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Interaction of a strong laser pulse with matter transfers not only energy but also linear momentum of the
photons. Recent experimental advances have made it possible to detect the small amount of linear momentum
delivered to the photoelectrons in strong-field ionization of atoms. Linear momentum transfer is a unique
signature of the laser-atom interaction beyond its dipolar limit. Here, we present a decomposition of the subcycle
time-resolved linear momentum transfer in terms of its multipolar components. We show that the magnetic
dipole contribution dominates the linear momentum transfer during the dynamical tunneling process while the
postionization longitudinal momentum transfer in the field-driven motion of the electron in the continuum is
primarily governed by the electric quadrupole interaction. Alternatively, exploiting the radiation gauge, we
identify nondipole momentum transfer effects that scale either linearly or quadratically with the coupling to the
laser field. The present results provide detailed insights into the physical mechanisms underlying the subcycle
linear momentum transfer induced by nondipole effects.
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I. INTRODUCTION

Tunneling ionization is the first step of many strong-field
phenomena and is one of the cornerstones of strong-field
and attosecond physics. Tunneling ionization from atoms and
molecules is typically described within the electric dipole ap-
proximation, where the laser field is considered homogeneous
along its propagation direction, thereby neglecting the photon
momentum and the field retardation [1]. The dipole approx-
imation holds well for typical parameters of experimental
table-top laser setups. In turn, nondipole effects, which result
in asymmetric photoelectron momentum distributions about
zero along the field propagation direction, are typically very
small.

With advances in detection technology, such weak
nondipole effects have recently become accessible [2,3]. In
2011, Smeenk et al. [4] experimentally observed the linear
momentum transfer for tunneling ionization of argon and
neon. Since then, nondipole tunneling effects have attracted
considerable attention. They have been found to cause a neg-
ative shift in the photoelectron momentum distribution for
linear polarization due to their interplay with the Coulomb
field [5]. Remarkably, for nonsequential double ionization, the
sum of the nondipole momentum shifts of the two electrons
is opposite to the case of single ionization and consider-
ably larger [6]. The nondipole momentum shift follows the
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prediction of the classical model for low photoelectron en-
ergies [7], while for high-order above-threshold ionization
the nondipole momentum shift is found to be substantially
modified by large-angle rescattering of the electron [8,9].
Nondipole effects also play an observable role during the un-
derbarrier tunneling ionization [10,11]. Moreover, nondipole
effects induce a modification to the ponderomotive poten-
tial, thereby shifting the center of the energy rings in the
above-threshold ionization [12–14]. In 2019, the pioneering
experimental work of Willenberg et al. [15] studied the sub-
cycle linear momentum transfer with an attoclock protocol
[16,17], and found a counterintuitive local minimum of the
transferred momentum at the peak of the laser electric field.
Based on earlier theories of nondipole effects [18–26], we
have subsequently developed the theory of subcycle linear
momentum transfer [27], which accounts for the interplay
between nondipole and nonadiabatic tunneling effects on the
sub-optical-cycle time scale.

Different contributions to the linear momentum transfer by
nondipole effects can be distinguished. In the time domain, the
momentum transfer 〈pz〉 along the laser propagation direction
(ẑ) can be partitioned as [27,28]

〈pz〉 = 〈vz〉 + �E/c (1)

with 〈vz〉 the momentum transfer due to tunneling ionization
and �E/c the contribution due to the subsequent continuum
motion after tunneling with �E denoting the energy gain
during the continuum excursion of the electron and c repre-
senting the speed of light. An alternative partitioning can be
achieved in the energy domain by exploring the influence of
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different terms of the nondipole Hamiltonian to a given order
α (α is the fine-structure constant) [29–31] on the linear mo-
mentum transfer. Recently, the time-integrated contributions
of the electric-field gradient and the magnetic field to the
final momentum distribution in tunneling ionization have been
studied [32].

In the present paper, we aim at combining the time do-
main and spectral domain analysis in order to pinpoint the
influence of individual nondipole terms in the Hamiltonian
on the subcycle time-resolved momentum transfer within a
typical attoclock protocol. Using an elliptically polarized laser
pulse, the electrons emitted at different instances of time
within an optical cycle are emitted into different directions
and backscattering is suppressed, which facilitates the subcy-
cle time resolution of nondipole-induced momentum transfer.
In the present paper, we consider two frequently employed
gauges, the multipole gauge and the radiation gauge. The
multipole gauge allows us to identify the contributions of
the magnetic dipole and electric quadrupole interactions to
leading order 1/c in the retardation. The radiation gauge,
on the other hand, reveals separate contributions linear and
quadratic in the laser field to the same order 1/c. While in ex-
act calculations the results should be invariant under changes
of the gauge, approximate treatments may be sensitive to the
choice of gauge. A well-known case in point is the dipole tran-
sition in weak-field photoionization. Depending on the gauge
employed (length, velocity, or accelerations), different spa-
tial regions of the wave functions can be sensitively probed.
Here, we extend such an analysis to the nondipole strong-field
regime. We show that the electric quadrupole (E2) coupling
primarily probes the field-driven continuum motion, which,
overall, provides the dominant contribution to the linear mo-
mentum transfer, while the tunneling process is controlled by
the magnetic dipole (M1) coupling, which provides a minor
correction for the present parameter settings.

The paper is organized as follows. In Sec. II, we briefly
review the theoretical framework within which we treat
the partitioning of the leading-order nondipole corrections
in the Hamiltonian for atom-laser interaction. In Sec. III,
the subcycle contributions originating from each nondipole
Hamiltonian term are analyzed and approximate analytic
expressions within the framework of the strong-field ap-
proximation (SFA) are given. We present results for the
subcycle contributions of the different nondipole interactions
in Sec. IV. The time integral momentum transfer as a function
of the laser parameters is explored in Sec. V. Conclusions
are given in Sec. VI. Atomic units are used throughout unless
noted otherwise.

II. THEORETICAL FRAMEWORK

A. The nondipole Hamiltonian

The light wave of a laser in vacuum is a transverse wave
with polarization perpendicular to the propagation direction
(k̂) along which the linear photon momentum k = ω/c (ω:
laser angular frequency) points. In the following, z is chosen
along the laser propagation direction and (x, y) represents the
laser polarization plane. For inclusion of nondipole effects
into light-matter interactions, the spatiotemporal dependence

of the vector potential of the laser field A(r, t ) = A(t − z/c)
needs to be considered. Focusing in the following on the
Hamiltonian operator of an (effective) one-electron atom with
atomic potential V (r), the minimal-coupling Hamiltonian in
the radiation gauge is given by

H = 1

2
[p + A(r, t )]2 + V (r). (2)

Since nondipole retardation effects ≈1/c are the focus of our
present paper, we have absorbed other 1/c factors, in par-
ticular those originating from the coupling between charged
particles and the radiation field in terms of the fine-structure
constant α (α = 1/c in atomic units), into the amplitude of
the effective vector potential A(r, t ). The minimal-coupling
Hamiltonian [Eq. (2)] can be decomposed into terms of first-
and second-order couplings to the field:

H = 1

2
p2 + p · A(t − z/c)︸ ︷︷ ︸

linear in field

+ 1

2
A2(t − z/c)︸ ︷︷ ︸

quadratic in field

+V (r). (3)

Expanding now the vector potential to first order in c−1,
representing field retardation or nondipole effects to lowest
order,

A(t − z/c) ≈ A(t ) − z

c
Ȧ(t ) = A(t ) + z

c
F(t ), (4)

with the electric field F(t ) = −Ȧ(t ), yields the effective
Hamiltonian HND including nondipole effects:

HND = 1

2
[p + A(t )]2 + V (r) + z

c
F(t ) · p︸ ︷︷ ︸
F1 term

+ z

c
F(t ) · A(t )︸ ︷︷ ︸

F2 term

,

(5)
where nondipole retardation effects (≈1/c) appear both linear,
(z/c)[F(t ) · p] (the F1 term), and quadratic, (z/c)[F(t ) · A(t )]
(the F2 term), in the laser field.

