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Fishbone resonance structure in the attosecond transient absorption spectrum of graphene
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We investigate the attosecond transient absorption spectrum (ATAS) of graphene by numerically solving four-
band density-matrix equations, which demonstrates apparent “fishbone” resonance structures. To gain insight
into these interesting structures, we exploit a simplified model that considers only the electrons of � and M
points in the Brillouin zone. With the help of this model, we can analytically express the ATAS as the sum of
zeroth- and first-order Bessel functions in the variables of the strength and frequency of the infrared pump field
as well as the effective mass of electrons at the � and M points. Lorentzian and Fano line shapes in the absorption
spectrum are addressed. The fishbone structure consists of a periodic V-shaped structure that can be explained
by first-order Bessel functions, and its tilt angle is solely determined by the frequency of the pump laser. The
periodicity of the V-shaped structure in the fishbone originates from the periodic dependence of the Lorentzian
and Fano line shapes of the absorption spectrum on the time delay between the pump and probe lasers. Compared
with the numerical results, our analytical theory can qualitatively or even quantitatively predict the zeroth- and
first-order fringes in the fishbone structures of the ATAS.
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I. INTRODUCTION

Recent progress in laser technology has enabled the pro-
duction of an isolated pulse with a timescale down to 43
attoseconds [1–3], which allows investigation of electron
dynamics on an ultrashort timescale [4]. One promising
approach to investigate the subfemtosecond dynamics of elec-
tronic systems is attosecond transient absorption spectrum
(ATAS) [5–8], which offers an all-optical approach to reveal
light-matter interactions with the high temporal resolution of
the attosecond pulse and the high-energy resolution character-
istic of absorption spectrum. ATAS has been used to study the
electron dynamics of atoms and molecules [9–14], in which
quantum interference [15], nonresonant AC Stark shift [16],
and resonant Autler-Townes splitting [17,18] phenomena have
been studied. More recently, attosecond time-resolved tech-
nology has been applied to bulk solids [14,19–24] and some
two-dimensional (2D) materials [25,26]. For these materials
with periodic atomic arrangements, some special subcycle
structures emerge in the ATAS [20,25,27–29].

Graphene is a simple but specific 2D material, in which
there are only two carbon atoms per unit cell and the atoms are
orderly arranged in a periodic hexagonal lattice. The unique
electronic structure of graphene [30,31] exhibits a variety of
nonlinear optical processes [32–36]. Recently the ATAS in
graphene has also been studied [26], where a semiclassical
theory is developed to reproduce the ATAS obtained by solv-
ing four-band density-matrix equations.

In this work, we investigate the ATAS of graphene with
addressing the interesting “fishbone” resonance structure
analytically. Our extensive numerical explorations suggest
that the 2D four-band model can be simplified to a one-
dimensional (1D) four-band model and finally to a two-state

*jliu@gscaep.ac.cn

system with a correction of the effective mass term at the
� and M points. With this maximal simplification, we can
approximately express the ATAS as the sum of zeroth- and
first-order Bessel functions in the variables of the strength
and frequency of the infrared (IR) pump field as well as the
effective mass of electrons at the � and M points. We find that
the V-shaped structure of the fishbone can be explained by
first-order Bessel functions. The periodicity of the V-shaped
structure in the fishbone originates from the periodic depen-
dence of the Lorentzian or Fano line shape of the absorption
spectrum on the time delay between the IR pump and the
attosecond x-ray probe lasers. Our analytical theory is com-
pared with the numerical results obtained by directly solving
four-band density-matrix equations.

This paper is organized as follows. We describe our cal-
culation methods and numerical results of the ATAS for
graphene in Sec. II. Section III shows the analytical formula of
the resonance structure of the ATAS. Finally, Sec. IV presents
our conclusion. Throughout the paper, atomic units are used
if not specified.

II. DENSITY-MATRIX EQUATIONS AND ATAS

Graphene is a 2D single layer of carbon atoms arranged
in a honeycomb lattice structure [31] as shown in Fig. 1(a),
which consists of two sublattices with atoms labeled “A” and
“B.” The lattice vectors (a1 = d

2 (3,
√

3) and a2 = d
2 (3,−√

3)
where d = 1.42 Å is the carbon-carbon distance) and the
nearest-neighbor vectors (δi, i = 1, 2, 3) are also presented in
Fig. 1(a). The first Brillouin zone of graphene is shown in
Fig. 1(b), in which b1 = 2π

3d (1,
√

3) and b2 = 2π
3d (1,−√

3) are
the reciprocal-lattice vectors and high symmetry points (�, M,
and K) are marked.

In this work we consider four energy bands of graphene
consisting of two core bands (g1 and g2), which arise from the
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FIG. 1. (a) Hexagonal lattice structure of 2D graphene. Each
primitive cell contains two atoms labeled “A” and “B.” a1 and a2

are the lattice vectors, and δi, i = 1, 2, 3, are the nearest-neighbor
vectors. e is the unit vector that indicates the polarization direction of
the electric field. d is the carbon-carbon distance. (b) First Brillouin
zone of graphene with high-symmetry points �, M, and K. b1 and
b2 are the reciprocal-lattice vectors. (c) 2D four-band structure of
graphene. (d) Schematic of the time delay between the IR pump laser
and x-ray probe pulse.

two 1s orbitals of the two carbon atoms in a unit cell, and the
valence (v) and conduction (c) bands, which arise from the π

orbitals orthogonal to the monolayer. The two core bands are
degenerate and have a constant energy of −280 eV over the k
space, as shown in Fig. 1(c).

