency, which is
practically independent of both the steepness of the cutoff and
the depth of the minimum in the spectral density at very low
energies, we do not use this window in the present paper.

Finally, we address the issue of which form is most appro-
priate to show the obtained spectra. For the SAE calculations,
using the acceleration form after differentiating the induced
dipole moment twice with respect to time provides the numer-
ically cleanest results. The velocity form gives very similar
results, except for the cutoff not being as deep and small
changes in the depth of the low-energy minimum. Using the
length form as written in Eq. (3), however, is problematic, as
mentioned above. Indeed, a window like that used in the RMT
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FIG. 1. Harmonic spectrum of neon in a 2000-nm
2.0 × 1014W/cm2 laser pulse, as obtained with RMT in the
velocity form of the electric dipole operator with and without the
Blackman window. The window generally reduces the result. The
harmonic plateau extends from about 30 eV to a cutoff of about
260 eV.

code to limit the integration range for the calculation of the
dipole moment fixes this problem, but it is not necessary when
using the acceleration (or velocity) forms.

The RMT predictions obtained in both the length and ve-
locity form directly give very similar results, as long as a
window is used when the dipole moment is generated. As
discussed by Baggesen and Madsen [44], from a quantum-
mechanical point of view, the velocity form might be the most
natural one. Hence, most of the RMT calculations presented
below were obtained directly with the matrix elements calcu-
lated in that form. The small price to pay is the less steep drop
in the spectral density at the cutoff frequency, which however
has practically no effect on the integral under the curve taken
up to or even slightly above the cutoff.

As seen from the above discussion, a quantitative calcu-
lation of the spectral density, which is needed to obtain the
conversion efficiency, is significantly more challenging than
a purely qualitative description. All implementations we em-
ployed, be it SAE with a local potential or RMT with either
one or two coupled channels, with simple or more sophisti-
cated target wave functions, will predict a dominant peak in
S(ω) at almost the driving frequency. This peak is followed by
a deep minimum after about the fifth harmonic in our cases, a
plateau, and finally a cutoff near the energy predicted by the
three-step model [7].

III. RESULTS AND DISCUSSION

The first step in determining the efficacy of RMT in pro-
ducing water-window harmonics is to ensure that the length
and velocity forms of the produced spectrum agree reason-
ably well. Figure 2 depicts a typical spectrum obtained in
five different ways. Specifically, we compare the independent
RMT results obtained with dipole matrix elements generated
by RMATRX-II in the length and velocity gauges (top part of
Fig. 2) and those obtained by differentiation of the dipole mo-
ment in the length form (bottom part). Except for the steepness
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FIG. 2. Harmonic spectrum of neon in a 2000-nm
2.0 × 1014W/cm2 laser pulse. The top graph shows the RMT
results obtained directly with the length and velocity matrix
elements of the dipole operator, with the latter dropping off more
after the cutoff. The bottom part shows the results obtained from
the matrix elements in the length form (highest after the cutoff) and
then the induced dipole moment differentiated (“-d”) once to get
the velocity (middle line after the cutoff) and acceleration results
(deepest after the cutoff). See text for details.

of the cutoff and the depth of the low-frequency minimum, all
the results are very similar and almost indistinguishable on the
graph.

Due to the large angular momentum expansion needed for
the calculation of multielectron effects, it is also important to
verify that the chosen value of the largest term (Lmax) does
not affect the convergence of the results. This test is per-
formed by running several calculations while increasing Lmax.
A converged calculation is shown in Fig. 3, where the results
obtained with values of Lmax = 200 and 240 are very similar,
while differences with those obtained with Lmax = 160 are
still visible.