Applying now the Powers-Zienau-Wolley gauge transfor-
mation

� ′(r, t ) = ei�ND(r,t )�(r, t ) (6)

with the nondipole gauge phase

�ND(r, t ) =
∫ 1

0
r · A

(
t − λ

z

c

)
dλ, (7)

the transformed Hamiltonian

H ′
ND = ei�ND

(
HND − i

∂

∂t

)
e−i�ND

= ei�ND HNDe−i�ND − ∂

∂t
�ND (8)

becomes [29,31]

H ′
ND = p2

2
+ V (r) + r · F(t )︸ ︷︷ ︸

E1 term

+ 1

2c
L · B(t )︸ ︷︷ ︸

M1 term

− z

2c
[r · Ḟ(t )]︸ ︷︷ ︸

E2 term

(9)

with angular momentum L = r × p and the effective magnetic
field B(t ) = k̂ × F(t ). Equation (9) represents the multipole
expansion of the Hamiltonian, H ′

ND, including the electric
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(E1) and magnetic dipole (M1) and electric quadrupole (E2)
contributions. The properties of these particle–radiation-field
interaction terms are well understood within the framework
of lowest-order perturbation theory. We explore in the fol-
lowing the role of the terms beyond the standard dipole (E1)
approximation in strong-field ionization and, in particular, in
nonadiabatic tunneling ionization.

To further pinpoint the influence of individual nondipole
terms separately, we will consider also reduced Hamiltonians
where only selected nondipole terms are kept:

HM1 = p2

2
+ V (r) + r · F(t ) + 1

2c
L · B(t ), (10)

HE2 = p2

2
+ V (r) + r · F(t ) − z

2c
[r · Ḟ(t )]. (11)

An analogous decomposition can also be performed for the
Hamiltonian in the radiation gauge [Eq. (5)]. Accordingly, we
will consider reduced Hamiltonians which include nondipole
terms F1 or F2:

HF1 = 1

2
[p + A(t )]2 + V (r) + z

c
F(t ) · p, (12)

HF2 = 1

2
[p + A(t )]2 + V (r) + z

c
F(t ) · A(t ). (13)

For each of these reduced Hamiltonians [Eqs. (10)–(13)], a
suitable gauge transformation analogous to Eqs. (6)–(8) will
be performed.

B. Nondipole strong-field approximation

We focus in the following on the momentum transfer 〈pz〉
along the laser propagation direction as the characteristic
signature of nondipole effects in strong-field ionization. In
a recent publication [27], we have shown by a comparison
between the full numerical solution using the time-dependent
Schrödinger equation (TDSE) and the SFA that for strong-
field ionization within an attoclock scenario with elliptically
or circularly polarized radiation the atomic (or Coulomb) po-
tential V (r) [Eqs. (5) and (9)] has only negligible influence
on 〈pz〉 as rescattering and laser-Coulomb coupling are sup-
pressed. We have verified that the atomic force field has only a
negligible influence also on the decomposition into individual
nondipole contributions (see Appendix A). Consequently, we
investigate the contributions of the different nondipole terms
to 〈pz〉 within the SFA. Moreover, by applying a saddle-point
approximation (SPA), we can extract approximate analytic ex-
pressions for these nondipole contributions, thereby providing
a transparent physical picture of the subcycle contributions of
different nondipole interactions.

Within the SPA including nondipole corrections (ndSPA),
the triply differential transition rate to the final state with
momentum p is given by [33–35]

WndSPA(p) = |S̈|−αZ exp{2ImS}, (14)

where αZ = 1 + Z/
√

2Ip with Z the asymptotic charge of the
remaining ion and Ip the ionization potential, S denotes the
nondipole action

S =
∫ tr

ts

(HND + Ip)dt (15)

where HND presents the Hamiltonian including nondipole
terms in various gauges but not the Coulomb potential, and

Ṡ = HND + Ip = 0 (16)

is the corresponding saddle-point equation. Equation (16)
determines the complex saddle-point time ts = tr + iti. The
real part of ts represents the ionization time tr , the instant
the tunneling electron becomes free, while the imaginary part
ti is related to the tunneling rate. For the numerical results
presented in the following, we mostly use αZ = 1. As shown
in Appendix F, we have verified that its exact value only plays
a minor role and does not change the conclusions because the
tunneling dynamics is dominated by the exponential factor
[Eq. (14)].

For the determination of the linear momentum transfer at
the tunneling exit 〈vz〉 and the asymptotic momentum transfer
〈pz〉, it is advantageous to make a coordinate transformation
(px, py, pz ) → (tr, k⊥, pz ). With the proper choice of the aux-
iliary momentum k⊥ (the subscript ⊥ denotes variables in the
laser polarization plane), one of the two saddle-point equa-
tions, ImṠ = 0, can be automatically fulfilled. Consequently,
the search for the saddle-point time ts in the complex plane can
be reduced to the search along one axis, thereby greatly reduc-
ing the computational cost. The choice of k⊥ will depend on
HND as specified below. The auxiliary transverse momentum
k⊥ turns out to be closely related to the transverse momentum
v⊥ at the tunnel exit. The transition rate w̃ as a function
of tr , k⊥, and pz includes the Jacobian of the coordinate
transformation:

w̃ndSPA(tr, k⊥, pz ) =
∣∣∣∣det

∂ (px, py, pz )

∂ (tr, k⊥, pz )

∣∣∣∣WndSPA(p). (17)

Equation (17) can be extended to the case where multi-
pole saddle points contribute to the emission to the same
final momentum p. In this case, the transition rate WndSPA is
given by

WndSPA(p) =
∣∣∣∣∣∑

n

M (n)
p

∣∣∣∣∣
2

, (18)

where M (n)
p = |S̈(n)|−αZ /2 exp{−iS(n)}. For the numerical ex-

amples presented below we find one saddle point to be
dominant and the influence of such coherent superpositions
to be negligible.

The expectation value of the subcycle time-resolved linear
momentum transfer at the tunnel exit follows as

〈vz(tr )〉 =
∫

dk⊥d pz vz(tr, k⊥, pz ) w̃ndSPA(tr, k⊥, pz )∫
dk⊥d pz w̃ndSPA(tr, k⊥, pz )

, (19)

and consequently the asymptotic longitudinal momentum
〈pz(tr )〉 follows as [27,28]

〈pz(tr )〉 = 〈vz(tr )〉 + �E

c
, (20)

with �E = (〈p2
⊥〉 − 〈v2

⊥〉)/2. More generally, the coordi-
nate transformation (px, py, pz ) → (tr, k⊥, pz ) allows us to
determine also other variables of interest as a function of
the tunneling ionization time tr , thereby unraveling infor-
mation on quantum dynamics along the time axis. Explicit
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expressions for the auxiliary transverse momentum k⊥ and
vz(tr, k⊥, pz ) appearing in the integrand [Eq. (19)] depend on
the specific form of the nondipole Hamiltonian under consid-
eration and will be given in Sec. III [Eqs. (27) and (35)] as
well as in Appendices B–E. Results obtained using Eq. (17)
are labeled ndSPA in what follows.

C. Nonadiabatic expansion

Elementary strong-field tunneling theory often referred to
as the simple man’s model relies on the adiabatic limit of van-
ishingly small Keldysh parameter γ in which the strong field
is treated as quasistatic. Consequently, the tunneling barrier
is considered to be time independent and tunneling transi-
tions are “horizontal” and energy conserving. For small but
finite Keldysh parameter γ ≈ ωti nonadiabatic corrections to
the quasistatic tunneling process should be accounted for. To
determine lowest-order nonadiabatic corrections, we expand
the vector potential A(ts) = A(tr + iti ) up to the second order
in ti [27,36–41]:

A(tr + iti ) ≈ A(tr ) − itiF(tr ) + 1
2 t2

i Ḟ(tr ). (21)

Restricting the inclusion of nonadiabatic corrections to this
order [Eq. (21)] allows the fully analytic evaluation of ion-
ization rate [Eq. (17)]. The results obtained in this approach
are hereafter labeled as nondipole saddle-point approximation
with nonadiabatic expansion (ndSPANE). We note that this
inclusion of nonadiabatic effects is sometimes referred to as
the adiabatic expansion [40,41]. It should be further noted that
the k⊥ determined through Eq. (16) may differ from each other
when the ndSPA and ndSPANE are used. These deviations do
not significantly affect the numerical results.

III. EVALUATION OF THE NONDIPOLE
STRONG-FIELD APPROXIMATION

In this section, we apply the ndSPA and the ndSPANE,
as outlined above, to the subcycle linear momentum transfer
with the goal to identify the contributions from individual
nondipole terms in the Hamiltonian [Eqs. (5) and (9)]. We
first demonstrate the evaluation for full HND in the radiation
gauge [Eq. (5)]. The analogous evaluation for the alternative
decompositions of HND are given in the Appendices B–E.