Utilizing the Bloch states as the basis set, the tight-binding
Hamiltonian H0 arising from the π orbitals of graphene
has the form H0 = ( 0 γ0 f (k)

γ0 f ∗(k) 0 ), in which electrons can
only hop to nearest-neighbor atoms with hopping energy
γ0 = 0.1 a.u. and f (k) = eikxd + 2 cos(

√
3kyd/2)e−ikxd/2.

Diagonalization of the H0 matrix can yield energy
eigenvalues, which describe the dispersion relation
of the c and v bands εc(k) = −εv (k) = γ0| f (k)| =
γ0

√
3 + 2 cos(

√
3kyd ) + 4 cos(3kxd/2) cos(

√
3kyd/2).

A. Four-band density-matrix equations

We numerically simulate the ATAS of graphene in the
length gauge by using the density-matrix equations in which
the four energy bands have been included [26]. Within the
dipole approximation, these equations read

i
∂

∂t
ρmn(k, t, td ) = [εm(k) − εn(k) − i�mn]ρmn(k, t, td )

+ iEI (t, td )
∂

∂k
ρmn(k, t, td ) + [EI (t, td )

+ EX (t )] · [D̂, ρ̂]mn, (1)

where m and n represent g1, g2, v, or c band, as shown in
Fig. 1(c), and �mn are the relaxation parameters.

For the 2D four-band structure of graphene in
Fig. 1(c), the transition dipole elements associated

with core bands are Dg1g2 (k) = Dg1c(k) = Dg2v (k) = 0,
Dg1g1 (k) = Dg2g2 (k) = 0, and Dg1v (k) = Dg2c(k) = rzez (see
Appendix A for the detailed derivation and discussion). Here
rz = ∫

dzφ∗
s (z)zφp(z) = 0.041 Å [26], in which φs(z) and

φp(z) are the wave functions of the 1s and 2pz orbitals along
the z direction. In addition, the transition dipole elements
between the c and v bands are Dcv (k) = Dvc(k) = ∂kϕk/2
with ϕk = Arg[ f (k)] and Dcc(k) = Dvv (k) = 0 [26,37,38].

EX (t ) = EX fX (t ) cos(ωX t )ez is the electric field of the x-
ray pulse, in which fX (t ) = e−(4ln2)(t/τX )2

has a full width
at half maximum of τX = 80 attoseconds and the amplitude
EX corresponds to the intensity of 1 × 109 W/cm2. The fre-
quency of the x-ray pulse is ωX = 280 eV, which is equal to
the energy gap between the Fermi surface and the core bands.
ez is the unit vector perpendicular to the graphene monolayer.

AI (t, td ) = AI0 fI (t + td ) cos(ωI t + ωI td )e is the vector po-
tential of the IR laser field. fI (t ) = cos2(ωI t/2n) is an
envelope with n = 10 and the amplitude of AI0 corresponds
to a laser intensity of 1 × 1011 W/cm2. ωI is the frequency
of the IR laser field, corresponding to the wavelength of
λ = 3000 nm. T = 2π/ωI is the period of the IR laser field.
e is the unit vector along the � − M direction of graphene.
The electric field of the IR laser is calculated by EI (t, td ) =
−∂AI (t, td )/∂t . As shown in Fig. 1(d), td = tX − tIR is the
time delay, where tX = 0 and tIR are the maximums of the
x-ray pulse and IR laser field envelopes, respectively. When
td = 0, the maximum values of both pulses overlap. Note that
the ATAS results only depend on the relative time delay td
rather than the absolute time tX or tIR. Therefore, one can
either choose tX or tIR as time origin. In the present work,
to simplify the analytic deductions of ATAS appearing in the
following sections, we prefer to set tX = 0.

The computational complexity introduced by the gradients
in Eq. (1) can be removed by transforming the crystal momen-
tum k into a frame moving one kt = k + AI (t, td ) [39]. Under
this transformation, the partial differential equation (1) reduce
to ordinary differential equation,

i
d

dt
ρmn(kt , t, td ) = [εm(kt ) − εn(kt ) − i�mn]ρmn(kt , t, td )

+[EI (t, td ) + EX (t )] ·
∑

l

[Dml (kt )

×ρln(kt , t, td ) − ρml (kt , t, td )Dln(kt )],

(2)

which can be readily numerically solved by the standard
fourth-order Runge-Kutta algorithm.

At t = −∞, electrons populate the two core bands and
the valence band; thus, ρg1g1 (kt , t = −∞, td ) = ρg2g2 (kt , t =
−∞, td ) = ρvv (kt , t = −∞, td ) = 1, and the other terms of
the density matrix elements are zero. The core-hole life-
time is about 6.1 fs [26] and the corresponding relaxation
parameters �g1v = �g1c = �g2v = �g2c = �cv = 0.004 a.u. ≡
�0. Because the population relaxation is much slower than the
decoherence time, we set the population relaxation parameters
�g1g1 = �g2g2 = �cc = �vv = 0. On the other hand, �g1g2 is
set to be zero because there is no transition between g1 and g2

bands.
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FIG. 2. (a) X-ray response functions of graphene without and with IR laser field of td = 0, which are calculated by Eq. (3) based on the
density-matrix equations (2). (b) Corresponding ATAS at td = 0 evaluated by Eq. (5). In (b), M−

0 , M+
0 and �−

0 , �+
0 indicate the zeroth-order

resonance peaks around M and � points, respectively, and M−
1 , M+

1 , �−
1 , and �+

1 labeled by gray rings are the first-order resonance structures.
(c) ATAS as a function of the time delay in units of IR laser cycles. In (c) the black solid arrows indicate the V-shaped structure, and α is the
tilt angle. The purple curves mark the zeroth-order resonance peaks that vary slowly with time delay td . In contrast, the first-order resonance
structures periodically change with it.

