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Second-harmonic generation of a short XUV pulse interacting with an IR-laser-dressed atom
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The nonlinear response of an atomic system interacting with short extreme ultraviolet (XUV) and infrared
(IR) pulses is considered within the adiabatic approach (for an IR field) and the perturbation theory (for an XUV
pulse). The second-order perturbation theory in the XUV field is developed for the IR-dressed atom, and the
laser-induced generation of a pulse with a doubled carrier XUV frequency is analyzed. We study the yield of
harmonics in the frequency band of the generated doubled frequency XUV pulse as a function of the time delay
between initial XUV and IR pulses. Our analytical and numerical results show that this dependence carries the
time dependence of the intense IR pulse and can be utilized to retrieve the waveform of the IR pulse.
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I. INTRODUCTION

Second-harmonic generation (SHG) is the starting point for
the golden era of nonlinear optics beginning in the 1960 and
1970s [1]. This fundamental nonlinear effect was discovered
within the nonstationary perturbation theory and the formal-
ism of nonlinear susceptibilities [1,2]. The SHG process is
understood as doubling of the fundamental frequency of the
pump field and can be described in terms of second-order
nonlinear susceptibility. Mathematically, this susceptibility is
presented by a third-rank tensor, so that the nonlinear process
is forbidden in the dipole approximation for a system with
spatial inversion symmetry (e.g., it cannot be observed for
unpolarized free atoms) [3].

Initially, the harmonic generation process in nonlinear op-
tics was discovered using an intense laser in the visible light
range [1,4]; however, recent advances in the generation of
intense XUV pulses open up new frontiers for nonlinear optics
in the XUV range [5–7]. For example, SHG of the XUV field
was observed in Refs. [8,9], the two-photon absorption was
detected in Ref. [10], the four-wave mixing was experimen-
tally studied in Refs. [11–13], etc. Some nonlinear effects in
the XUV range are utilized for attosecond pulse metrology
[14], nonlinear polarization-resolved spectroscopy [15], and
nonlinear spectroscopy for solid-state purposes [16]. At the
microscopic level, the effects of nonlinear optics in the XUV
range can be described in terms of perturbation theory, which
would make it possible to take into account many-electron
effects. Indeed, for some frequencies of the XUV field, the
multielectron dynamics may be induced by the core excitation
dynamics, e.g., the excitation of an autoionizing state. More-
over, for the case of short few-cycle XUV pulses [17–20] (the
waveform of which may be crucial for XUV-induced nonlin-
ear processes), the photon concept in light-matter interaction
becomes inconsistent (due to the large frequency bandwidth
of the pulse), and the proper time-dependent formalism must
be used.

A wide range of practical applications was proposed by
considering the combined interaction of XUV and IR fields
with atoms and solids. The idea of using XUV radiation (or x
rays) to probe the optical interaction of the IR field with atoms
[21,22] was proposed in the 1970s, while it was fully realized
in the 21st century by probing optically induced charges in
diamond [23]. High-order harmonic generation (HHG) opens
a new avenue in the XUV technology by producing bright, co-
herent, and extremely short attosecond pulses [18–20,24,25].
With these pulses, it becomes possible to probe, steer, and
control ultrafast phenomena in atoms, molecules, and solids
[26–31], leading to a new era of attosecond science. The
unique duration of an attosecond pulse makes its interaction
with matter specifically dependent on the waveform, therefore
determining the time dependence of such pulse (attosecond
pulse metrology) is the most important task of attosecond
science [32,33]. Most methods for attosecond pulse metrol-
ogy utilize specific features of the ionization of an atomic
system in XUV and IR fields with subsequent application
of mathematical methods to extract the relative phase and
magnitude of the Fourier components of an attosecond pulse
(see the overview of these methods in Refs. [32,33]). Re-
cently, HHG-based all-optical methods were also suggested
to retrieve the waveform of an attosecond pulse [34–37]. The
attosecond pulse can also be used as a tool for visualization of
a short IR pulse within the physically transparent concept of
the streak camera [38–42], which consists in the following: an
atomic electron is ejected into the continuum by XUV-pulse-
induced ionization in a much shorter time than the IR-field
duration, followed by scanning of the photoelectron dynamics
by changing the time delay between IR and XUV pulses.
The recorded dependence of photoelectrons on the time delay
carries information about the IR field and the XUV pulse itself
[32,33].

In this paper, we propose an alternative to the streak camera
for detecting an IR field based on the nonlinear properties of
media in the XUV range and the difference in time scales of
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the interaction of an atomic target with IR and XUV pulses.
As we mentioned above, SHG is forbidden for a system with
central symmetry but becomes possible for a system with
axial symmetry [3], so, for instance, a centrally symmetric
system subjected to a static electric field can generate the
second harmonic. Since an attosecond pulse interacts with
an atomic system on a time scale much shorter than the
period of the IR field, the nonlinear response to the XUV
pulse at the second-harmonic frequency can be considered
for the instant magnitude of the IR field taken at the moment
corresponding to the interaction of the XUV pulse with the
atomic system. At this moment, the XUV-pulse envelope has
the maximum defining the time delay between XUV and IR
pulses. Assuming that even for an intense IR field the SHG
amplitude of the XUV field is a linear function of the IR-field
strength, the time-delay dependence of the second-harmonic
yield replicates the time dependence of the IR-field intensity,
providing a way to retrieve the waveform of an intense IR
pulse.

The purpose of this paper is twofold. First, to the best of
our knowledge, there is no self-consistent perturbation theory
taking into account high-order corrections for the interaction
of an IR-dressed atom with an XUV pulse. In this paper,
within the suggested adiabatic approach [43], we develop
the perturbation theory in XUV strength. Being interested
in the SHG process, we restrict ourselves to considering the
second-order corrections; however, our perturbation approach
for the IR-dressed atom can be straightforwardly extended to
higher orders of the perturbation theory. Second, within the
developed perturbation theory, we analyze SHG and show that
the described above scheme of retrieving the waveform of an
intense IR pulse (alternative to the streak camera method) is
robust and can be used.

The paper is organized as follows: in Sec. II we provide
a brief overview of the adiabatic approach and derive the
second-order corrections of the perturbation theory in the
XUV field for the IR-dressed atom with further application
to SHG of the XUV field. In Sec. III we discuss our numerical
results obtained by solving the time-dependent Schrödinger
equation (TDSE). In Sec. IV we summarize our results. In
Appendices A and B we present mathematical details of our
derivations. Atomic units (a.u.) are used throughout this paper
unless specified otherwise.