We first apply a gauge transformation to Eq. (5) with gauge
function

� = − z

c

[(
p · A(t ) + 1

2
A2(t )

)]
, (22)

which results in [7,8,27]

H ′
ND =1

2

[
p + A(t ) + êz

c

(
p · A(t ) + 1

2
A2(t )

)]2

+ V
(

r − z

c
A(t )

)
. (23)

This gauge transformation implies a time-dependent shift of
the origin in the nondipole frame similar to the Kramers-
Henneberger gauge. Even when V (r) is eventually neglected
in the SFA, such a frame transformation is needed to retrieve
quantities in the laboratory frame from results obtained in
this nondipole frame. The corresponding action entering the

ndSPA is

S =
∫ tr

ts

{
1

2

[
p + A(t ) + êz

c

(
p · A(t ) + 1

2
A2(t )

)]2

+ Ip

}
dt,

(24)

and the saddle-point equation reads

1

2

[
p + A(ts) + êz

c

(
p · A(ts) + 1

2
A2(ts)

)]2

+ Ip = 0. (25)

With the substitution k⊥ = p⊥ + ReA(ts), the imaginary
part of the saddle-point equation becomes(

1 + pz

c

)[
kxImAx(ts) + kyImAy(ts)

] = 0. (26)

Therefore, by choosing the auxiliary perpendicular momen-
tum k⊥ in the polarization plane as

k⊥ = [p⊥ + ReA(ts)] · ImAy(ts)êx − ImAx(ts)êy√
[ImAx(ts)]2 + [ImAy(ts)]2

, (27)

the imaginary part of the saddle-point equation [Eq. (25)] is
automatically fulfilled for arbitrary pulse shapes. The relation
between the auxiliary momentum k⊥ [Eq. (27)] and the trans-
verse momentum at the tunnel exit v⊥ will be explored below.
Expressing the momentum differential ionization probability
WndSPA(p) [Eq. (14)] in terms of the coordinates (tr , k⊥, pz),
the time-resolved initial linear momentum 〈vz(tr )〉 is obtained
by evaluating Eqs. (17) and (19), and the final linear momen-
tum 〈pz(tr )〉 follows from Eq. (20).

Analytic expressions for 〈vz〉 and 〈pz〉 can be obtained
when keeping only lowest-order nonadiabatic corrections
using ndSPANE. Inserting A(tr + iti) [Eq. (21)] into the
saddle-point equation [Eq. (16)] and keeping terms up to
second order in ti results in the relationship

k⊥ · F(tr ) = [p⊥ + A(tr )] · F(tr ) = 0, (28)

i.e., the transverse momentum k⊥ is orthogonal to the
attoclock field at the instant of tunneling ionization tr . Equa-
tion (28) defines the temporal location tr of the tunnel exit
separating tunneling from continuum motion. Remarkably,
this condition remains unchanged whether or not nondipole
effects are included. For later reference, we note that k⊥
determined through Eq. (27) may vary when the ndSPA or
ndSPANE are used. These deviations do not significantly af-
fect the numerical results. The real part of the saddle-point
equation leads to

ti =
√

k2
⊥ + 2Ip + p2

z + pz

c [2k⊥ · A(tr ) − A2(tr )](
1 + pz

c

)
F̃ 2(tr )

, (29)

with the effective field F̃ (tr ) =
√

F 2(tr ) − k⊥ · Ḟ(tr ). The
above expression of ti explicitly defines an effective Keldysh
parameter γeff = ωti, which should be small in the tunneling
regime.

The relation between k⊥ and the momentum at the tunnel
exit (v⊥, vz ) follows from Heisenberg’s equations of motion
for H ′

ND [Eq. (23)]:

v⊥(tr, k⊥, pz ) = p⊥ + A(tr ) + pz

c
A(tr ) = k⊥ + pz

c
A(tr ),

(30)
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vz(tr, k⊥, pz ) = pz + 1

c

[
p⊥ · A(tr ) + A2(tr )

2

]
= pz + 1

c

[
k⊥ · A(tr ) − A2(tr )

2

]
. (31)

In addition, the gauge transformation [Eq. (22)] implies the
frame transformation [Eq. (23)]:

rlab = r − z

c
A(tr ). (32)

Accordingly, we find for the velocities

vlab = v − vz

c
A(tr ) + z

c
F(tr ). (33)

Using z ≈ 0 at the tunnel exit, we have

v⊥,lab(tr, k⊥, pz ) = v⊥ − vz

c
A(tr ) ≈ k⊥, (34)

vz,lab(tr, k⊥, pz ) = vz = pz + 1

c

[
k⊥ · A(tr ) − A2(tr )

2

]
. (35)

We note that Eq. (35) enters the expression in Eq. (19) (drop-
ping the subscript “lab”).

Ionization rate w̃ndSPA [Eq. (17)] is now obtained by evalu-
ating the exponential factor

2ImS = − 2Ipti − Re
∫ ti

0

[
p + A(tr + it )

+ êz

c

(
p · A(tr + it ) + 1

2
A2(tr + it )

)]2

dt

≈ − 2

3F̃

{
k2
⊥ + 2Ip +

[
pz

−
(−2k⊥ · A + A2

2c
+ 2Ip + k2

⊥
6c

)]2
} 3

2

, (36)

the preexponential prefactor

|S̈|−αZ ≈
∣∣∣−i
(

1 + pz

c

)
tiF̃

2
∣∣∣−αZ

≈[(k2
⊥ + 2Ip

)
F̃ 2
]− αZ

2 exp
{
−αZ

2

pz

c

}

× exp

⎧⎪⎨⎪⎩−αZ

2

(
pz − −2k⊥·A+A2

2c

)2

k2
⊥ + 2Ip

⎫⎪⎬⎪⎭, (37)

and the Jacobian∣∣∣∣det
∂ (px, py, pz )

∂ (tr, k⊥, pz )

∣∣∣∣ ≈ |Fd + F (tr )|, (38)

where Fd = k⊥[Fx(tr )F ′
y (tr ) − F ′

x (tr )Fy(tr )]/F 2(tr ).
Rearranging these expressions, we find

w̃ndSPANE ≈ |Fd + F (tr )|[(k2
⊥ + 2Ip)F̃ 2]−αZ /2

× exp

{
− 2

3F̃

[
k2
⊥ + 2Ip+

(
1 + αZ F̃

2(k2
⊥ + 2Ip)

3
2

)

× [pz − 〈pz(tr, k⊥)〉]2

] 3
2
}
, (39)

where

〈pz(tr, k⊥)〉 = 2Ip + k2
⊥

6c

[
1 − 2αZ F̃

(2Ip + k2
⊥)3/2

]

+ −2k⊥ · A + A2

2c

≈ 2Ip + k2
⊥

6c

[
1 − 2αZF

(2Ip)3/2

]
+ −2k⊥ · A + A2

2c
.

(40)

Hence, the mean initial linear momentum in the laboratory
frame can be rewritten as

〈vz(tr, v⊥)〉 ≈ 2Ip + v2
⊥

6c

[
1 − 2αZ F (tr )

(2Ip)3/2

]
, (41)

where we have dropped the subscript “lab,” and the corre-
sponding asymptotic linear momentum follows as

〈pz(tr, v⊥)〉 = 〈vz(tr, v⊥)〉 + �E

c

= 〈vz(tr, v⊥)〉 + p2
⊥ − v2

⊥
2c

(42)

with the ponderomotive energy gain �E :

�E

c
= p2

⊥ − v2
⊥

2c
= −2v⊥ · A + A2

2c
. (43)

The derivation of analogous expressions for 〈pz〉 and 〈vz〉
predicted by the various approximate Hamiltonian operators
[Eqs. (10)–(13)] containing selected nondipole terms is given
in Appendices B–E.

The results of the expectation value of the linear mo-
mentum in the laboratory frame for different Hamiltonians
are summarized in Table I, where we present the asymptotic
linear momentum transfer 〈pz(tr, v⊥)〉 [Eq. (42)], which is
composed of the initial linear momentum at the tunnel exit
〈vz(tr, v⊥)〉 [Eq. (41)] and �E/c for the continuum motion
after tunneling. From Table I, it is obvious that

〈vz(tr, v⊥)〉M1 + 〈vz(tr, v⊥)〉E2 = 〈vz(tr, v⊥)〉, (44)

�EM1

c
+ �EE2

c
= �E

c
, (45)

〈vz(tr, v⊥)〉F1 + 〈vz(tr, v⊥)〉F2 = 〈vz(tr, v⊥)〉, (46)

�EF1

c
+ �EF2

c
= �E

c
, (47)

i.e., the sum of the nondipole contributions of the reduced
Hamiltonians adds up to that of the full nondipole Hamilto-
nian within each gauge. This underscores the suitability of the
decomposition into reduced Hamiltonians for the observables
under consideration.