The x-ray response function for time delay td is calculated
by [6]

S(ω, td ) = 2 Im[μ̃(ω, td )Ẽ∗
X (ω)], (3)

where ẼX (ω) is the Fourier transform of EX (t ), and Ẽ∗
X (ω)

represents the complex conjugate of ẼX (ω). μ̃(ω, td ) is the
Fourier transform of μ(t, td ), which is calculated by

μ(t, td ) =
∑

k

∑
i,g

[rzρig(kt , t, td ) + c.c.], (4)

where g represents the g1 or g2 band and i represents the v or
c band.

The ATAS can then be calculated according to

�S(ω, td ) = S(ω, td ) − SX (ω), (5)

where SX (ω) is the x-ray response function without IR laser
field.

B. ATAS from numerically solving density-matrix equations

By numerically solving the above four-band density-matrix
equations, we calculate the ATAS in the length gauge. Fig-
ure 2(a) shows the x-ray response functions of graphene
without and with an IR laser field of td = 0, which are cal-
culated by Eq. (3) based on the density-matrix equations (2).
The corresponding ATAS at td = 0 evaluated by Eq. (5) is
presented in Fig. 2(b). Figure 2(c) shows the ATAS as a
function of the time delay in units of IR laser optical cycles.
In the absorption spectrum in Fig. 2(b), we observe interesting
zeroth-order resonant peaks M−

0 and M+
0 (or �−

0 and �+
0 )

around M (or �) point, and they vary slowly with time delay
td as marked by the purple curves in Fig. 2(c). In contrast, the
first-order resonant structures M−

1 and M+
1 , �−

1 and �+
1 labeled

by gray rings in Fig. 2(b) periodically vary with time delay td ,
as shown in Fig. 2(c). In Fig. 2(c) apparent fishbone structures
consisting of the zeroth- and first-order resonant structures
around the M point (near 2.72 eV) and � point (approximately
8.16 eV) can be observed. The black solid arrows indicate the
V-shaped structure (corresponding to local maximums) with
a tilt angle of α in the fishbone structure, which has a period
that is T/2.

Our calculated ATAS shown in Fig. 2(c) is analogous to
that of Ref. [26], in which the pulse duration of the IR laser
is three optical cycles. In contrast, the energy region of the
ATAS in Fig. 2 is from 0 to 11 eV to highlight the fishbone
structure. Similar structure has also been observed in an ab ini-
tio simulation of the ATAS of monolayer hexagonal boron
nitride in [25]. The periodicity of the V-shaped structure was
found to emerge in other materials, such as diamond and GaAs
[20,21], which was attributed to the dynamical Franz-Keldysh
effect related to the intraband motion of electrons. Despite
these experiments, simulations and theoretical investigations,
an explicit mechanism of the fishbone resonance structure in
an analytical form is still lacking.

As a comparison, still utilizing the Bloch states as the
basis set, we perform additional calculations of ATAS in the
velocity gauge. We find that the ATAS near the M point are
qualitatively consistent, but, however, an apparent discrep-
ancy exists near the � point. In principle, the ATAS results
should be gauge-independent. The difference is due to the
four-band approximation. To obtain more accurate ATAS near
the � point, one should consider more conduction bands
in the density-matrix equations in the velocity gauge [40,41].
The density-matrix equations in the length gauge describe the
electron dynamics implicitly using time-dependent Houston
states, which are best thought of as an adiabatic basis [42]. It
is applicable to describe the dynamics around M and �, while
might not be applicable to the K point due to the degeneracy
of the energy bands. More interestingly, the Houston states
basis set might improve the velocity gauge results. When the
Houston states are utilized as the basis set, we find the ATAS
of the both gauges are consistent to that shown in Fig. 2(c).

III. ANALYTICAL INVESTIGATION OF FISHBONE
RESONANCE STRUCTURE IN THE ATAS

A. Simplified model

We first study the influence of intraband and interband tran-
sitions on the ATAS. In the 2D four-band model in Fig. 1(c),
we block the interband transition between the valence and
conduction bands, as shown in Fig. 3(a). The corresponding
ATAS is presented in Fig. 3(b). By comparing Fig. 3(b) and
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FIG. 3. (a) Schematic of the 2D four-band model in which the
transition between the valence and conduction bands has been arti-
ficially blocked. (b) ATAS as a function of the time delay in units
of IR laser optical cycles, which is calculated using density-matrix
equations (2) based on the model in (a). (c) 1D four-band model
obtained by taking a section along the �-M direction of the 2D
energy bands in (a), as presented by the gray line of the inset, where
the transition between valence and conduction bands has also been
blocked. (d) ATAS corresponding to the model in (c). (e) Simplified
model which includes two electrons. The lattice momenta of the
electrons are k = 0 (� point) and k ≈ 0.78 a.u. (M point). (f) ATAS
based on the simplified model in (e).