Having verified that the RMT calculations are both gauge-
invariant and partial-wave converged, we can now investigate
the results obtained using the SAE and RMT methods, as
well as the trends when varying the physical parameters of
the calculations. Figure 4 shows a comparison of SAE and
RMT results for a wavelength of 2000 nm and a peak intensity
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FIG. 3. Harmonic spectrum neon in a 2000-nm
2.0 × 1014W/cm2 laser pulse obtained with different values of
Lmax.

of 2.0 × 1014W/cm2. We notice good qualitative agreement
between the two sets of predictions. However, there are sub-
stantial differences in the details, especially in light of the
logarithmic scale. As mentioned above, the SAE results need
to be weighted by the initial magnetic quantum number of the
2p orbital. However, the figure shows that the contributions
from m = ±1 are negligible compared to that from m = 0. We
also see that both sets of results (RMT and SAE for m = 0)
show the plateau reaching up to about 260 eV, in excellent
agreement with the prediction of 258 eV from the three-step
model.

In light of the differences seen between the SAE results and
those from the simplest RMT model, i.e., 1st-1cf with the final
ionic state described by only its dominant configuration in the
expansion, we now investigate the sensitivity of the results
on the number of coupled ionic states and their description.
Our findings are shown in Fig. 5. While the qualitative pre-
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FIG. 4. Harmonic spectrum of neon in a 2000-nm laser pulse
with a peak intensity of 2.0 × 1014W/cm2, as obtained in the 1st-1cf
RMT and SAE models. For the latter, the results for m = 0 and 1 are
shown with the appropriate weighting factors. See text for details.
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FIG. 5. Harmonic spectrum of neon in a 2000-nm laser pulse
with a peak intensity of 2.0 × 1014W/cm2. The results were obtained
in the four RMT models described in the text.

dictions are practically identical, the quantitative results are
not.

Since our principal goal is to test the RMT model, we
now move to a discussion of the RMT results as a function
of various experimentally controllable parameters. Figure 6
shows that the harmonic cutoff changes approximately lin-
early with intensity, as expected from Eq. (2). Furthermore,
the calculated harmonic cutoffs agree well with those ex-
pected from Eq. (1). The largest disagreement is about 5 eV
for the calculation with an intensity of 2.0 × 1014W/cm2.
Another expected trend based on Eq. (2) is an approximately
quadratic increase in the harmonic cutoff with increasing
wavelength. The cutoffs in Fig. 7, in general, agree with this
expectation, with discrepancies of up to a few eV. This is
not unexpected, as Eq. (2) does not account for the pulse
envelope.
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FIG. 6. Harmonic spectra of neon in a 2000-nm laser pulse
with peak intensities between 1.6 × 1014 and 2.0 × 1014W/cm2. The
harmonic cutoffs range from about 140 to 260 eV, following an
approximately linear increase with intensity.
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FIG. 7. Harmonic spectra of neon in a 1.0 × 1014W/cm2 laser
pulse with wavelengths ranging from 2600 to 3000 nm. As expected,
the harmonic cutoffs vary from ≈220 to ≈290 eV.

Though the calculations shown so far exhibit the charac-
teristics expected from Eqs. (1) and (2), the cutoffs are not yet
sufficiently high to reach into the water window. As shown
in Fig. 8, increasing the wavelength to 3000 nm with a peak
intensity of 1.5 × 1014W/cm2 finally pushes the cutoff into
this window.

We finish our presentation with the conversion efficiencies
obtained in the various models and choices of parameters.
These are listed in Table I. As seen in the table, the predicted
conversion efficiency depends significantly on the details
of the model employed. In particular, the SAE results for
2000 nm at 2.0 × 1014W/cm2 are much smaller than those
obtained with the more correlated RMT models. Even within
the latter models, however, the predicted conversion efficiency
Cp, obtained by integrating over the plateau region, varies be-
tween a minimum of 5.50 × 10−3 in 2st-13cf and a maximum
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FIG. 8. Harmonic spectra of neon from a 3000-nm pulse with
peak intensities of 1.0 × 1014 and 1.5 × 1014W/cm2. The latter pro-
duces a cutoff at ≈420 eV.
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TABLE I. Conversion efficiency in the various models. Ct is obtained by integrating over the entire spectrum until just above the cutoff,
while the integration is limited to the plateau region for Cp.