II. THEORETICAL BACKGROUND

The interaction of IR and XUV pulses with an atomic
system is realized predominantly on the different time scales,
which are determined by the carrier frequencies of the cor-
responding pulses (ωIR and ωXUV for IR and XUV pulses,
respectively): ωIR/|E0| � 1 and ωXUV/|E0| > 1, where E0 is
the binding energy of an atomic level. For both pulses, the
peak field strengths (FIR and FXUV) are considered to be lower
than the atomic field strength (Fat = κ3, where κ = √

2|E0|),
that makes it possible to apply the adiabatic approach [44–46]
for the IR field and nonstationary perturbation theory for the
XUV pulse [47]. For synchronized IR and XUV pulses, the
adiabatic wave functions in the IR field can be used to develop
a formal perturbation theory in the interaction with the XUV
field [43].

In the adiabatic limit, the atomic state in the IR field can be
presented as the sum of two terms:

|�IR〉 ≈ ∣∣� (0)
IR

〉 + ∣∣� (r)
IR

〉
, (1)

where |� (0)
IR 〉 ≡ �

(0)
IR (r, t ) and |� (r)

IR 〉 ≡ �
(r)
IR (r, t ) describe the

slow and rapidly varying parts of the time-dependent wave
function, respectively. The state |� (0)

IR 〉 can be expressed in
terms of the quasistationary state, |�dc〉 ≡ �dc(r,F ), in the
dc field with strength F = |F IR(t )| [44–46]:

∣∣� (0)
IR

〉 = e−i
∫ t

ε(t ′ )dt ′ |�dc〉, ε(t ) = E (F ) − i

2
�(F ), (2)

where ε(t ) is the complex energy of the quasistationary state
and F IR(t ) is the electric component of the IR field. The real
part of ε is the position of the decaying level, while � gives its
dc-induced width. The rapidly varying part |� (r)

IR 〉 describes
the effects of the electron rescattering on the atomic core and
can be presented as an electron wave packet composed from
the laser-field-free continuum states [43,45,46]. It is worth
noting that the magnitude of |� (r)

IR 〉 relative to |� (0)
IR 〉 is deter-

mined by the parameter βIR = γ
3/2
K (FIR/Fat )e−Fat/(3FIR ) � 1,

where γK = ωIRκ/FIR is the Keldysh parameter.
In contrast to the IR field, the interaction of an atom

with the XUV field is governed by the parameter βXUV =
κFXUV/ω2

XUV � 1 [48]. The perturbation expansion of the
exact atomic state |�〉 ≡ �(r, t ) subjected to both IR and
XUV pulses in βXUV was discussed in Ref. [43], where the
adiabatic wave functions (1) were utilized:

|�〉 = |�IR〉 + |�1〉 + |�2〉, (3)

where |�1〉 and |�2〉 are the first- and second-order cor-
rections in βXUV. The functions |�1〉 and |�2〉 can also be
partitioned into slow and rapid parts. The explicit form for
|�1〉 has been discussed in Ref. [43], so we discuss this term
in the following subsection briefly. Moreover, in this paper,
we consider only the slow part of the term |�2〉. Indeed, the
rapid part of |�2〉 either contributes quite far from the spectral
range of the generated doubled frequency XUV pulse or is
sufficiently suppressed since it is governed by the product
of the perturbation factors: β2

XUVβIR. We note that we use
the adiabatic approximation, the accuracy of which is limited
by terms ∝ βIR, so that our theory is linear in βIR, while in
principle it may contain any terms ∝ βn

XUV, where n is an
integer (n � 0).

A. The perturbation theory in the XUV field: Expressions
for |�1〉 and |�2〉

The first-order correction in the XUV field (|�1〉) was
deduced and analyzed in Ref. [43]. It can be presented as a
sum of slow, |� (s)

1 〉, and rapid, |� (r)
1 〉, terms:

|�1〉 = ∣∣� (s)
1

〉 + ∣∣� (r)
1

〉
, (4)

each term of which will be discussed in turn.
The slow part |� (s)

1 〉 can be expressed in terms of an atomic
Green’s function (see Appendix A for details):∣∣� (s)

1

〉 = G−1V
(−)

XUV

∣∣� (0)
IR

〉 + G1V
(+)

XUV

∣∣� (0)
IR

〉
, (5)

where Gn ≡ Gε(t )+nωXUV (r, r′) is the stationary Green’s func-
tion of an atom in the dc field with strength F , and V (±)

XUV
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are “positive” and “negative” parts of the interaction operator
VXUV(t ):

VXUV(t ) = V (+)
XUV(t ) + V (−)

XUV(t ), V (±)
XUV = zF (±)

XUV(t ),

F (±)
XUV(t ) = FXUV

2
fXUV(t − τ )e∓iωXUV(t−τ ),

where fXUV(t ) is the envelope of the XUV pulse with maxi-
mum at t = 0 and τ is the time delay between IR and XUV
pulses.

The rapid part |� (r)
1 〉 represents the sum of two terms,

which are associated with two different physical channels
induced by the XUV field: the first one is led by the XUV-
induced ionization and may contribute in the range of the
IR-induced plateau of HHG spectra, while the second one
describes the XUV-assisted recombination and contributes
far beyond the cutoff of the IR-induced plateau (� > |E0| +
0.8F 2

IR/ω2
IR, where � is the harmonic frequency). The explicit

form of these terms can be found in Ref. [43] [see Eq. (57)
therein].

The slow part of the wave function |�2〉 is given by the
expression (see Appendix A for details)

|�2〉 = {
G2V

(+)
XUVG1V

(+)
XUV + G−2V

(−)
XUVG−1V

(−)
XUV

+ G′V (+)
XUVG−1V

(−)
XUV + G′V (−)

XUVG1V
(+)

XUV

}∣∣� (0)
IR

〉
, (6)

where G′ ≡ G′
ε(t )(r, r′) is the reduced stationary Green’s func-

tion of an atom in the dc field with strength F [see the
definition in Eq. (A5) of Appendix A]. It is worth noting that
the slow parts of |�〉 [see Eqs. (5) and (6)] coincide with the
formal perturbation expansion of the wave function in a weak
laser field [49,50].

B. The HHG amplitude in the synchronized IR and XUV pulses

The amplitude of photon emission by an atomic system
subjected to the intense IR and XUV pulses may be ex-
pressed in terms of the dual dipole moment, D(t ) (see e.g.,
Refs. [51,52]):

A(�) =
∫

D(t )ei�t dt, D(t ) = 〈�̃|z|�〉, (7)

where |�̃〉 ≡ �̃(r, t ) is the dual wave function, which is found
from |�〉 by the complex conjugation and time reversing of all
time-odd quantities. The harmonic yield is given by the square
of the amplitude A(�):

Y = �4|A(�)|2/(4π2c3), (8)

where c is the speed of light. Within expression (3) the calcu-
lation of D(t ) leads to the result

D(t ) = DIR(t ) + D1(t ) + D2(t ), (9)

where DIR(t ) is the dual dipole moment induced by the IR
field in the absence of the XUV pulse [43], and D1(t ) and
D2(t ) are the first- and second-order terms of the perturbation
theory in the interaction with the XUV field:

DIR(t ) = 〈�̃IR|z|�IR〉, (10a)