Fig. 2(c), one can find that the interband transition has a
significant effect on the ATAS near the K point; however, it
plays a small role in the spectrum at the � and M points. The
underlying mechanism is that for the band model in Fig. 1(c),
the electrons near the K point can be easily excited from the
valence band to the conduction band by the IR laser. This
process blocks the transition of electrons from the g2 band
to the c band under the x-ray pulse excitation and therefore
results in an absorption decrease of the c band, forming the
“blue band” near the K point in Fig. 2(c). At the M and
� points, however, the wider energy gaps block interband
transition process caused by the IR laser, and the generation
mechanism of the ATAS arises from the intraband dynamics
of electrons. In the following work, we mainly investigate the
mechanism of the fishbone structure near M and � points.

We further simplify our 2D model in Fig. 3(a) to the
1D model in Fig. 3(c) by taking a section along the � − M
direction of the 2D band structure. The dispersion relations
of the 1D bands are εc(k) = −εv (k) = εc(k = kx, ky = 0) =
γ0

√
5 + 4 cos(3kd/2) and εg = εg1(k) = εg2(k) = −280 eV.

Based on this model, the corresponding ATAS is presented
in Fig. 3(d). One can find that the ATAS near the K point
disappears, while the fishbone structures around the M and �

points are well consistent with those in Fig. 3(b). Therefore,
we can exploit the 1D model in Fig. 3(c) to study the fishbone
structure.

Furthermore, in the band model in Fig. 3(c), the elec-
trons in the g1 and v bands cannot jump to the g2 or c
bands because Dg1c(k) = Dvc(k) = Dg1g2 (k) = Dvg2 (k) = 0.
Additionally, although Dg1v (k) �= 0, the transition between
the g1 and v bands is forbidden because ρg1g1 (kt , t, td ) =
ρvv (kt , t, td ) = 1. Therefore, the 1D four-band model in
Fig. 3(c) is equivalent to the 1D two-band structure in Fig. 3(e)
consisting of g ≡ g2 and c bands. We propose the simplified
model shown in Fig. 3(e), which includes two electrons with
lattice momenta of k = 0 (� point) and k ≈ 0.78 a.u. (M
point), and the corresponding ATAS is shown in Fig. 3(f).
The fishbone structures of ATAS in Fig. 3(f) are qualitatively
consistent with those of Fig. 3(d). In the following, based on
this simplified model in Fig. 3(e), we develop an analytical
theory to investigate the underlying mechanism of the fish-
bone structure.

B. Analytic deduction of ATAS �S(ω, td )

Based on the simplified model in Fig. 3(e), we deduce
an analytical formula of the ATAS. Because the x-ray pulse
is relatively short and weak, it can be approximated to a
δ function EX (t ) = AX δ(t ). The electrons can be instan-
taneously excited from the g band to the c band by the
x-ray pulse at the moment of t = 0. According to perturba-
tion theory and Eq. (2), the density matrix elements change
from ρgg(kt , t < 0−, td ) = 1, ρcc(kt , t < 0−, td ) = 0, and
ρcg(kt , t < 0−, td ) = 0 to ρgg(kt , t = 0+, td ) ≈ 1, ρcc(kt , t =
0+, td ) ≈ 0, and ρcg(kt , t = 0+, td ) ≈ −iAX rz. Next, the time-
dependent evolution of density matrix elements is dominated
only by the IR laser, and one can obtain ρcg(kt , t > 0+, td ) =
−iAX rze−i

∫ t
0 {εc[k+AI (t ′,td )]−εg} dt ′

e−�0t . According to Eq. (4),
when t < 0−, the time-dependent dipole is μk(t, td ) = 0,
and when t > 0+, it is μk(t, td ) = −2AX r2

z sin[
∫ t

0 {εc[k +
AI (t ′, td )] − εg] dt ′}e−�0t . Here relaxation parameter �0 =
0.004 a.u. is the same as that used in the numerical calculation.

According to Eqs. (3) and (4), the response
function is calculated by S(ω, td ) = ∑

k Sk(ω, td ) and
Sk(ω, td ) = 2 Im[μ̃k(ω, td )Ẽ∗

X (ω)] ∝ Im[μ̃k(ω, td )] =
Im[

∫ ∞
0 μX

k (t )e−iωt dt]. When the IR laser is off, the response
function is SX

k (ω) ∝ �0

�2
0+[ω−εc (k)]2 ≡ L[ω, εc(k)], in which

k = k� = 0 or k = kM ≈ 0.78. L(ω, x) = �0

�2
0+(ω−x)2 is the

Lorentzian line shape centered at x. (See Appendix B for the
detailed derivation. Note that the response function spectra
have been shifted by εg in the energy domain.)