IV. SUBCYCLE CONTRIBUTION OF NONDIPOLE TERMS

In this section, we quantitatively investigate and illus-
trate the effects of individual nondipole Hamiltonian terms,
most prominently of the magnetic dipole (M1) and electric
quadrupole (E2) contributions for tunneling ionization for
helium. Within SFA helium is effectively represented by a
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TABLE I. Subcycle time-resolved contributions of individual nondipole Hamiltonian terms to the initial linear momentum 〈vz〉 at the tunnel
exit and the asymptotic linear momentum 〈pz〉. The full nondipole Hamiltonian HND is reduced to study the influence of the various nondipole
contributions, including the magnetic dipole term M1 [Eq. (10)], the electric quadrupole term E2 [Eq. (11)], the field-linear term F1 [Eq. (12)],
and the field-quadratic term F2 [Eq. (13)]. The asymptotic linear momentum 〈pz〉 relates to the one at the tunnel exit 〈vz〉 as 〈pz〉 = 〈vz〉 + �E/c,
where �E/c originates from the ponderomotive acceleration in the continuum after tunneling. The initial linear momentum 〈vz〉 contains five
contributions: the underbarrier motion including the nondipole nonadiabatic coupling, the preexponential prefactor, the reduction factor caused
by reducing the full nondipole Hamiltonian, the correction Jacobian of the coordinate transformation, and the correction resulting from the
transformation from the respective nondipole frame to the laboratory frame. The table is summarized from Eqs. (41), (42), (B18)–(B20),
(C18)–(C20), (D18)–(D20), and (E13)–(E15)

Terms Tunneling motion 〈vz〉 Continuum motion �E
c

Underbarrier Exp. prefactor Reduction Jacobian Mapping

Total
2Ip+v2

⊥
6c ×1 +0 +0 + p2

⊥−v2
⊥

2c

M1 − 2Ip+v2
⊥

12c ×(1 + v⊥·Ḟ
F 2 ) − F

4c
√

2Ip

F
Fd +F + 2Ip+v2

⊥
4c

F 2

F̃ 2 + p2
⊥−v2

⊥
4c − 2Ip+v2

⊥
4c

F2

F̃2

E2
2Ip+v2

⊥
4c ×[1 − 2αZ F

(2Ip )3/2 ] ×(1 + v⊥·Ḟ
3F 2 ) + F

4c
√

2Ip

F
Fd +F − 2Ip+v2

⊥
4c

F 2

F̃ 2 + p2
⊥−v2

⊥
4c + 2Ip+v2

⊥
4c

F2

F̃2

F1
2Ip+v2

⊥
6c ×(− v⊥·Ḟ

F2 ) − F

2c
√

2Ip

F
Fd +F − v⊥·A

c − v⊥·A−A2

c

F2
2Ip+v2

⊥
6c ×(1 + v⊥·Ḟ

F 2 ) + F

2c
√

2Ip

F
Fd +F + v⊥·A

c − A2

2c

zero-range potential with ionization potential Ip = 0.903 570.
For comparative numerical solutions of the TDSE we use
a model potential with a Coulomb tail or a short-ranged
Yukawa-type potential (see Appendix A).

For the simulation we use a laser pulse with a vector
potential:

A(t ) = A0 cos4

(
ωt

2N

)(
cos(ωt + φCEP)
ε sin(ωt + φCEP)

)
, (48)

with a number N of cycles N = 6, a carrier-envelope
phase φCEP = 0, pulse ellipticity ε = 0.75, angular frequency
ω = 0.057 corresponding to a central wavelength of 800 nm,
and the vector potential amplitude A0 corresponding to a laser
peak intensity of 5 × 1014 W/cm2. For these laser parame-
ters, the Keldysh parameter is γ ≈ 0.8 corresponding to the
(moderate) tunneling regime. In all figures that follow, solid
lines represent the results calculated using the ndSPA method
and the dashed lines stand for those obtained by the ndSPANE
method.

Figure 1 shows the subcycle time-resolved linear momen-
tum at the tunnel exit 〈vz(tr )〉 caused by various nondipole
Hamiltonian terms. Within the multipole gauge [Fig. 1(a)], we
find the remarkable results that the magnetic dipole interaction
(M1) strongly dominates the linear momentum transfer during
the underbarrier motion while the electric quadrupole inter-
action (E2) leaves only an almost negligible footprint on the
longitudinal momentum at the tunnel exit. For illustrative pur-
poses we also give the corresponding results for the nondipole
contributions of the field-linear (F1) and field-quadratic (F2)
terms. Here, we find strong oscillations with opposite sign
that result in near cancellation of the two contributions. This
observation clearly indicates that a decomposition according
to the order in coupling with the laser field, unlike the mul-
tipole decomposition, does not provide a well-suited starting
point for further approximations as both orders are responsi-
ble for contributions of comparable magnitude to order 1/c.
This is closely related to the fact that the gauge transforma-
tion [Eq. (6)] contains field coupling to all orders thereby

transforming the Hamiltonian in the radiation gauge [Eq. (5)]
which contains terms of first and second order in the field into
the multipole Hamiltonian [Eq. (9)], which is strictly linear in
the field. We also note that the analytic ndSPANE results for
all gauges (Fig. 1) slightly differ from the corresponding full
ndSPA calculations on the subcycle level due to the neglect
of higher-order corrections in the nonadiabatic expansion ∼t n

i
(n � 3) [Eq. (21)]. Nevertheless, after summation over the
corresponding terms within each gauge, the results closely
agree with each other.

Turning now to the asymptotic linear momentum 〈pz〉,
which is directly experimentally accessible, we display in
Fig. 2 the dependence on both the release time tr (left column)

FIG. 1. Subcycle time-resolved linear momentum at the tunnel
exit 〈vz(tr )〉 based on the Hamiltonian in (a) the multipole gauge and
(b) the radiation gauge. Solid curves are calculated using ndSPA and
dashed curves are obtained using ndSPANE. The results of individual
nondipole Hamiltonian terms are displayed in different colors. Red
curve, the M1 term; purple curve, the E2 term; blue curve, the F1

term; green curve, the F2 term; black curve, the total nondipole
Hamiltonian.
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FIG. 2. Subcycle asymptotic linear momentum transfer 〈pz〉 as a
function of the tunneling exit time tr (left column) and the attoclock
offset angle φp (right column) in the multipole gauge (upper row)
and in the radiation gauge (lower row). The same legend as in Fig. 1
applies.

and the attoclock angle φp = arctan(py/px ) (right column).
Most remarkably, while the electric quadrupole term provides
only a negligible contribution to the longitudinal momentum
transfer during tunneling ionization (Fig. 1), it dominates
over the M1 contribution in the post-tunneling continuum
momentum transfer [Fig. 2(a)]. Moreover, the asymptotic
momentum transfer originates predominantly from the field-
driven motion in the continuum. The 2ω subcycle oscillations
of the momentum transfer during tunneling mediated by the
M1 interaction [Fig. 1(a)] are in phase with the momentum
transfer in the continuum, mostly caused by the E2 term
[Figs. 2(a) and 2(b)]. By contrast, for the decomposition
into the field-linear (F1) and field-quadratic (F2) terms of the
radiation gauge [Figs. 2(c) and 2(d)], the two contribution
terms are out of phase by π . Interestingly, the F2 nondipole
term induces a momentum transfer due to the nondipole force
−(A · F )/c opposed to that of the laser propagation. Time
integration of this force leads to a negative momentum transfer
of −A2(tr )/2c. Regardless of partitioning, summation of the
respective individual contributions matches the result of the
full nondipole Hamiltonian. Here again, the ndSPANE results
agree well with full ndSPA calculations.

V. LASER PARAMETER DEPENDENCE
OF THE LINEAR MOMENTUM TRANSFER

In this section, we present results for the laser parameter
dependence of the time-integrated linear momentum transfer
induced by individual nondipole Hamiltonian terms both at
the tunnel exit 〈vz〉 and in the asymptotic region 〈pz〉 via
integration of Eqs. (19) and (20) over tr covering the time span
of the entire laser pulse.

FIG. 3. Linear momentum at the tunnel exit 〈vz〉 [upper row (a)]
and asymptotic linear momentum 〈pz〉 [lower row (b)] induced by
the M1 term (red curves), E2 term (purple curves), F1 term (blue
curves), F2 term (green curves), and full nondipole Hamiltonian
(black curves) as a function of laser ellipticity ε (column 1), wave-
length λ (column 2), and peak intensity I0 (column 3). The black
dots in panel (b2) represent the TDSE solution. Laser parameters
in column 1: λ = 800 nm, I0 = 5 × 1014 W/cm2. Laser parameters
in column 2: ε = 0.75, I0 = 5 × 1014 W/cm2. Laser parameters in
column 3: ε = 0.75, λ = 800 nm.