D1(t ) = 〈�̃IR|z|�1〉 + 〈�̃1|z|�IR〉, (10b)

D2(t ) = 〈�̃IR|z|�2〉 + 〈�̃2|z|�IR〉 + 〈�̃1|z|�1〉, (10c)

where |�̃IR〉, |�̃1〉, and |�̃2〉 are the dual counterparts of |�IR〉,
|�1〉, and |�2〉, respectively. The partition of components
|�IR〉, |�1〉, and |�2〉 into slow and rapid parts [see, e.g.,
Eqs. (1) and (4)] results in the corresponding separation of
DIR(t ), D1(t ), and D2(t ) into slow and rapid components.
Indeed, the slow part of DIR(t ), obtained from (10a) by replac-
ing �IR → �

(0)
IR , describes the laser-induced generation of the

secondary radiation with � � |E0|, while the rapid part of
DIR(t ) describes the high-energy IR-induced plateau with the
cutoff position at |E0| + 0.8F 2

IR/ω2
IR (see details in Sec. IV.A.1

in Ref. [43]).
The slow part of D1(t ) [D(s)

1 (t )] was recently discussed
in Ref. [53]. It can be expressed in terms of the dynamic
polarizability of an atom in the dc field:

D(s)
1 (t ) = P (t )[F (+)

XUV(t ) + F (−)
XUV(t )]χ1(ωXUV,F ),

χ1(ωXUV,F ) = 〈�̃dc|zG1z′|�dc〉 + 〈�̃dc|zG−1z′|�dc〉, (11)

where |�̃dc〉 = [|�dc〉]∗ (see details in Refs. [51,54]) and the
factor P (t ) = e− ∫ t

−∞ �(F )dt is introduced to describe depletion
effects. Note that in the limit F → 0 the susceptibility χ1

tends to the dynamic polarizability of a free atom.
The rapid part of D1(t ) describes the generation of the

high-energy photon through the XUV-ionization channel
[55–60] and XUV-assisted recombination channel [36,61–63]
(see also discussion of these channels in Ref. [43]). We should
note that the rapid parts of DIR(t ) and D1(t ) can be calculated
with good accuracy by applying an additional approximation
consisting in replacing the Green’s functions Gn and G′ and
the wave function �

(0)
IR by their atomic counterparts, i.e., the

field-free atomic Green’s functions and the unperturbed initial
wave function.

The rapid part of the second-order term D2(t ) describes
additional channels for the high-energy photon generation and
requires special consideration. In this paper, we consider only
the slow part of D2(t ), which will be sufficient for further
applications. Substituting in Eq. (10c) the explicit expressions
for |�2〉 from Eq. (6) and |�1〉 from Eq. (5) we obtain D2(t )
as a sum of three terms:

D(2)
XUV(t ) = P (t ){[F (+)

XUV(t )]2χ2(ωXUV,F )

+ [F (−)
XUV(t )]2χ2(−ωXUV,F )

+ F (+)
XUV(t )F (−)

XUV(t )χ̃2(ωXUV,F )}, (12)

where

χ2(ωXUV,F ) = 〈�̃dc|z[G−1z′G−2 + G−1z′G1

+ G2z′G1]z′′|�dc〉, (13a)

χ̃2(ωXUV,F ) = 〈�̃dc|z[G−1z′G−1 + G1z′G1

+ G′z′G−1 + G′z′G1 + G1z′G′

+ G−1z′G′]z′′|�dc〉. (13b)

The first term in Eq. (12) is responsible for the generation
of the XUV pulse with the doubled carrier frequency 2ωXUV,
while the third term describes the rectification process of the
XUV pulse in the presence of the IR field. For further analysis,
we focus our paper on the generation of the XUV pulse with
the doubled carrier frequency.

063101-3



A. A. ROMANOV et al. PHYSICAL REVIEW A 106, 063101 (2022)

The nonlinear susceptibility χ2 is a component of the third-
rank tensor, so that it vanishes for an isotropic system in the
absence of an IR pulse. For the weak IR pulse, the first term of
the perturbative expansion of χ2 in series over FIR(t ) is linear
in FIR(t ), so that it is more convenient to present χ2 in the form

χ2(ωXUV,F ) = FIR(t )γ (ωXUV;F ), (14)

where the complex coefficient γ slowly varies in time and can
be approximated by a constant. Note, in the limit F → 0, the
atomic parameter γ can be expressed in terms of the third-
order susceptibility of a free atom.

Within expansion (9), we obtain the amplitude (7):

A(�) = AIR(�) + A1(�) + A2(�), (15)

where AIR(�) is the HHG amplitude in the IR pulse, and
A1(�) and A2(�) are the amplitudes of the first and second
perturbation order in FXUV. The quasiclassical expressions
for the amplitudes AIR(�) and A1(�) can be found in
Refs. [43,53], while the amplitude A2(�) is obtained using
Eqs. (12) and (14) and assuming that the XUV pulse is much
shorter than the period of FIR(t ), so that the IR-field contribu-
tion can be taken at the instant t = τ :

A2(�) = eiφ2(τ )P (τ )F2(� − 2ωXUV)

× FIR(τ )γ (ωXUV; |FIR(τ )|),

F2(ω) =
(

FXUV

2

)2 ∫ ∞

−∞
f 2
XUV(t )eiωt dt, (16)

where φ2(τ ) = �τ + 2φXUV. Equation (16) explicitly shows
that the amplitude of generated radiation at � ≈ 2ωXUV car-
ries information about the waveform of the IR pulse. For a
low-frequency IR pulse with moderate intensity, the depletion
factor P (τ ) and the susceptibility γ (ωXUV; |FIR(τ )|) are fairly
smooth over the interval of the IR-pulse duration and can be
considered as constants. Depending on the laser parameters
of the IR pulse, two amplitudes AIR(�) and A1(�) may
interfere with amplitude A2(�) (caused by � overlapping of
these amplitudes) by leading a specific interference pattern
in the frequency range of the generated doubled frequency
XUV short pulse. In the absence of such � overlapping of the
corresponding amplitudes, the harmonic yield in the vicinity
of � = 2ωXUV is given by the square of the amplitude A2(�):

Y ≡ Y2 = P2(τ )|F2γ |2
4π2c3

F 2
IR(τ ), (17)

where γ ≡ γ (ωXUV; |FIR(τ )|) and F2 ≡ F2(� − 2ωXUV).
The explicit dependence of Y in Eq. (17) on the F 2

IR(τ ) allows
us to utilize the time-delay measurements of harmonics with
frequencies near � = 2ωXUV for retrieving the waveform of
the IR pulse. Indeed, according to Eq. (17) the time-delay
dependence of the harmonic yield replicates the temporal
evolution of the IR-pulse intensity.