Model λ Peak intensity (W/cm2) Ct Cp

SAE (m = 0) 2000 nm 2.0 × 1014 3.50 × 10−3 1.65 × 10−3

SAE (m = 1) 2000 nm 2.0 × 1014 3.00 × 10−4 0.96 × 10−9

1st-1cf 2000 nm 2.0 × 1014 4.20 × 10−2 2.65 × 10−2

1st-7cf 2000 nm 2.0 × 1014 2.27 × 10−2 6.80 × 10−3

2st-13cf 2000 nm 2.0 × 1014 2.07 × 10−2 5.50 × 10−3

2st-23cf 2000 nm 2.0 × 1014 3.02 × 10−2 1.29 × 10−2

2st-23cf 2000 nm 1.5 × 1014 1.86 × 10−2 1.70 × 10−3

2st-23cf 2000 nm 1.0 × 1014 1.77 × 10−2 4.83 × 10−5

2st-23cf 2600 nm 1.0 × 1014 6.20 × 10−3 2.21 × 10−5

2st-23cf 2800 nm 1.0 × 1014 4.30 × 10−3 1.69 × 10−5

2st-23cf 3000 nm 1.0 × 1014 3.30 × 10−3 1.54 × 10−5

2st-23cf 3000 nm 1.5 × 1014 6.00 × 10−3 2.70 × 10−3

of 2.65 × 10−2 in 1st-1cf. The variability is less in Ct , which is
obtained by integrating over the entire spectrum. Apparently
the models are less sensitive when it comes to predicting the
dominant first peak near the driving frequency. This is the
usual scenario that relatively large numbers are less affected
by details in the model.

Next, it is important to investigate how the harmonic yield
depends on the intensity and wavelength of the laser. As
mentioned above, we expect the yield to decrease as the
wavelength increases for fixed intensity. This expectation is
somewhat indicated in Fig. 7 and clearly confirmed in Table I.
Specifically, increasing the wavelength from 2600 to 3000 nm
at 2.0 × 1014W/cm2 reduces the total conversion efficiency
Ct by almost a factor of 2, which is consistent with an approx-
imate λ−5 dependence. However, the conversion efficiency Cp

at 3000 nm is still about 70% of the value at 2600 nm, thus
suggesting a smaller reduction.

IV. CONCLUSIONS AND OUTLOOK

We have investigated the efficacy of the R matrix with
time dependence method to generate high-order harmonics
in the water window using mid-IR laser light. Previous ap-
proaches relied on significant simplifications that neglect both
quantum-mechanical and multielectron effects on the pre-
dicted spectra. Since it is not clear how accurate the results of
these simplified models are, the present project was designed
to carry out a thorough test.

We successfully demonstrated that RMT is capable of gen-
erating harmonics in the water window. We found qualitative
agreement with the trends predicted in classical models and
SAE calculations regarding the overall frequency dependence
of the spectral density, specifically the dominating first few
harmonics, the low-energy minimum, the plateaulike struc-
ture, and the cutoff frequency.

However, we found a significant dependence of the ab-
solute values of the spectral density, and consequently the
calculated conversion efficiency, on the details of the model

employed. While employing windowing functions such as
the Blackman window may improve the appearance of the
spectrum, they significantly modify the shape of the harmonic
plateau and therefore also the conversion efficiency, especially
in few-cycle laser fields that are strongly ramped. Although
it may seem unsatisfactory that we can only suggest that the
results from our largest model (2st-23cf) are the most reliable,
we hope that the detailed analysis provided in this paper will
encourage further work and, in particular, motivate theorists
to publish absolute numbers.

In the future, we plan to interface the RMT approach with
the B-spline R-matrix code of Zatsarinny [45], which allows
the use of nonorthogonal, term-dependent target orbitals. As
demonstrated in numerous applications to time-independent
treatment of electron and photon collisions, we expect this
to further improve the inner-region part of RMT, espe-
cially for complex targets. As an ultimate test of the RMT
method, we hope to compare our predictions with experi-
mental data. This will likely require substantial efforts by
both the experimental and the theoretical communities. We
hope that the work presented in this paper will stimulate such
efforts.
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