Figure 3(a) (upper row) shows the dependence of 〈vz〉 on
the laser ellipticity ε (column 1), wavelength λ (column 2),
and peak intensity I0 (column 3). Figure 3(b) (lower row)
shows the corresponding dependences for 〈pz〉. In order to
demonstrate the level of accuracy reached by the ndSPA for
this observable we also present numerical TDSE results for
〈pz〉 as a function of λ in Fig. 3(b2). Overall, the underbarrier
momentum transfer 〈vz〉 is remarkably insensitive to the vari-
ation of laser parameters, and the partitioning into M1 and E2

changes only marginally with intensity and wavelength which
remains fixed when varying the ellipticity. Throughout, the M1

term strongly dominates over the E2 term. However, when
separating the F1 and F2 contributions within the radiation
gauge, strong variations as a function of ε can be observed
underscoring that this decomposition is not well suited as a
starting point for further approximations based on the order of
the atom-field interaction.

The asymptotic momentum transfer 〈pz〉 (second row) dis-
plays a monotonic increase with intensity I0, wavelength λ,
and ellipticity ε, in line with the expression

〈pz〉 = 〈vz〉 + 〈p2
⊥〉 − 〈v2

⊥〉
2c

= 〈vz〉 + 〈A2〉
2c

− 〈v⊥ · A〉
c

≈ Ip

3c
+ ε2A2

0

2c
= Ip

3c
+ I0λ

2

πc4

ε2

1 + ε2
, (49)

where we drop the term −〈v⊥ · A〉/c from the second line.
Clearly, the nondipole momentum transfer is proportional to
the field intensity I0 and λ2. It increases monotonically with
ellipticity ε. The saturation near ε ≈ 1 is due to the replace-
ment of 〈A2〉 by ε2A2

0 taken at the peak electric field.
For all laser parameters, the E2 contribution dominates over

the M1 nondipole contribution to the momentum transfer dur-
ing the continuum motion and provides, overall, the leading
contribution to 〈pz〉. The difference between 〈pz〉 induced by
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the E2 term and that induced by the M1 term remains almost
constant with a value of about 2Ip/3c, originating mainly from
their difference during the underbarrier dynamical process
(see Table I).

VI. CONCLUSIONS

In summary, we have systematically investigated the ef-
fect of various distinct nondipole terms in the Hamiltonian
describing the coupling of the atomic electron to the radiation
field. We consider the subcycle time dependence of strong-
field tunneling ionization in an attoclock setting. We include
terms to leading order in the field retardation c−1. In the
multipole gauge, the magnetic dipole (M1) interaction and the
electric quadrupole (E2) interaction are accounted for. Alter-
natively, in the radiation gauge, terms linear (F1) and quadratic
(F2) in the field strength are considered. The contributions
of individual nondipole Hamiltonian terms to the initial lin-
ear momentum 〈vz〉 at the tunnel exit from the underbarrier
motion as well as the asymptotic linear momentum 〈pz〉 are
studied numerically with the ndSPA method and analytically
using the ndSPANE method.

The analysis presented in this paper offers insights into
the nondipole-induced linear momentum on a subcycle time
scale. The M1 magnetic dipole effect plays a dominant role
in the underbarrier tunneling process while the E2 electric
quadrupole effect only leaves a small footprint on the ini-
tial linear momentum transfer 〈vz〉 at the tunnel exit. This
trend is largely independent of the laser parameters. In stark
contrast to 〈vz〉 at the tunnel exit, the E2 electric quadrupole
effect dominates over the M1 magnetic dipole effect in the
asymptotic linear momentum 〈pz〉. Each of the nondipole
terms induces an oscillation with frequency 2ω in the time-
resolved electron emission which arises from the coupling
of the nondipole and nonadiabatic tunneling effects. With
increasing pulse ellipticity, wavelength, and peak intensity,
most of the individual nondipole contributions increase.

Regardless of the partitioning and gauge, the sum of in-
dividual nondipole contributions equals the results of the
full nondipole Hamiltonian, implying a clean separation of
individual nondipole effects. The identification of the contri-
butions of individual nondipole terms provides insights into
their importance in different spatiotemporal domains during
the strong-field ionization process.
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FIG. 4. Subcycle time-resolved linear momentum at the tunnel
exit 〈vz(tr )〉 (upper row) and asymptotic linear momentum 〈pz(φp)〉
(lower row) induced by different nondipole terms calculated by
TDSE (blue curves), ndSPA (orange curves), and ndSPANE (green
curves).

APPENDIX A: INFLUENCE OF THE COULOMB
POTENTIAL

In this paper we focus on the nondipole effects in strong-
field ionization as described by variants of the SFA. In order
to verify the applicability and approximate validity of the SFA
for the observables under consideration, we have also carried
out additional full numerical simulations using TDSE. The
Coulomb potential of the helium atom is modeled as [42]

V (r) = − 1 + e−r2/2

√
r2 + 0.143 28

. (A1)

Such a model potential of helium captures its essential fea-
tures such that the asymptotic charge is 1 while the charge
seen by the electron at r = 0 is 2. The soft-core parameter
0.143 28 is applied to avoid the Coulomb singularity that
may lead to numerical issues in the practical computations.
This numerical model reproduces the correct ionization po-
tential of helium. We have verified that this model potential
produces very similar numerical results to established model
potentials [43]. In addition, we perform TDSE simulations for
a Yukawa-like short-range potential [42]:

V (r) = −1.178 22e−r/5 + e−r2/2

√
r2 + 0.143 28

, (A2)

which is expected to be more closely related to the physics in-
corporated in ndSPA and ndSPANE, which neglect long-range
Coulomb effects. From TDSE simulations, we directly obtain
the asymptotic linear momentum transfer 〈pz〉. To extract the
linear momentum at the tunnel exit 〈vz〉, on the other hand, we
employ, in addition, the backpropagation method [40,44,45].

Shown in Fig. 4 are the subcycle time-resolved ini-
tial linear momentum at the tunnel exit 〈vz(tr )〉 and final
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longitudinal momentum as a function of the attoclock offset
angle 〈pz(φp)〉 calculated by TDSE including backpropaga-
tion (blue curves), ndSPA (orange curves), and ndSPANE
(green curves). In addition, a comparison between the results
using the Coulomb potential and the Yukawa potential is also
presented. Obviously, the Coulomb potential or, more gener-
ally, the atomic potential has only a rather small effect on the
nondipole momentum transfer, even when broken down into
separate multipole contributions from the M1 and E2 terms.
The relatively largest deviation seen is a slight reduction of the
momentum transfer at the tunnel exit 〈vz〉, which is, however,
a minor contribution to total asymptotic momentum trans-
fer 〈pz〉.

APPENDIX B: M1 TERM IN THE MULTIPOLE GAUGE

Similar to the derivation of the nondipole effect of the
full Hamiltonian, the contribution of the magnetic dipole term
can be studied using the Hamiltonian in the multipole gauge
containing only the M1 term:

HM1 = 1

2
p2 + V (r) + r · F(t ) + 1

2c
L · B(t ). (B1)

We carry out two consecutive gauge transformations with
�1 = −A(t ) · r and �2 = −(z/2c)[p · A(t ) + A2(t )/2] +
(pz/2c)[r · A(t )] to get a new Hamiltonian:

H ′
M1

=1

2

[
p + A(t ) + êz

2c

(
p · A(t ) + 1

2
A2(t )

)
− pz

2c
A(t )

]2

+ V

(
r − 1

2c
{zA(t ) − [r · A(t )]êz}

)
, (B2)

where the corresponding saddle-point equation is written as

1

2

[
p + A(ts) + êz

2c

(
p · A(ts) + 1

2
A2(ts)

)
− pz

2c
A(ts)

]2

+ Ip = 0. (B3)

In the ndSPA method, we define

k⊥=
[

p⊥ +
(

1 − pz

2c

)
ReA(ts)

]
· ImAy(ts)êx − ImAx(ts)êy√

[ImAx(ts)]2 + [ImAy(ts)
]2

(B4)

to obtain the linear momentum by evaluating Eq. (B3).
In the ndSPANE procedure, we may get

ti =
√√√√k2

⊥ + 2Ip + p2
z + pz

c

[
k⊥ · A(tr ) − 1

2 A2(tr )
][

1 − pz

2c

(
1 + k⊥·Ḟ(tr )

F̃ 2(tr )

)]
F̃ 2(tr )