The second-order amplitude A2 in the vicinity of � =
2ωXUV may interfere with two other amplitudes from Eq. (15);
however, interference with AIR is more unlikely because of
the large difference in magnitudes of A2 and AIR. The magni-
tude of AIR is given by the parameter βIR, while the amplitude
A2 has a smallness of β2

XUV. For actual laser parameters of the
IR and XUV pulses, β2

XUV is much smaller than βIR, so that

the interference between AIR and A2 is suppressed. The inter-
ference between the amplitudes A1 and A2 may be realized
through the XUV-assisted recombination channel [36,61–63],
the contribution of which is of the order of βIRβXUV and can be
commensurable with the contribution of A2 ∝ β2

XUV. The con-
tribution of other channels determining A1 ∝ βXUV and AIR is
negligible since they do not energetically (spectrally) overlap
with A2 near � ≈ 2ωXUV. In accordance with the notes above,
we approximate the expression for HHG amplitude (15) near
� = 2ωXUV by the expression

A(�) ≈ Ã1(�) + A2(�), (18)

where Ã1(�) is the HHG amplitude corresponding to the
XUV-assisted recombination channel [36,63]. The amplitude
Ã1(�) in Eq. (18) can be parametrized in terms of partial
amplitudes Ã(1)

j associated with closed classical trajectories
of a free electron in the IR field (see Appendix B for details):

Ã1(�) = FXUV

∑
j

fXUV(t j − τ )Ã(1)
j , (19)

where t j is the time of recombination instant correspond-
ing to the jth trajectory [cf. Eq. (B1)]. As it follows from
Refs. [36,37,43] (see also Appendix B) the partial amplitude
Ã(1)

j can be expressed in terms of two factors, which are (i) the

laser-induced parameter a(IR)
j determining the HHG amplitude

in the IR field and (ii) the XUV-assisted recombination ampli-
tude, f (rec)

1 :

Ã(1)
j = a(IR)

j (� − ωXUV) f (rec)
1 . (20)

The HHG yield near � = 2ωXUV is given by the square of
the absolute value of the amplitude (18):

Y = Y2 + Yint + Ỹ1,

Ỹ1 = �4|Ã1(�)|2/(4π2c3),

Yint = 2Re(Ã1(�)A∗
2 ). (21)

Using parametrizations for A2 [see Eq. (16)] and Ã1 [see
Eq. (19)] we present the interference term Yint in the form

Yint = FIR(τ )FXUV

∑
j

fXUV(t j − τ )c j,

c j = 2P (τ )F2(� − 2ωXUV)Re(Ã(1)
j e−iφ2(τ )γ ∗). (22)

Since in our analysis we assume that the duration of the XUV
pulse is shorter than the period of the IR field (2π/ωIR),
different j terms in Eq. (22) do not interfere with each other
so that for given τ only a single term with corresponding
recombination time contributes.1

At the end of this section, let us emphasize the significance
of the developed general theory of SHG for the IR-dressed
atom. We expressed the SHG amplitude in terms of three-
photon matrix elements, the key ingredients of which are
the wave function and Green’s function of an atom in the
dc field. For real atoms, these quantities are unknown in

1We assume ωXUV to be sufficiently less than the cutoff energy of
the IR-induced plateau, which makes it possible to consider different
recombination times well separated.
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analytical forms, and their numerical calculations (as well as
calculations of matrix elements themselves) are complicated
problems comparable with the direct numerical integration
of the TDSE. For this reason, we use our theory to provide
the physical explanation and interpretation of the numeri-
cal TDSE results (see the next section) obtained for fixed
laser parameters. Moreover, our general theory clarifies the
fundamental structure of the SHG amplitude in terms of
laser-induced and atomic parameters and gives a transparent
physical picture of the different channels’ interference for the
considered nonlinear process.

III. NUMERICAL RESULTS AND DISCUSSION

We check the validity of our theoretical results for HHG
yield in the region of the second XUV harmonic, � ≈ 2ωXUV,
by numerical integration of the TDSE in a single-active
electron approximation for the argon atom. The effective
one-electron potential is found by solving the stationary
Kohn-Sham equations [64]. For numerical analysis, we use
the sin2 and the Gaussian shape for the envelopes of the IR
and XUV pulses, respectively:

Fα (t ) = Fα fα (t ) cos(ωαt ), α = {XUV, IR}, (23a)

fIR(t ) =
{

sin2(πt/τIR), 0 < t < τIR,

0, otherwise,
(23b)

fXUV(t ) = exp
[−2(ln 2)t2/τ 2

XUV

]
, (23c)

where Fα , ωα , and fα (t ) are the peak strength, carrier fre-
quency, and envelope of the corresponding pulse. The peak
intensities for IR and XUV pulses are chosen to be the
same: 1014 W/cm2 (the corresponding peak strength is FIR =
FXUV = 0.0534 a.u.); the carrier frequencies of the IR pulse
ωIR = 0.038 and 0.057 a.u. correspond to the wavelengths
λIR = 1.2 and 0.8 μm, the carrier frequency of the XUV
pulse is 40 eV (ωXUV = 1.47 a.u.), the duration of the IR
pulse is τIR = 12 fs (the three-cycle pulse), and the duration
of the XUV pulse at half maximum of the intensity varies in
the range τXUV = 0.4–1.6 fs. We solve the TDSE within the
method described in Ref. [64] by expanding the wave func-
tion in spherical harmonics with maximum orbital momentum
lmax = 256. We use a nonuniform radial grid, which becomes
denser towards the nucleus with the radial step smoothly
varied in the range [10−3, 0.1] a.u. The spatial grid has the
size Rmax = rmax + Rabs, where rmax = 100 a.u. is the size of
the simulation region and Rabs = 50 a.u. is the width of the
absorbing layer. The time step is �t = 0.02 a.u. The HHG
spectrum is calculated as the squared Fourier spectrum of the
dipole acceleration (see details in Ref. [64]). In Fig. 1(a) we
present HHG spectra for argon, calculated for three time de-
lays, for λIR = 1.2 μm, and τXUV = 400 as. The shape of the
HHG spectra represents well-pronounced wide peaks, which
are associated with the Rayleigh (elastic) scattering of the
XUV pulse [53] (� ≈ ωXUV) and the second and third XUV
harmonics generation (� ≈ 2ωXUV and 3ωXUV, respectively).
The peaks at � ≈ ωXUV and 3ωXUV are insensitive to the time

FIG. 1. (a) HHG spectra for the argon atom in IR and XUV
pulses for λIR = 1.2 μm, τIR = 12 fs, ωXUV = 40 eV, τXUV = 400
as; IR and XUV intensities are 1014 W/cm2. Solid black line,
τ = 0.5τIR; dashed red line, τ = 0.72τIR; dot-dashed blue line,
τ = τIR. Vertical dotted lines mark positions of � = ωXUV, � =
2ωXUV, and � = 3ωXUV. Solid red lines show the cutoff position of
the XUV-assisted recombination channel [≈ |E0| + ωXUV + 3.17Up,
Up = F 2