When the IR laser is turned on, the response function of the
electron at the � or M point can be evaluated by Sk(ω, td ). The
analytical expression of the ATAS in general takes following
form:

�Sk(ω, td ) = Sk(ω, td ) − SX
k (ω)

= �S0
k(ω, td ) + �S1

k(ω, td ), (6)

where �S0
k(ω, td ) and �S1

k(ω, td ) are the zeroth- and first-
order resonance structures, respectively. We can obtain

�S0
k(ω, td )∝J0[bk(td )]L[ω, εs(k, td )] − L[ω, εc(k)] (7)
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and

�S1
k(ω, td )∝ J1[bk(td )]L[ω, εs(k, td ) + 2ωI ] cos(2ωI td )

+J1[bk(td )]F [ω, εs(k, td ) + 2ωI ] sin(2ωI td )

−J1[bk(td )]L[ω, εs(k, td ) − 2ωI ] cos(2ωI td )

+J1[bk(td )]F [ω, εs(k, td ) − 2ωI ] sin(2ωI td ),

(8)

where F (ω, x) = ω−x
�2

0+(ω−x)2 is the Fano line shape with q pa-
rameter of 1 centered at x [43,44]. Here we define εs(k, td ) =
εc(k) + A2

I0 f 2
I (td )/(4m∗

k) and bk(td ) = A2
I0 f 2

I (td )/(8ωI m∗
k),

where m∗
k = 1/∇2

kεc(k) is the effective mass. Jn(x) is the nth-
order Bessel function, and on the right side of Eqs. (7) and (8),
the prefactors have been adjusted to be 1.

C. Resonance peaks in the ATAS

When the IR laser is off, the response function SX
k (ω) =

L[ω, εc(k)] (black line) is shown in Fig. 4(a), which presents
two Lorentzian line shapes whose peaks are located at
εc(kM) ≈ 2.72 eV and εc(k� ) ≈ 8.16 eV.

When the IR laser of td = 0 is turned on, the response
function (red line in Fig. 4(a)) is Sk(ω, td = 0) ∝ J0(b0k)
L[ω, ε0s(k)] + J1(b0k)L[ω, ε0s(k) + 2ωI ] − J1(b0k)L[ω, ε0s

(k) − 2ωI ], where ε0s(k) = εs(k, td = 0) = εc(k) + A2
I0/

(4m∗
k) and b0k = bk(td = 0) = A2

I0/(8ωI m∗
k). Comparing with

SX
k (ω), the zeroth-order resonance peaks associated with

J0(b0k) term are shifted by A2
I0/(4m∗

k). For the electron of
the M point (or the � point) whose effective mass m∗

kM
(or

m∗
k�

) is 0.3 a.u. (or −0.9 a.u.), the energy shift A2
I0/(4m∗

kM
) [or

A2
I0/(4m∗

k�
)] is equal to 0.27 eV (or −0.09 eV). In addition,

when IR laser of td = 0 is on, for each electron with lattice
momentum kM or k� , two additional first-order resonance
structures associated with J1(b0k) terms appear, which exhibit
Lorentzian line shape. The energy intervals between the
zeroth-order resonance peak and two first-order resonance
structures are 2ωI , as shown in Fig. 4(a).

In Fig. 4(a) we also show the response function Sk(ω, td =
−3T/8) ∝ J0(b1k)L[ω, ε1s(k)] + J1(b1k)F [ω, ε1s(k) +
2ωI ] + J1(b1k)F [ω, ε1s(k) − 2ωI ], where ε1s(k) = εs(k, td =
−3T/8) ≈ ε0s(k) and b1k = bk(td = −3T/8) ≈ b0k for both
M and � points. In contrast to Sk(ω, td = 0), the first-order
resonance structures of response function Sk(ω, td = −3T/8)
exhibit the Fano line shape.

Figure 4(b) shows analytical ATAS �Sk(ω, td = 0) and
�Sk(ω, td = −3T/8) calculated by Eq. (6). One can find two
zeroth-order peaks M−

0 and M+
0 (or �−

0 and �+
0 ) corresponding

to �S0
k(ω, td ), as well as two first-order resonance structures

M−
1 and M+

1 (or �−
1 and �+

1 ) labeled by gray rings correspond-
ing to �S1

k(ω, td ) around the M (or �) point.
In Fig. 4(c), we show numerical ATAS for time delays

td = 0 and td = −3T/8, which are extracted from Fig. 2(c).
Comparing the results in Fig. 4(b) and Fig. 4(c), one can
obtain that the zeroth- and first-order resonance structures are
qualitatively consistent. Quantitatively, there are some devia-
tions between the analytical and numerical results, especially
for the first-order resonance structures, which arise from the
fact that our analytical results are based on the simplified

FIG. 4. (a) The analytical response functions SX
k (ω), Sk

(ω, td = 0), and Sk(ω, td = −3T/8). (b) Corresponding absorption
spectra �Sk(ω, td = 0) and �Sk(ω, td = −3T/8). (c) The numerical
ATAS for time delays td = 0 and td = −3T/8, which are extracted
from Fig. 2(c). In (a), (b), and (c), the vertical purple dotted lines
mark the zeroth-order resonance peaks M−

0 , M+
0 , �−

0 , and �+
0 that

correspond to �S0
k (ω, td ), and the vertical orange dashed lines are

the centers of first-order resonance structures M−
1 , M+

1 , �−
1 , and �+

1

labeled by gray rings, corresponding to �S1
k(ω, td ). (d) The analytical

ATAS �Sk(ω, td ) calculated by Eq. (6). In (d), the black arrows indi-
cate the V-shaped structure, whose tilt angle is defined as α. Around
the M and � points, the horizontal purple dotted lines are εc(k) and
εs(k, td ), and the orange dashed lines correspond to εs(k, td ) ± 2ωI .
In (b) and (d), “P1” and “P2” points labeled by the crosses are local
maximum values. In (e), the purple solid curves reproduce M−

0 and
M+

0 in Fig. 2(c), and the dotted lines are the corresponding analytical
results εc(kM) and εs(kM, td ).

model that considers only the electrons of � and M points
in the Brillouin zone.