, (B5)

where k⊥ = p⊥ + (1 − pz/2c)A(tr ) with k⊥ · F(tr ) = 0.
Based on the exponential factor

2ImS = − 2Ipti − Re
∫ ti

0

[
p + A(tr + it ) − pz

2c
A(tr + it )

+ êz

2c

(
p · A(tr + it ) + 1

2
A2(tr + it )

)]2

dt

≈ − 2

3F̃

(
k2
⊥ + 2Ip +

{
pz

−
[

−k⊥ · A+ 1
2 A2

2c
−2Ip + k2

⊥
12c

(
1+k⊥ · Ḟ

F̃ 2

)]}2) 3
2

,

(B6)

the preexponential prefactor

∣∣S̈∣∣−αZ ≈
∣∣∣∣−i

[
1 − pz

2c

(
1 + k⊥ · Ḟ

F̃ 2

)]
tiF̃

2

∣∣∣∣−αZ

≈[(k2
⊥ + 2Ip

)
F̃ 2
]− αZ

2 exp

{
αZ

2

pz

2c

(
1 + k⊥ · Ḟ

F̃ 2

)}

× exp

⎧⎪⎨⎪⎩−αZ

2

(
pz − −k⊥·A+ 1

2 A2

2c

)2

k2
⊥ + 2Ip

⎫⎪⎬⎪⎭, (B7)

and the Jacobian∣∣∣∣det
∂ (px, py, pz )

∂ (tr, k⊥, pz )

∣∣∣∣ ≈ |Fd + F (tr )|
(

1 − pz

2c

F (tr )

Fd + F (tr )

)
≈ |Fd + F (tr )| exp

{
− pz

2c

F (tr )

Fd + F (tr )

}
,

(B8)

the transition rate is written as

w̃ndSPANE ≈ |Fd + F (tr )|[(k2
⊥ + 2Ip)F̃ 2]−αZ /2

× exp

{
− 2

3F̃

[
k2
⊥+2Ip +

(
1+ αZ F̃

2(k2
⊥ + 2Ip)

3
2

)

× [pz − 〈pz(tr, k⊥)〉M1 ]2

] 3
2
}
, (B9)

where

〈pz(tr, k⊥)〉M1

= −2Ip + k2
⊥

12c

(
1 + k⊥ · Ḟ(tr )

F̃ 2(tr )

)(
1 − 2αZ F̃ (tr )

(2Ip + k2
⊥)3/2

)

− F̃ (tr )

4c
√

2Ip + k2
⊥

F (tr )

Fd + F (tr )
+ −k⊥ · A + (1/2)A2

2c

≈ −2Ip + k2
⊥

12c

(
1 + k⊥ · Ḟ(tr )

F 2(tr )

)(
1 − 2αZF (tr )

(2Ip)3/2

)
− F (tr )

4c
√

2Ip

F (tr )

Fd + F (tr )
+ −k⊥ · A + (1/2)A2

2c
. (B10)

According to Heisenberg’s equations of motion for H ′
M1

[Eq. (B2)],

v⊥ = p⊥ + A, (B11)

vz = pz − 1

2c
v⊥ · A + 1

2c

(
p⊥ · A + 1

2
A2

)
, (B12)
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and the frame transformation,

rlab = r − z

2c
A + êz

2c
(r · A), (B13)

vlab = v − vz

2c
A + z

2c
F + êz

2c
(v⊥ · A) − êz

2c
(r · F ), (B14)

we can obtain the velocities in the laboratory frame:

v⊥,lab = p⊥ + A − vz

2c
A + z

2c
F, (B15)

vz,lab = pz + 1

2c

(
p⊥ · A + 1

2
A2

)
− 1

2c
r · F. (B16)

At the tunnel exit, using z ≈ 0 and

r0 = Re
∫ tr

ts

v⊥dt = Im
∫ ti

0

(
1 − pz

2c

)
A(tr + it )dt

= −1

2
t2
i

(
1 − pz

2c

)
F(tr )

≈ −
(

1 − pz

2c

)k2
⊥ + 2Ip

2

F

F̃ 2
, (B17)

we have v⊥,lab = k⊥, hence the mean initial linear momentum
in the laboratory frame can be rewritten as

〈vz(tr, v⊥)〉M1 ≈−2Ip + v2
⊥

12c

(
1+v⊥ · Ḟ(tr )

F 2(tr )

)(
1−2αZ F (tr )

(2Ip)3/2

)
− F (tr )

4c
√

2Ip

F (tr )

Fd + F (tr )
+2Ip + v2

⊥
4c

F 2(tr )

F̃ 2(tr )
,

(B18)

where we have dropped the subscript “lab,” with the pondero-
motive energy gain �E ,

�EM1

c
≈ p2

⊥ − v2
⊥

4c
− 2Ip + v2

⊥
4c

F 2(tr )

F̃ 2(tr )
, (B19)

and the corresponding asymptotic linear momentum:

〈pz(tr, v⊥)〉M1 = 〈vz(tr, v⊥)〉M1 + �EM1

c

= 〈vz(tr, v⊥)〉M1+
p2

⊥ − v2
⊥

4c
−2Ip + v2

⊥
4c

F 2(tr )

F̃ 2(tr )
.

(B20)

The results of Eqs. (B18)–(B20) are summarized in Table I.

APPENDIX C: E2 TERM IN THE MULTIPOLE GAUGE

The contribution of the electric quadrupole term can be
studied using the Hamiltonian in the multipole gauge contain-
ing only the E2 term:

HE2 = 1

2
p2 + V (t ) + r · F(t ) − z

2c

[
r · Ḟ(t )

]
. (C1)

We carry out two consecutive gauge transformations with
gauge phases �1 = −A(t ) · r − z[r · F(t )]/2c and �2 =
−(z/2c)[p · A(t ) + A2(t )/2] − (pz/2c)[r · A(t )] to get a

new Hamiltonian:

H ′
E2

=1

2

[
p + A(t ) + êz

2c

(
p · A(t ) + 1

2
A2(t )

)
+ pz

2c
A(t )

]2

+ V

(
r − 1

2c

{
zA(t ) + [r · A(t )

]
êz

})
, (C2)

where the corresponding saddle-point equation is written as

1

2

[
p + A(ts) + êz

2c

(
p · A(ts) + 1

2
A2(ts)

)
+ pz

2c
A(ts)

]2

+ Ip = 0. (C3)

In the ndSPA method, we define

k⊥=
[

p⊥ +
(

1 + pz

2c

)
ReA(ts)

]
· ImAy(ts)êx − ImAx(ts)êy√

[ImAx(ts)]2 + [ImAy(ts)
]2

(C4)

to obtain the linear momentum by evaluating Eq. (C3).
In the ndSPANE procedure, we may get

ti =
√√√√k2

⊥ + 2Ip + p2
z + pz

c

[
k⊥ · A(tr ) − 1

2 A2(tr )
][

1 + pz

2c

(
3 + k⊥·Ḟ(tr )

F̃ 2(tr )

)]
F̃ 2(tr )

, (C5)

where k⊥ = p⊥ + (1 + pz/2c)A(tr ), with k⊥ · F(tr ) = 0.
Based on the exponential factor

2ImS = − 2Ipti − Re
∫ ti

0

[
p + A(tr + it ) + pz

2c
A(tr + it )

+ êz

2c

(
p · A(tr + it ) + 1

2
A2(tr + it )

)]2

dt

≈ − 2

3F̃

(
k2
⊥ + 2Ip +

{
pz

−
[

−k⊥ · A + 1
2 A2

2c
+2Ip + k2

⊥
4c

(
1+ k⊥ · Ḟ

3F̃ 2

)]}2) 3
2

,

(C6)

the preexponential prefactor∣∣S̈∣∣−αZ ≈
∣∣∣∣−i

[
1 + pz

2c

(
3 + k⊥ · Ḟ

F̃ 2

)]
tiF̃

2

∣∣∣∣−αZ

≈[(k2
⊥ + 2Ip

)
F̃ 2
]− αZ

2 exp

{
−αZ

2

pz

2c

(
3 + k⊥ · Ḟ

F̃ 2

)}

× exp

⎧⎪⎨⎪⎩−αZ

2

(
pz − −k⊥·A+ 1

2 A2

2c

)2

k2
⊥ + 2Ip

⎫⎪⎬⎪⎭, (C7)

and the Jacobian∣∣∣∣det
∂ (px, py, pz )

∂ (tr, k⊥, pz )

∣∣∣∣ ≈ |Fd + F (tr )|
(

1 + pz

2c

F (tr )

Fd + F (tr )