IR/(4ω2
IR)]. (b) Color-coded Gabor transform of the dipole ac-

celeration producing HHG spectra for the argon atom in the IR field
(FXUV = 0). Countered areas show contribution of the XUV-assisted
recombination channel (see text for details). (c) Color-coded Gabor
transform of the dipole acceleration producing HHG spectra for the
argon atom in IR and XUV fields for time delay τ = 0.72τIR. Solid
black lines show the time profile of F 2

IR(t ); solid (dashed) orange lines
indicate the time dependence of classical gained electron energy in
the IR field (shifted by ωXUV).

delay between the XUV and IR field since their appearance
does not depend on the presence of the IR field. The HHG
yield near the second XUV harmonic strongly depends on the
time delay showing the well-pronounced peak at τ = 0.5τIR.
At τ = 0.72τIR, this peak decreases, while at τ = τIR any peak
structure disappears. All these features for the HHG spectra
in the vicinity of 2ωXUV are described within our theoretical
analysis. For τ = τIR [as well as for τ = 0, providing the same
results as for τ = τIR in Fig. 1(a)], the IR field is zero, which
leads to zero yields Ỹ1 and Y2. Indeed, Ỹ1 is zero due to the
absence of the recombination times t j close to τIR, so that
the values of the XUV envelope fXUV(t j − τ ) [involved in
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Eq. (19) for Ỹ1] are close to zero, while the yield Y2 vanishes
for FIR = 0 [see Eq. (17)]. For τ = 0.5τIR, the maximum of
the XUV pulse is tuned to the maximum of the IR pulse,
ensuring the largest contribution of Y2 to the total HHG yield
in Eq. (21), while the contribution of Ỹ1 for this time delay
is suppressed. In this case, the interference between two am-
plitudes Ã1 and A2 is negligible. The suppression of Ã1 is
caused by two circumstances: (i) the recombination times t j

are placed near zeros of the IR field and (ii) the duration of
the XUV pulse is much less than the period of the IR field, so
that in Eq. (19) fXUV(t j − τ ) ≈ 0 for any subscript j.

The interference between Ã1 and A2 can be explained
by considering the Gabor transform (which is a convenient
tool of the time-frequency analysis) of the dipole accelera-
tion determining the HHG amplitude in IR and XUV pulses
[see Figs. 1(b)–1(c)]. Indeed, the Gabor transform encloses
information about mostly contributed classical closed electron
trajectories, showing them as a distribution around the time
dependence of classical gained electron energy at the recom-
bination event [see solid orange lines in Figs. 1(b)–1(c)].
We note that these closed classical trajectories determine
laser-induced factors a(IR)

j [see Eq. (B3) in Appendix B], so
that according to Eqs. (19) and (20) the same trajectories
contribute to Ã1. Thus, the Gabor transform of the dipole
acceleration evaluated for Ã1 is similar to one for AIR, but
shifted by ωXUV and scaled by the factor FXUV fXUV(t − τ )
[63]. In Fig. 1(b) we present the Gabor transform of the dipole
acceleration in the absence of the XUV pulse (see the region
� � 60 eV) and their properly shifted-scaled [i.e., shifted
by ωXUV and scaled by FXUV fXUV(t − τ )] local distributions
for τ = 0.5τIR and 0.72τIR describing the amplitude Ã1 [see
contoured areas in Fig. 1(b)]. As it is seen from Fig. 1(b)
for τ = 0.5τIR and 0.72τIR, there is energetic overlapping
between Ã1 and A2, leading to the interference features in
the HHG yield. For τ = 0.72τIR the interference effect is
more pronounced than for τ = 0.5τIR (see discussion of Fig. 2
below), because of larger value of Ã1 (for τ = 0.72τIR, Ã1
becomes comparable with A2). In Fig. 1(c) we present the
color-coded Gabor transform for the argon atom in both fields
with time delay τ = 0.72τIR, for which both channels con-
tribute.

In Fig. 2 we present the time-delay dependence of the
harmonic yield for different frequencies � detuned from the
peak of the second XUV harmonic (� = 2ωXUV). For time
delays τ < 0.5τIR, the SHG yield perfectly replicates the time
profile of the IR field [see Figs. 2(a)–2(c)]. However, for
time delay larger than 0.5τIR, we observe deviations from the
actual dependence of F 2

IR(τ ). These deviations are caused by
the contribution of the XUV-assisted recombination channel.
Indeed, according to Fig. 1(b), the electron driven by the IR
field gains energy sufficiently smaller than ωXUV at the recom-
bination time, so that there are no terms in the sum in Eq. (19),
which can contribute in the spectral range of the second XUV
harmonic. In contrast, for τ > 0.5τIR, the electron can gain
energy larger than ωXUV, and the XUV-assisted recombination
channel can contribute. For those �, which are out of the
SHG-peak bandwidth, the HHG mechanism certainly governs
by the XUV-assisted recombination channel, and the time-
delay dependence of the harmonic yield is determined by the
shape of the attosecond pulse [36] [see Fig. 2(d), where it is

FIG. 2. The dependence of the harmonic yield on the time de-
lay for (a) � = 2ωXUV, (b) 2ωXUV + 5 eV, (c) 2ωXUV − 5 eV, and
(d) 2ωXUV + 20 eV. Black solid lines, the dependence of F 2

IR(τ ) [see
Eqs. (23a) and (23b)]; red points connected by dashed lines, the har-
monic yield; blue line [in panel (d)], the dependence of f 2

XUV(t j − τ )
[see Eq. (23c)] for t j = 0.56τIR (d). The laser parameters and atomic
target are the same as in Fig. 1(a).

shown that the shape of the observed peak is well fitted by the
envelope of the attosecond pulse (23c)]. To demonstrate the
robustness of the suggested IR-pulse retrieving method, we
present in Fig. 3 the time-delay dependence of the integrated
HHG yield:

Y =
∫ �+��

�−��

Y (�′)d�′, (24)

where � = 2ωXUV and �� = 2 eV, for three values of the
XUV-pulse duration τXUV = 0.4, 0.8, and 1.6 fs, and two
wavelengths of the IR field λIR = 1.2 and 0.8 μm. These
results show that the important condition for a good re-
production of the temporal profile of IR-field intensity is a
sufficiently short duration of the XUV pulse compared to
the period of the IR field: Fig. 3 explicitly shows that the
resolution of the SHG-based retrieving method worsens with
increasing τXUV. Concerning the IR-pulse wavelength, we
have found that the resolution of the suggested retrieving
method is less sensitive to the variation of λIR for τXUV �
TIR/4 (where TIR is the IR-field period). In general, the
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FIG. 3. The dependence of the integrated HHG harmonic yield
[see Eq. (24)] on the time delay τ . The durations of the XUV pulse
τXUV are indicated in panel legends. (a) The IR-field wavelengths are
λIR = 1.2 μm (the corresponding period TIR = 4 fs) and (b) λIR =
0.8 μm (TIR = 2.7 fs). Solid black lines show the dependences F 2

IR(τ )
[see Eqs. (23a) and (23b)]. The intensities of IR and XUV pulses and
the atomic target are the same as in Fig. 1(a).

applicability of the retrieving procedure is determined by
conditions of the adiabatic approach underlying our the-
ory, i.e., the smallness of the Keldysh parameter: γK � 1.
However, the numerical results show that the method works
even for the Keldysh parameter slightly larger than unity
[see Fig. 3(b), where IR-field parameters correspond to γK =
1.15].