D. V-shaped structure in the ATAS

The analytical ATAS as a function of the time delay, which
are calculated by Eq. (6), are shown in Fig. 4(d). The black
arrows indicate the V-shaped structure that corresponds to
local maximum ATAS amplitudes. According to �S0

k(ω, td )
of Eq. (7), one can obtain that the zeroth-order resonance
peaks vary slowly with time delay td , as shown in Fig. 4(d). In
contrast, �S1

k(ω, td ) of Eq. (8) implies that as the time delay
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continuously varies, the first-order resonance structures peri-
odically present Lorentzian or Fano line shapes, forming the
V-shaped structure in the ATAS. Corresponding to cos(2ωI td )
and sin(2ωI td ), the period of the V-shaped structure is T/2, as
shown in Figs. 4(d) and 2(c). The zeroth- and first-order reso-
nance structures make up the fishbone structure in the ATAS.

We define the tilt angle α of the V-shaped structure in
Fig. 4(d). The horizontal purple dotted lines [εc(k), εs(k, td )]
and orange dashed lines [εs(k, td ) ± 2ωI ] in Fig. 4(d) indicate
the centres of the zeroth- and first-order resonance structures.
The two vertical solid lines mark the time delays td = 0 and
td = −3T/8, and corresponding ATAS have been shown in
Fig. 4(b). As shown in Figs. 4(d) and 4(b), the P1 points are
local maximal values, which satisfy both ∂

∂ω
�S(ω, td )|td =0=0

and ∂
∂td

�S(ω, td )|ω=εs (kM,td )+2ωI = 0. The P2 points satisfy
∂

∂ω
�S(ω, td )|td =−3T/8 = 0 and are located at the zeroth-order

peak M+
0 , as shown in Fig. 4(b). The energy and time intervals

between points P1 and P2 are 2ωI and 3T/8, respectively.
Therefore, in Fig. 4(d), the tilt angle α of the V-shaped struc-

ture is defined by tan(α) ≈ 2ωI
3T/8 = 8ω2

I
3π

. This implies that the
tilt angle of the V-shaped structure increases with the IR laser
frequency.

In Fig. 4(e), the two purple solid curves M−
0 and M+

0
reproduce the zeroth-order resonance peaks of the fishbone
structure near the M point in Fig. 2(c). The two purple dotted
lines are the analytical results εc(kM) and εs(kM, td ), corre-
sponding to M−

0 and M+
0 , respectively. One can obtain that for

different time delays, our analytical theory can qualitatively
predict the energy shifts of the zeroth-order fringes of the
fishbone structure in the ATAS.

IV. CONCLUSION

In summary, we investigate the ATAS of graphene by
numerically solving four-band density-matrix equations in
the length gauge, which shows apparent fishbone resonance
structures. To gain insight into these interesting structures, we
develop a simplified model that only considers the electrons of
the � and M points. With the help of this model, we can obtain
an analytical expression of the ATAS that consists of the
zeroth- and first-order resonance structures associated with
Bessel functions. Our theory predicts that the zeroth-order
fringe of the fishbone structure slowly varies with the time
delay, while the first-order fringes alternately change between
the Lorentzian line shape and Fano line shape at twice the IR
laser frequency, leading to the fishbone resonance structure.

Our analytical derivation might be extended to other mate-
rials that cannot be described by the same four-band model as
that of graphene. It requires only that the electron is injected at
a momentum with zero velocity, which will happen generally
due to the larger density of states. Therefore, some findings of
this paper might be applicable to some other 2D materials or
even bulk solids, such as GaAs in Ref. [45]. We hope that our
theory will stimulate experiments in the fields.
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APPENDIX A: TRANSITION DIPOLE ELEMENTS
ASSOCIATED WITH CORE BANDS

Graphene is a 2D single layer of carbon atoms arranged in
a honeycomb lattice, as shown in Fig. 1(a). The outermost four
electrons of all carbon atoms are sp2 hybridized, and one elec-
tron per carbon atom remains in the 2pz orbital, which extends
out of the plane of the chain [31]. The Bloch states formed by
the 2pz orbital sitting on the sublattices A and B can be used
as normalized basis set: ϕAp(k, r) = 1√

N

∑
j eikRA

j φp(r − RA
j ),

ϕBp(k, r) = 1√
N

∑
j eikRB

j φp(r − RB
j ). Here j is the index of

the primitive cell, and N is the total number of primitive
cells. RA

j and RB
j are the position vectors of A and B atoms

in the jth primitive cell. φp(r) is the wave function of the
2pz orbital in graphene. The diagonalization of H0 (i.e., here
Ĥ0 is a field-free Hamiltonian) matrix can yield the energy
eigenvalues which describe the dispersion relation of the c and
v bands: εc(k) = −εv (k) = γ0| f (k)|, and the corresponding
eigenvectors are

ψk
v(c)(r) = cA,v(c)ϕAp(k, r) + cB,v(c)ϕBp(k, r), (A1)

where cA,v = cA,c =
√

2
2 e−iϕk/2, cB,v = −cB,c = −

√
2

2 eiϕk/2,
with ϕk = Arg[ f (k)].