)
≈ |Fd + F (tr )| exp

{
pz

2c

F (tr )

Fd + F (tr )

}
,

(C8)

063105-10



SUBCYCLE-RESOLVED STRONG-FIELD TUNNELING … PHYSICAL REVIEW A 106, 063105 (2022)

the transition rate is written as

w̃ndSPANE ≈ |Fd + F (tr )|[(k2
⊥ + 2Ip)F̃ 2]−αZ /2

× exp

{
− 2

3F̃

[
k2
⊥+2Ip +

(
1 + αZ F̃

2(k2
⊥ + 2Ip)

3
2

)

× [pz − 〈pz(tr, k⊥)〉E2 ]2

] 3
2
}
, (C9)

where

〈pz(tr, k⊥)〉E2

= 2Ip + k2
⊥

4c

(
1 + k⊥ · Ḟ(tr )

3F̃ 2(tr )

)(
1 − 2αZ F̃ (tr )

(2Ip + k2
⊥)3/2

)

+ F̃ (tr )

4c
√

2Ip + k2
⊥

F (tr )

Fd + F (tr )
+−k⊥ · A + (1/2)A2

2c

≈ 2Ip + k2
⊥

4c

(
1 + k⊥ · Ḟ(tr )

3F 2(tr )

)(
1 − 2αZF (tr )

(2Ip)3/2

)
+ F (tr )

4c
√

2Ip

F (tr )

Fd + F (tr )
+ −k⊥ · A + (1/2)A2

2c
. (C10)

According to Heisenberg’s equations of motion for H ′
E2

[Eq. (C2)],

v⊥ = p⊥ + A + pz

c
A, (C11)

vz = pz + 1

2c
v · A + 1

2c

(
p · A + 1

2
A2

)
, (C12)

and the frame transformation,

rlab = r − z

2c
A − êz

2c
(r · A), (C13)

vlab = v − vz

2c
A + z

2c
F − êz

2c
(v · A) + êz

2c
(r · F ), (C14)

we can obtain the velocities in the laboratory frame:

v⊥,lab = p⊥ + A + vz

2c
A + z

2c
F, (C15)

vz,lab = pz + 1

2c

(
p · A + 1

2
A2

)
+ 1

2c
r · F. (C16)

At the tunnel exit, using z ≈ 0 and

r0 = Re
∫ tr

ts

v⊥dt = Im
∫ ti

0

(
1 + pz

2c

)
A(tr + it )dt

= −1

2
t2
i

(
1 + pz

2c

)
F(tr )

≈ −
(

1 + pz

2c

)k2
⊥ + 2Ip

2

F

F̃ 2
, (C17)

we have v⊥,lab = k⊥, hence the mean initial linear momentum
in the laboratory frame can be rewritten as

〈vz(tr, v⊥)〉E2 ≈2Ip + v2
⊥

4c

(
1 + v⊥ · Ḟ(tr )

3F 2(tr )

)(
1 − 2αZF (tr )

(2Ip)3/2

)
+ F (tr )

4c
√

2Ip

F (tr )

Fd + F (tr )
− 2Ip + v2

⊥
4c

F 2(tr )

F̃ 2(tr )
,

(C18)

where we have dropped the subscript “lab,” with the pondero-
motive energy gain �E ,

�EE2

c
≈ p2

⊥ − v2
⊥

4c
+ 2Ip + v2

⊥
4c

F 2(tr )

F̃ 2(tr )
, (C19)

and the corresponding asymptotic linear momentum:

〈pz(tr, v⊥)〉E2 = 〈vz(tr, v⊥)〉E2 + �EE2

c

=〈vz(tr, v⊥)〉E2+
p2

⊥ − v2
⊥

4c
+ 2Ip + v2

⊥
4c

F 2(tr )

F̃ 2(tr )
.

(C20)

The results of Eqs. (C18)–(C20) are summarized in Table I.

APPENDIX D: F1 TERM IN THE RADIATION GAUGE

The contribution of the field-linear term can be studied
using the Hamiltonian in the radiation gauge containing only
the F1 term:

HF1 = 1

2
[p + A(t )]2 + z

c
F(t ) · p + V (r). (D1)

We carry out a gauge transformation with gauge phase � =
−(z/c)[p · A(t )] to get a new Hamiltonian:

H ′
F1

= 1

2

[
p + A(t ) + êz

c
p · A(t )

]2

+ V
(

r − z

c
A(t )

)
, (D2)

where the corresponding saddle-point equation is written as

1

2

[
p + A(ts) + êz

c
p · A(ts)

]2

+ Ip = 0. (D3)

In the ndSPA method, we define

k⊥=
[

p⊥ +
(

1 − pz

c

)
ReA(ts)

]
· ImAy(ts)êx − ImAx(ts)êy√

[ImAx(ts)]2 + [ImAy(ts)]2

(D4)

to obtain the linear momentum by evaluating Eq. (D3).
In the ndSPANE procedure, we may get

ti =
√√√√√k2

⊥ + 2Ip + p2
z + 2pz

c [2k⊥ · A(tr ) − A2(tr )][
1 − pz

c
k⊥·Ḟ(tr )

F̃ 2(tr )

]
F̃ 2(tr )

, (D5)

where k⊥ = p⊥ + (1 − pz/c)A(tr ), with k⊥ · F(tr ) = 0.
Based on the exponential factor

2ImS = − 2Ipti − Re
∫ ti

0

[
p + A(tr + it )

+ êz

c
[p · A(tr + it )]

]2

dt

≈ − 2

3F̃

{
k2
⊥ + 2Ip +

[
pz

−
(−2k⊥ · A + A2

c
− 2Ip + k2

⊥
6c

k⊥ · Ḟ

F̃ 2

)]2} 3
2

,

(D6)
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the preexponential prefactor

|S̈|−αZ ≈
∣∣∣∣− i

(
1 − pz

c

k⊥ · Ḟ

F̃ 2

)
tiF̃

2

∣∣∣∣−αZ

≈ [(k2
⊥ + 2Ip)F̃ 2]−

αZ
2 exp

{
− αZ

2

pz

c

k⊥ · Ḟ

F̃ 2

}

× exp

{
− αZ

2

(pz − −2k⊥·A+A2

c )2

k2
⊥ + 2Ip

}
, (D7)

and the Jacobian∣∣∣∣det
∂ (px, py, pz )

∂ (tr, k⊥, pz )

∣∣∣∣ ≈ |Fd + F (tr )|
(

1 − pz

c

F (tr )

Fd + F (tr )

)
≈ |Fd + F (tr )| exp

{
− pz

c

F (tr )

Fd + F (tr )

}
,

(D8)

the transition rate is written as

w̃ndSPANE ≈ |Fd + F (tr )|[(k2
⊥ + 2Ip)F̃ 2]−αZ /2

× exp

{
− 2

3F̃

[
k2
⊥+2Ip+

(
1 + αZ F̃

2(k2
⊥ + 2Ip)

3
2

)

× [pz − 〈pz(tr, k⊥)〉F1 ]2

] 3
2
}
, (D9)

where

〈pz(tr, k⊥)〉F1 = − 2Ip + k2
⊥

6c

k⊥ · Ḟ

F̃ 2

[
1 − 2αZ F̃

(2Ip + k2
⊥)3/2

]

− F̃

2c
√

2Ip + k2
⊥

F

Fd + F
+ −2k⊥ · A + A2

c

≈ − 2Ip + k2
⊥

6c

k⊥ · Ḟ
F 2

[
1 − 2αZF

(2Ip)3/2

]
− F

2c
√

2Ip

F

Fd + F
+ −2k⊥ · A + A2

c
.

(D10)

According to Heisenberg’s equations of motion for H ′
F1

[Eq. (D2)],

v⊥ = p⊥ + A + pz

c
A, (D11)

vz = pz + 1

c
p · A, (D12)

and the frame transformation,

rlab = r − z

c
A, (D13)

vlab = v − vz

c
A + z

c
F, (D14)

we can obtain the velocities in the laboratory frame:

v⊥,lab = p⊥ + A + z

c
F, (D15)

vz,lab = pz + 1

c
p · A. (D16)

At the tunnel exit, using z ≈ 0 we have

v⊥,lab = p⊥ + A ≈ k⊥, (D17)

hence the mean initial linear momentum in the laboratory
frame can be rewritten as

〈vz(tr, v⊥)〉F1 ≈ − 2Ip + v2
⊥

6c

v⊥ · Ḟ(tr )

F 2(tr )

[
1 − 2αZF (tr )

(2Ip)3/2

]
− F (tr )

2c
√

2Ip

F (tr )

Fd + F (tr )
− v⊥ · A(tr )

c
, (D18)

where we have dropped the subscript “lab,” with the pondero-
motive energy gain �E ,

�EF1

c
= −v⊥ · A(tr ) + A2(tr )

c
, (D19)

and the corresponding asymptotic linear momentum:

〈pz(tr, v⊥)〉F1 = 〈vz(tr, v⊥)〉F1 + �EF1

c

= 〈vz(tr, v⊥)〉F1−
v⊥ · A(tr ) − A2(tr )

c
. (D20)

The results of Eqs. (D18)–(D20) are summarized in Table I.