In Fig. 4 we present the temporal profile of the generated
XUV pulse with carrier frequency near 2ωXUV for the same
IR and XUV-pulse parameters as in Fig. 1(a). This temporal
profile is found by evaluating the inverse Fourier transform
of the numerically obtained dipole-acceleration Fourier com-
ponents (based on the TDSE calculations) in the frequency
range (2ωXUV − �, 2ωXUV + �), where � = 15 eV (i.e., by
applying the spectral filter with corresponding edges). If the
contribution of the XUV-assisted recombination channel is
negligible, then in accordance with Eq. (16) the generated
pulse at the doubled frequency has the envelope given by
the square of fXUV(t ), and the duration is

√
2 times shorter

than that of the initial XUV pulse (see Fig. 4 for τ = 0.5τIR).
The shift in the peak position of the generated pulse for
τ = 0.28τIR and 0.72τIR from the maximum of f 2

XUV(t − τ )
is caused by the IR field varying on the scale of XUV-pulse
duration: for the positive (negative) derivative of FIR(t ) at
t = τ , the shift is positive (negative) [see line corresponding
to τ = 0.28τIR (τ = 0.72τIR) in Fig. 4 for positive (negative)
shift]. It is worth noting that despite the symmetry in po-
sitions of the generated pulses for τ = 0.28τIR and 0.72τIR

with respect to the pulse for τ = 0.5τIR, the peak intensity of
the right-hand-side pulse is higher than for the left-hand-side

FIG. 4. The temporal profile of the generated XUV pulse having
carrier frequency near 2ωXUV for three time delays indicated in the
figure legend. Dashed lines show the scaled squared XUV envelope
f 2
XUV(t − τ ) [see Eq. (23c)] for τ = 0.28τIR (blue line), τ = 0.5τIR

(orange line), and τ = 0.72τIR (red line). The laser parameters are
the same as in Fig. 1(a).

one. This difference is explained by the contribution of the
XUV-assisted recombination channel for 0.72τIR [see, e.g.,
Fig. 2(a)].

IV. SUMMARY AND OUTLOOK

In this paper, we have developed the perturbation theory
up to the second order in the interaction VXUV of the XUV
pulse with an IR-laser-dressed atom. Our theoretical approach
is based on two assumptions: (i) the interaction VIR of the
intense IR pulse with an atomic system is treated quasiclas-
sically within the recently developed adiabatic approximation
for the IR-laser-dressed atomic state [43], while the interac-
tion VXUV is considered perturbatively; (ii) the XUV and IR
pulses interact predominantly on different time scales. These
two assumptions have allowed us to explicitly split up the
transition matrix elements into slow and rapidly varying parts
in time. The slow parts are expressed in terms of the Green’s
function of an atom in the dc field, the magnitude of which
is equal to the instant value FIR(τ ) of the IR-field strength
taken at the time delay τ between the XUV and IR pulses.
The rapid parts are evaluated within the saddle-point method
and parametrized through the classical (real) ionization and
recombination times.

Within the developed second-order perturbation theory, we
have analyzed the SHG of the XUV pulse by an IR-dressed
atom. It has been shown that SHG amplitude is expressed
in terms of the generalized nonlinear susceptibility χ2 of the
second order (in VXUV) of an atom in the dc field with the
strength FIR(τ ). For moderate IR-field intensities, the FIR de-
pendence of the susceptibility χ2 can be well approximated
by a linear function, ∼FIR(τ ) [see Eq. (14)]. In the absence
of interference of the SHG channel with other XUV-induced
channels, the SHG spectrum represents a wide peak, the mag-
nitude of which depends on the time delay between IR and
XUV pulses and replicates the time profile of the IR-field
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intensity as a function of τ . Thus, the measurement of the
time-delay dependence of the SHG yield makes it possible
to retrieve the temporal profile of F 2

IR(t ). Moreover, one can
retrieve the waveform of the IR-field electric vector [i.e., de-
termine the sign of FIR(t )], e.g., by introducing an additional
slow varying bias field having constant time delay with respect
to the XUV pulse (similar to the gas-biased coherent detection
of the terahertz and mid-IR radiation based on the SHG of
a probe IR pulse [65,66]). However, this method required a
separate consideration since a bias field can modify the XUV-
assisted recombination channel and thereby affect the retrieval
procedure. The interference between the SHG channel and
XUV-induced channels (e.g., with the channel of IR-induced
HHG through the XUV-assisted recombination) may distort
the actual time profile of the IR pulse.

For practical use of the suggested SHG-based retrieving
method of the IR pulse, we note that it may be applied
for a wide range of wavelengths and moderate intensities
(1014–1015 W/cm2), for which the Keldysh parameter is of
the order or less than unity and an atomic system is not
rapidly ionized (we consider targets for which κ = √

2|E0| ≈
1 a.u.). Although the developed theory is ultimately based on
the assumption that the XUV-pulse duration must be much
smaller than the IR-pulse period, we have found that our
method works well even for the ratio τXUV � TIR/4. We em-
phasize that the SHG process by the IR-dressed atom involves
many channels induced by both IR and XUV pulses; thus,
it requires keeping a balance between intensities of IR and
XUV pulses in order to make possible the observation of the
2ωXUV peak in HHG spectra induced mainly by the SHG
channel.

In our analytical and numerical analyses, we used the sin-
gle active electron approximation, which is justified for those
XUV pulses that do not excite the inner atomic dynamics. For
long XUV pulses, this excitation can be realized for given
carrier frequencies corresponding to the atomic resonance
transition, while for short XUV pulses with wide frequency
bandwidth the inner many-electron dynamics may be pos-
sible even for off-resonance frequencies. In principle, the
many-electron dynamics can increase the SHG yield similarly

to the enhancement of XUV-assisted HHG spectra through
the elastic XUV-pulse scattering channel [53], as well as
induce new channels for HHG in the spectral region of the
second XUV harmonic, e.g., through the excitation of au-
toionizing states. The role of many-electron effects in the SHG
process is an intriguing problem and should be considered
separately.
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APPENDIX A: PERTURBATION THEORY IN THE
ADIABATIC LIMIT