For the core bands, similarly we have the wave functions
of g1 and g2 bands are

ψk
g1(g2 )(r) = cA,g1(g2 )ϕAs(k, r) + cB,g1(g2 )ϕBs(k, r), (A2)

where ϕAs(k, r) and ϕBs(k, r) are the basis set formed by the
1s orbital: ϕAs(k, r) = 1√

N

∑
j eikRA

j φs(r − RA
j ), ϕBs(k, r) =

1√
N

∑
j eikRB

j φs(r − RB
j ), in which φs(r) is the wave function

of the 1s orbital in graphene.
The corresponding tight-binding Hamiltonian Hg of

the core bands are Hg = ( εg γg f (k)
γg f ∗(k) εg

), in which εg =
〈φs(r)|Ĥ0|φs(r)〉 = −280 eV and γg = 〈φs(r)|Ĥ0|φs(r − δi )〉
approximates to be 0. The diagonalization of Hg matrix can
yield energy eigenvalues εg1 (k) = εg − γg| f (k)| and εg2 (k) =
εg + γg| f (k)|. The coefficients in the eigenvectors (A2)

are obtained as cA,g1 = cA,g2 =
√

2
2 e−iϕk/2, cB,g1 = −cB,g2 =

−
√

2
2 eiϕk/2.

According to Eqs. (A1) and (A2), one can evaluate the
transition dipole elements Dmn(k) = 〈ψk

m(r)|r|ψk
n (r)〉

Dg1v (k) = Dg2c(k) = rzez, (A3a)

Dg1c(k) = Dg2v (k) = 0, (A3b)

Dg1g1 (k) = Dg2g2 (k) = 0, (A3c)

Dg1g2 (k) = Dg2g1 (k) = 0, (A3d)

in which rz = ∫
dzφ∗

s (z)zφp(z) = 0.041 Å [26].
Note that in our model, the transition dipole elements

Dg1v (k), Dg2c(k), Dg1c(k), and Dg2v (k) are a little bit different
from those of Ref. [26]. This difference arises from that we
consider the weak interaction between the nearest-neighbor
1s orbitals, based on which the core-band wave functions
are evaluated by Eq. (A2). In contrast, in Ref. [26], authors
assume that there is no interaction between 1s orbitals of two
sublattices A and B, so that the wave functions of the core
bands are approximated to be ψk

g1
(r) = ϕAs(k, r), ψk

g2
(r) =
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ϕBs(k, r). Although there exist some differences in transition
dipole elements, we find the calculated ATAS are almost
identical.

APPENDIX B: ANALYTICAL DEDUCTION OF THE ATAS
BASED ON THE SIMPLIFIED MODEL

We deduce the analytical results of the ATAS based on
the simplified model shown in Fig. 3(e). Because the x-ray
pulse is relatively short and weak, it can be approximated
to a δ function EX (t ) = AX δ(t ). In the simplified model, the
electrons can be instantaneously excited from the g band
to the c band by the x-ray pulse. According to perturba-
tion theory and Eq. (2), the density matrix elements change
from ρgg(kt , t < 0−, td ) = 1, ρcc(kt , t < 0−, td ) = 0, and
ρcg(kt , t < 0−, td ) = 0 to ρgg(kt , t = 0+, td ) ≈ 1, ρcc(kt , t =
0+, td ) ≈ 0, and ρcg(kt , t = 0+, td ) ≈ −iAX rz. Next, the time-
dependent evolution of density matrix elements is dominated
only by IR laser, and one can obtain ρcg(kt , t > 0+, td ) =
−iAX rze−i

∫ t
0 (εc (k+AI (t ′,td ))−εg)dt ′

e−�0t . According to Eq. (4),
when t < 0−, the time-dependent dipole is μk(t, td ) = 0, and

when t > 0+, it is

μk(t, td ) = −2AX r2
z sin

[∫ t

0
{εc[k + AI (t ′, td )] − εg

]
dt ′}e−�0t .

(B1)

According to Eqs. (3) and (4), the response
function is calculated by S(ω, td ) = ∑

k Sk(ω, td ) and
Sk(ω, td ) = 2 Im[μ̃k(ω, td )Ẽ∗

X (ω)] ∝ Im[μ̃k(ω, td )].
When the IR laser is off, the time-dependent dipole is
μX
k (t ) = −2AX r2

z sin[(εc(k) − εg)t]e−�0t for t > 0+. The
response function is

SX
k (ω) ∝ Im[μ̃X

k (ω)] = Im

[∫ ∞

0
μX
k (t )e−iωt dt

]

∝ �0

�2
0 + {ω − [εc(k) − εg]}2

, (B2)

where we have omitted the off-resonant term of
�0

�2
0+{ω+[εc (k)−εg]}2 .

When the IR laser is turned on, the time-dependent dipole
of Eq. (B1) can be deduced to be

μk(t, td ) = −2AX r2
z sin

[
εc(k)t − εgt + ∇kεc(k)

∫ t

0
AI (t ′, td ) dt ′

+ 1

2
∇2
kεc(k)

∫ t

0
A2

I (t ′, td ) dt ′ + 1

6
∇3
kεc(k)

∫ t

0
A3

I (t ′, td ) dt ′ +
]

e−�0t . (B3)

For both the � and M points in the 1D two-band structure, one can obtain ∇kεc(k) = 0 and ∇3
kεc(k) = 0, and we

ignore the higher-order terms of Eq. (B3). To simplify the integral with respect to time in Eq. (B3), we consider the vector
potential AI (t, td ) = AI0 fI (t + td ) cos(ωI t + ωI td ) ≈ AI0 fI (td ) cos(ωI t + ϕ), with ϕ = ωI td , and the time-dependent dipole can
be approximated as