APPENDIX E: F2 TERM IN THE RADIATION GAUGE

The contribution of the field-quadratic term can be studied
using the Hamiltonian in the radiation gauge containing only
the F2 term:

HF2 = 1

2
[p + A(t )]2 + z

c
A(t ) · F(t ) + V (r). (E1)

We carry out a gauge transformation with gauge phase � =
−(z/2c)A2(t ) to get a new Hamiltonian:

H ′
F2

= 1

2

[
p + A(t ) + êz

2c
A2(t )

]2

+ V (r), (E2)

where the corresponding saddle-point equation is written as

1

2

[
p + A(ts) + êz

2c
A2(ts)

]2

+ Ip = 0. (E3)

In the ndSPA method, we define

k⊥=
[

p⊥ +
(

1 + pz

c

)
ReA(ts)

]
· ImAy(ts)êx − ImAx(ts)êy√

[ImAx(ts)]2 + [ImAy(ts)
]2

(E4)

to obtain the linear momentum by evaluating Eq. (E3).
In the ndSPANE procedure, we may get

ti =
√√√√√k2

⊥ + 2Ip + p2
z + 2pz

c

[−k⊥ · A(tr ) + 1
2 A2(tr )

][
1 + pz

c

(
1 + k⊥·Ḟ(tr )

F̃ 2(tr )

)]
F̃ 2(tr )

, (E5)
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where k⊥ = p⊥ + (1 + pz/c)A(tr ), with k⊥ · F(tr ) = 0.
Based on the exponential factor

2ImS= − 2Ipti−Re
∫ ti

0

[
p+A(tr + it )+ êz

2c
A2(tr + it )

]2

dt

≈ − 2

3F̃

(
k2
⊥ + 2Ip +

{
pz

−
[

k⊥ · A − 1
2 A2

c
+ 2Ip + k2

⊥
6c

(
1 + k⊥ · Ḟ

F̃ 2

)]}2) 3
2

,

(E6)

the preexponential prefactor

|S̈|−αZ ≈
∣∣∣∣− i

[
1 + pz

c

(
1 + k⊥ · Ḟ

F̃ 2

)]
tiF̃

2

∣∣∣∣−αZ

≈[(k2
⊥ + 2Ip)F̃ 2]−

αZ
2 exp

{
− αZ

2

pz

c

(
1 + k⊥ · Ḟ

F̃ 2

)}

× exp

{
− αZ

2

(
pz − k⊥·A− 1

2 A2

c

)2

k2
⊥ + 2Ip

}
, (E7)

and the Jacobian∣∣∣∣det
∂ (px, py, pz )

∂ (tr, k⊥, pz )

∣∣∣∣ ≈ |Fd + F (tr )|
(

1 + pz

c

F (tr )

Fd + F (tr )

)
≈ |Fd + F (tr )| exp

{
pz

c

F (tr )

Fd + F (tr )

}
,

(E8)

the transition rate is written as

w̃ndSPANE ≈|Fd + F (tr )|[(k2
⊥ + 2Ip

)
F̃ 2
]−αZ /2

× exp

{
− 2

3F̃

[
k2
⊥ + 2Ip+

(
1 + αZ F̃

2(k2
⊥ + 2Ip)

3
2

)

× [pz − 〈pz(tr, k⊥)〉F2 ]2
] 3

2

}
, (E9)

where

〈pz(tr, k⊥)〉F2 =2Ip + k2
⊥

6c

(
1 + k⊥ · Ḟ

F̃ 2

)[
1 − 2αZ F̃

(2Ip + k2
⊥)3/2

]

+ F̃

2c
√

2Ip + k2
⊥

F

Fd + F
+ k⊥ · A − (1/2)A2

c

≈2Ip + k2
⊥

6c

(
1 + k⊥ · Ḟ

F 2

)[
1 − 2αZF

(2Ip)3/2

]
+ F

2c
√

2Ip

F

Fd + F
+ k⊥ · A − (1/2)A2

c
.

(E10)

TABLE II. Relationship between the initial momentum v⊥ and
the asymptotic momentum p⊥ in the polarization plane under the
individual nondipole Hamiltonian terms.

Terms v⊥,lab

Total p⊥ + A(tr )
M1 p⊥ + (1 − pz

2c )A(tr )
E2 p⊥ + (1 + pz

2c )A(tr )
F1 p⊥ + A(tr )
F2 p⊥ + A(tr )

Note that there is no translation to the origin in the
Hamiltonian in the present case. According to Heisenberg’s
equations of motion for H ′

F2
[Eq. (E2)],

v⊥,lab = p⊥ + A ≈ k⊥, (E11)

vz,lab = pz + 1

2c
A2, (E12)

hence the mean initial linear momentum in the laboratory
frame can be rewritten as

〈vz(tr, v⊥)〉F2 ≈2Ip + v2
⊥

6c

(
1 + v⊥ · Ḟ(tr )

F 2(tr )

)[
1 − 2αZF (tr )

(2Ip)3/2

]
+ F (tr )

2c
√

2Ip

F (tr )

Fd + F (tr )
+ v⊥ · A(tr )

c
, (E13)

where we have dropped the subscript “lab,” with the pondero-
motive energy gain �E ,

�EF2

c
= − 1

2c
A2(tr ), (E14)

and the corresponding asymptotic linear momentum:

〈pz(tr, v⊥)〉F2 = 〈vz(tr, v⊥)〉F2 + �EF2

c

= 〈vz(tr, v⊥)〉F2 − 1

2c
A2(tr ). (E15)

The results of Eqs. (E13)–(E15) are summarized in Table I.
From Table I, it is clear that the initial linear momentum

〈vz(tr, v⊥)〉 can be decomposed into five contributions: the
main contribution due to the exponential factor representing
the underbarrier motion including the nondipole nonadiabatic
coupling, the preexponential prefactor, the reduction factor
caused by reducing the full nondipole Hamiltonian, the Ja-
cobian factor introduced by the coordinate transformation
(px, py, pz ) → (tr, k⊥, pz ), and the frame transformation fac-
tor mapping the nondipole frame to the laboratory frame.
〈vz〉 is found in all cases to be modulated by the transverse
tunneling momentum v2

⊥, which displays a subcycle variation
due to nonadiabatic tunneling effects. Therefore, the inter-
play between nonadiabatic and nondipole tunneling effects
results in a subcycle modulation of the linear momentum
transfer at the tunnel exit as well of the asymptotic momentum
transfer. The preexponential prefactor, arising partly from the
nondipole transition element, is the same for all approximate
Hamiltonians. Note that the reduction factor arises from sep-
aration of nondipole terms and appears only in the reduced
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FIG. 5. (a) Subcycle time-resolved linear momentum at the tun-
nel exit 〈vz(tr )〉 and (b) asymptotic linear momentum 〈pz(φp)〉
induced by the M1 term (red curves) and the E2 term (purple curves)
calculated by ndSPA with αZ = 1 (solid curves) and αZ = 0 (dashed
curves).

Hamiltonians. Furthermore, the Jacobian and the frame trans-
formations provide additive corrections only for these reduced
Hamiltonians.

We note that when we treat different nondipole Hamilto-
nians different relationships between the initial and asymp-
totic transverse momentum arise, which are summarized in
Table II.

APPENDIX F: INFLUENCE OF THE PREFACTOR

To illustrate the influence of the preexponential prefactor
on the linear momentum transfer, we use the ndSPA method
to calculate the cases with (αZ = 1) and without (αZ = 0) the
prefactor term in the ionization rate [Eq. (14)], respectively.
As shown in Fig. 5, when the prefactor term is neglected
(αZ = 0), the linear momentum transfer 〈vz〉 and 〈pz〉 in-
duced by the M1 term will be slightly reduced, while that
of the E2 term will be slightly increased. This can also be
concluded from the analytic expressions (see Table I). For
example, the positive influence of the preexponential prefactor
in the M1 term results from its multiplication with the negative
underbarrier term. Certainly, whether or not the prefactor is
considered does not change the conclusions of the present
paper.
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