In order to develop the perturbation theory in the XUV
field for an atomic system subjected to both an intense IR
and weak XUV pulses, it is convenient to use the integral
equation for the exact atomic state |�〉 ≡ �(r, t ) expressed
in terms of the total nonstationary retarded Green’s function
Gtot ≡ Gtot (r, t ; r′, t ′):

|�〉 = |�IR〉 + GtotVXUV|�IR〉〉, (A1)

where |�IR〉 ≡ �IR(r, t ) is the atomic state in the intense IR
field, and VXUV ≡ VXUV(r, t ) is the interaction operator of an
atom with the XUV pulse. For shortness of notation, we intro-
duce double braces to mark spatial and temporal integration
for repeated variables:

GαVXUV|ψ〉〉

≡
∫∫

Gα (r, t ; r′, t ′)VXUV(r′, t ′)ψ (r′, t ′)dr′dt ′,

where Gα is the Green’s function [here α = “tot” or α = “IR,”
and the subscript “IR” is used for representing the nonstation-
ary retarded Green’s function for an atomic system in the IR
pulse: GIR ≡ GIR(r, t ; r′, t ′)], and ψ (r, t ) is some appropriate
wave function. The Green’s function Gtot satisfies the Dayson
equation and can be presented as a formal perturbation series
in VXUV:

Gtot (r, t ; r′, t ′) = GIR(r, t ; r′, t ′) +
∫

GIR(r, t ; r1, t1)VXUV(r1, t1)Gtot (r1, t1; r′, t ′)dr1dt1

= GIR(r, t ; r′, t ′) +
∞∑

n=1

∫
GIR(r, t ; r1, t1)VXUV(r1, t1)GIR(r1, t1; r2, t2) . . .VXUV(rn, tn)

× GIR(rn, tn; r′, t ′)dr1dt1 . . . drndtn ≡
∞∑

n=0

GIR(VXUVGIR)n. (A2)

Substituting Eq. (A2) into Eq. (A1) we obtain the formal
series of perturbation theory in VXUV for the wave function �,
the three-term expansion of which is

|�〉 = |�IR〉 + |�1〉 + |�2〉, (A3a)

|�1〉 = GIRVXUV|�IR〉〉, (A3b)

|�2〉 = GIRVXUV|�1〉〉. (A3c)

Within the adiabatic (or low-frequency) approximation,
the wave function |�IR〉 can be presented as a sum of an
initial state |� (0)

IR 〉 distorted by an instantaneous “static” IR
field F IR(t ) [44–46] and rescattering part |� (r)

IR 〉 representing
an electron wave packet composed from the laser-field-free
continuum states [43,45,46] [see Eq. (1) and its discussion in
the main text]. In order to keep the same level of accuracy in
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Eqs. (A3b) and (A3c), we approximate the exact propagator
GIR by its adiabatic counterpart, i.e., by the Green’s function in
the dc field: GIR → Gdc. We should emphasize that within the
adiabatic approximation all calculations of matrix elements
and wave functions are performed using the stationary Green’s
function and the quasistationary state with instantaneous com-
plex energy ε corresponding to the instantaneous dc field with
strength F , which finally should be replaced by the IR-field
temporal waveform: F → |FIR(t )|. Moreover, in particular
calculations we can use the well-known relation between
the nonstationary [Gdc(r, t ; r′, t ′)] and stationary [GE (r, r′)]
Green’s functions:

Gdc(r, t ; r′, t ′) = 1

2π

∫
GE (r, r′)e−iE (t−t ′ )dE . (A4)

The Green’s function GE (r, r′) has a pole at the energy ε of
the quasistationary state �dc(r):

GE (r, r′) = G′
E (r, r′) + �dc(r)�̃∗

dc(r′)
E − ε

, (A5)

where G′
E (r, r′) is the reduced Green’s function and �̃dc(r′) is

the dual wave function [67,68].
For further calculations of the functions (A3b) and (A3c),

we specify the interaction operator VXUV in the length
gauge:

VXUV = V (+)
XUV + V (−)

XUV, V (±)
XUV = zF (±)

XUV(t ), (A6a)

F (±)
XUV(t ) = FXUV

2
fXUV(t − τ )e∓iωXUV(t−τ ), (A6b)

where τ is the time delay with respect to the IR field, and
fXUV(t ) is the XUV pulse envelope with a maximum at t = 0.
Let us substitute Eq. (A6) into Eq. (A3b) and perform integra-
tion in t ′ approximately, taking into account only the vicinity
of the upper limit (t ′ ≈ t):2

|�1〉 = GIRVXUV|�IR〉〉 ≈
∑
λ=±

GdcV
(λ)

XUV

∣∣� (0)
IR

〉〉

≈
∑
λ=±

∫∫
Gdc(r, t ; r′, t ′)ei[ε(t )+λωXUV](t−t ′ )V (λ)

XUV(r′, t )�dc(r′)e−i
∫ t

ε(t ′′ )dt ′′
dr′dt ′

=
∑
λ=±

∫
Gε(t )+λωXUV (r, r′)V (λ)

XUV(r′, t )� (0)
IR (r′, t )dr′ ≡

∑
λ=±

GλV (λ)
XUV

∣∣� (0)
IR

〉
, (A7)

where Gλ ≡ Gε(t )+λωXUV (r, r′).
The correction |�2〉 in Eq. (A3c) is calculated similarly to

the case of |�1〉; however, some terms require special consid-
eration. Taking into account Eq. (A6a), we present |�2〉 as the
sum of four terms:

|�2〉 = GIRVXUVGIRVXUV|�IR〉〉 ≈ T1 + T2, (A8a)

T1 =
∑
λ=±

GdcV
(λ)

XUVGdcV
(λ)

XUV

∣∣� (0)
IR

〉〉
, (A8b)

T2 =
∑
λ=±

GdcV
(−λ)

XUV GdcV
(λ)

XUV

∣∣� (0)
IR

〉〉
. (A8c)

Moreover, in accordance with Eqs. (A4) and (A5), we must
extract from the term T2 the slow-varying residue term T (s)

2
proportional to the quasistationary state |�dc〉:

T2 = T (s)
2 + T (r)

2 , (A9a)

T (s)
2 = − 1

2π

∫
α

E − ε
dE |�dc〉, (A9b)

α =
∑
λ=±

〈〈
�̃dc|e−iE (t−t ′′ )V (−λ)

XUV GdcV
(λ)

XUV|� (0)
IR

〉〉
, (A9c)

T (r)
2 =

∑
λ=±

G ′
dcV

(−λ)
XUV GdcV

(λ)
XUV

∣∣� (0)
IR

〉〉
. (A9d)

2The contribution from the vicinity of the maximum of the XUV
pulse envelope can be neglected due to the shortness of the XUV
pulse.

We estimate the terms T1 and T (r)
2 by the same way as is

used for |�1〉 in Eq. (A7). As a result, we obtain

T1 =
∑
λ=±

G2λV (λ)
XUVGλV (λ)

XUV

∣∣� (0)
IR

〉
, (A10)

T (r)
2 =

∑
λ=±

G′V (λ)
XUVG−λV (−λ)

XUV

∣∣� (0)
IR

〉
, (A11)

where the integration is performed for repeated spatial vari-
ables, while all temporal dependencies are taken at the time
t .