μk(t, td ) ≈ −2AX r2
z sin

[
εc(k)t − εgt + 1

2∇2
kεc(k)A2

I0 f 2
I (td )

∫ t
0

cos(2ωI t ′+2ϕ)+1
2 dt ′

]
e−�0t

= −2AX r2
z sin[ak(td )t + bk(td ) sin(2ωI t + 2ϕ) + φ(td )]e−�0t

= −2AX r2
z {sin[ak(td )t +φ(td )] cos[bk(td ) sin(2ωI t + 2ϕ)] + cos[ak(td )t + φ(td )] sin[bk(td ) sin(2ωI t + 2ϕ)]}e−�0t ,

(B4)

where ak(td ) = εc(k) − εg + A2
I0 f 2

I (td )/(4m∗
k), bk(td ) = A2

I0 f 2
I (td )/(8ωI m∗

k), with effective mass m∗
k = 1/∇2

kεc(k) for lattice
momentum k, and φ(td ) = −bk(td ) sin(2ϕ).

Utilizing Jacobi-Anger expansion formulas, Eq. (B4) can be further deduced to be

μk(t, td ) = − 2AX r2
z J0[bk(td )] sin[ak(td )t + φ(td )]e−�0t − 2AX r2

z

+∞∑
m=1

J2m[bk(td )] sin{[ak(td ) + 4mωI ]t

+ [φ(td ) + 4mϕ]}e−�0t − 2AX r2
z

+∞∑
m=1

J2m[bk(td )] sin {[ak(td ) − 4mωI ]t + [φ(td ) − 4mϕ]}e−�0t

− 2AX r2
z

+∞∑
m=1

J2m−1[bk(td )] sin{[(4m − 2)ωI + ak(td )]t + [(4m − 2)ϕ + φ(td )]}e−�0t

− 2AX r2
z

+∞∑
m=1

J2m−1[bk(td )] sin{[(4m − 2)ωI − ak(td )]t + (4m − 2)ϕ − φ(td )}e−�0t , (B5)

where Jn(x) is the nth-order Bessel function.
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The response function is evaluated by

Sk(ω, td ) ∝ Im[μ̃k(ω, td )] = Im

[ ∫ ∞

0
μk(t, td )e−iωt dt

]

∝ J0[bk(td )]{L[ω, ak(td )] cos[φ(td )] + F (ω, ak(td )) sin[φ(td )]}

+
+∞∑
m=1

J2m−1[bk(td )]L[ω, ak(td ) + (4m − 2)ωI ] cos[φ(td ) + (4m − 2)ϕ]

+
+∞∑
m=1

J2m−1[bk(td )]F [ω, ak(td ) + (4m − 2)ωI ] sin[φ(td ) + (4m − 2)ϕ]

−
+∞∑
m=1

J2m−1[bk(td )]L[ω, ak(td ) − (4m − 2)ωI ] cos[φ(td ) − (4m − 2)ϕ]

−
+∞∑
m=1

J2m−1[bk(td )]F [ω, ak(td ) − (4m − 2)ωI ] sin[φ(td ) − (4m − 2)ϕ]

+
+∞∑
m=1

J2m[bk(td )]L[ω, ak(td ) + 4mωI ] cos[φ(td ) + 4mϕ]

+
+∞∑
m=1

J2m[bk(td )]F [ω, ak(td ) + 4mωI ] sin[φ(td ) + 4mϕ]

+
+∞∑
m=1

J2m[bk(td )]L[ω, ak(td ) − 4mωI ] cos[φ(td ) − 4mϕ]

+
+∞∑
m=1

J2m[bk(td )]F [ω, ak(td ) − 4mωI ] sin[φ(td ) − 4mϕ], (B6)

where L(ω, x) = �0

�2
0+(ω−x)2 and F (ω, x) = ω−x

�2
0+(ω−x)2 are Lorentzian and Fano line shapes centered at x, respectively. In Eq. (B6),

we have omitted the terms of L(−ω, x) and F (−ω, x) that are off-resonant, and in the last step of the derivation, the prefactors
have been adjusted to be 1.

When the IR laser intensity and wavelength are 1 × 1011 W/cm2 and 3000 nm, respectively, one can obtain bk�
(td = 0) =

A2
I0/(8ωI m∗

k�
) = −0.11 and bkM (td = 0) = A2

I0/(8ωI m∗
kM

) = 0.33. Namely, |bk(td )| � 0.33 for both the � and M points, and
we can consider Jn�2[bk(td )] ≈ 0. In addition, because of |bk(td )| � 0.33, we can adopt two approximations cos(φ(td )) =
cos[−bk(td ) sin(2ϕ)] ≈ J0[bk(td )] ≈ 1 and sin(φ(td )) = sin[−bk(td ) sin(2ϕ)] ≈ 0.

According to Eq. (B6), the response function is reduced to

Sk(ω, td ) ∝ J0[bk(td )]L[ω, ak(td )] + J1[bk(td )]L[ω, ak(td ) + 2ωI ] cos(2ωI td ) + J1[bk(td )]F [ω, ak(td ) + 2ωI ] sin(2ωI td )

− J1[bk(td )]L[ω, ak(td ) − 2ωI ] cos(2ωI td ) + J1[bk(td )]F [ω, ak(td ) − 2ωI ] sin(2ωI td ). (B7)

The ATAS of the electron with k is evaluated by

�Sk(ω, td ) = Sk(ω, td ) − SX
k (ω). (B8)
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