The calculation of T (s)
2 requires a more refined consid-

eration. In the first step, we calculate the integral over the
energy E :

1

2π

∫
eiE (t−t ′′ )

E − ε
dE = iθ (t − t ′′)eiε(t−t ′′ ), (A12)

where θ (t − t ′′) is the Heaviside step function. In the sec-
ond step, we evaluate the function GdcV

(λ)
XUV|� (0)

IR 〉〉 within the
algorithm suggested for |�1〉 in Eq. (A7), that leads to the
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expression

T (s)
2 = −i|� (0)

IR 〉
∑
λ=±

t∫
−∞

dt ′′ei
∫ t ′′ [ε(ξ )−ε(t )]dξ

× 〈
�dc|V −λ

XUV(t ′′)G−λV −λ
XUV(t ′′)|�dc

〉
. (A13)

Assuming that VXUV(t ) ≡ 0 for t � t0 (i.e., t0 is the turn-on
time of the XUV pulse), we estimate the integral (A13) over
t ′′ near the upper limit, t ′′ = t :

T (s)
2 = −i|� (0)

IR 〉�XUVt, (A14)

where �XUV is the instantaneous Stark shift in the XUV field:

�XUV =
∑
λ=±

〈
�dc

∣∣V −λ
XUVG−λV −λ

XUV

∣∣�dc
〉
. (A15)

All quantities in Eq. (A15) are taken at the time t . Combin-
ing the result (A14) for T (s)

2 with the zeroth-order function
|� (0)

IR 〉, and taking into account the condition �XUVTXUV � 1
(where TXUV is the XUV pulse duration), we arrive at the
expression ∣∣� (0)

IR

〉 + T (s)
2 ≈ ∣∣� (0)

IR

〉
e−i�XUVt . (A16)

The phase factor e−i�XUVt of the wave function in Eq. (A16)
can be eliminated by a unitary transformation, and the term
T (s)

2 does not contribute to the second-order wave function
|�2〉. Thus, the function |�2〉 is determined by the results
(A10) and (A11), which give the four-term expression:

|�2〉 = T1 + T (r)
2

=
∑
λ=±

{
G2λV (λ)

XUVGλV (λ)
XUV + G′V (λ)

XUVG−λV (−λ)
XUV

}∣∣� (0)
IR

〉
,

that matches Eq. (6) in the main body of the text.

APPENDIX B: EQUATIONS FOR IONIZATION AND
RECOMBINATION TIMES: EXPLICIT FORM FOR aj IN

EQ. (19)

In the quasiclassical limit (i.e., for the conditions ωIR �
|E0|, E0 = −κ2/2, γK = κωIR/FIR � 1, and FIR <

√
κ3), the

ionization (t ′
j) and recombination times (t j), involved in the

parametrizations for the IR-induced HHG amplitude AIR, are
determined by a system of nonlinear equations [43]:

AIR(t ′
j ) + p j = 0, (B1a)

[AIR(t j ) + p j]2

2
= � + E0, (B1b)

p j = − 1

t j − t ′
j

∫ t j

t ′
j

AIR(ξ )dξ,

where E0 is the binding energy, ωIR and FIR are the carrier
frequency and peak strength of the IR field, γK is the Keldysh
parameter, � is the generated harmonic frequency, and AIR(t )
is the vector potential of the IR field: FIR(t ) = −∂AIR(t )/∂t .
The index j enumerates roots {t ′

j, t j} of the system (B1).
The parametrization of AIR can be presented as the prod-
uct of laser-induced factor a(IR)

j (�) and photorecombination

amplitude f (rec)
0 [43]:

AIR =
∑

j

a(IR)
j (�) f (rec)

0 ,

f (rec)
0 = 〈ψ0(r)|z|ψk0 (r)〉, k2

0

2
= � + E0, (B2)

where vector k0 is directed along the polarization vector of
the IR field and ψk(r) is the scattering state with outgoing
spherical-wave asymptotics. The laser-induced factor a(IR)

j can
be parametrized as a product of two factors:

a(IR)
j (�) = a(tun)

j a(prop)
j , (B3)

the tunneling (a(tun)
j ) and propagation (a(prop)

j ) factors of which
we discuss in turn.

The tunneling factor a(tun)
j describes the IR-induced tunnel-

ing of an atomic electron in the continuum:

a(tun)
j = Cκl

√
2l + 1

(
2κ3

|F ′
j |

)Z/κ
e
− κ3

3|F ′
j |√

κ|F ′
j |

, (B4)

where F ′
j = FIR(t ′

j ), Z is is the residual atomic charge, and
Cκl is the asymptotic coefficient of the bound state ψ0(r) with
bound energy E0 and orbital momentum l .

The factor a(prop)
j describes propagation of the liberated

electron in the IR-dressed continuum along a closed classical
trajectory from the ionization time t ′

j to the recombination
time t j :

a(prop)
j = eiS j

(t j − t ′
j )

3/2
,

S j = E0(t j − t ′
j ) + �t j − 1

2

∫ t j

t ′
j

[AIR(t ) + k j]
2dt . (B5)

The same set of times {t ′
j, t j} is utilized for parametriza-

tion of the amplitude Ã1 corresponding to the XUV-assisted
recombination channel in the HHG process in an intense IR
field and perturbative time-delayed XUV pulse [36,37,43]:

Ã1(�) = FXUV

∑
j

fXUV(t j − τ )Ã(1)
j , (B6)

Ã(1)
j = a(IR)

j (� − ωXUV) f (rec)
1 , (B7)

where FXUV is the peak strength of the XUV pulse, fXUV(t ) is
the envelope of the XUV pulse, τ is the time delay between IR
and XUV pulses, and f (rec)

1 is the amplitude of XUV-assisted
recombination. The XUV-assisted recombination amplitude
can be specified for an atomic system as follows:

f (rec)
1 = 〈

ψ0(r)
∣∣zG(0)

k2
1/2+ωXUV

(r, r′)z′|ψk1 (r′)
〉

+ 〈
ψ0(r)

∣∣zG(0)
k2

1/2−�
(r, r′)z′∣∣ψk1 (r′)

〉
,

k2
1

2
= � − ωXUV + E0, (B8)

where vector k1 is directed along the polarization vector of the
IR field, and G(0)

E (r, r′) is the atomic Green’s function.
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Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A.
Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-
Becker, M. M. Murnane, and H. C. Kapteyn, Bright coherent
ultrahigh harmonics in the keV X-ray regime from mid-infrared
femtosecond lasers, Science 336, 1287 (2012).

[25] M.-C. Chen, C. Mancuso, C. Hernández-García, F. Dollar, B.
Galloway, D. Popmintchev, P.-C. Huang, B. Walker, L. Plaja,
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