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Mutual neutralization in H+ + H− collisions: An improved theoretical model
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The total and differential cross sections of mutual neutralization in H+ + H− collisions are calculated ab initio
and fully quantum mechanically for energies between 0.001 and 600 eV. Effects which have not previously been
considered in studies on mutual neutralization (MN) for this system, such as inclusion of rotational couplings
and autoionization, are investigated. Adiabatic potential curves corresponding to the relevant states of 1�+

g ,
1�+

u , 1�g and 1�u symmetries as well as radial and rotational nonadiabatic couplings are computed ab initio. A
quasidiabatic model is developed and applied in order to investigate the importance of higher excited states
as well as the inclusion of autoionization. Molecular data for the lowest electronic resonant state in each
symmetry are obtained by performing electron scattering calculations. It is shown that rotational couplings
cause a significant increase of the total MN cross section while autoionization plays a minor role as a loss
mechanism. Additionally, a differential cross section is obtained that is symmetric around θ = 90◦. This result
is in disagreement with a previous theoretical calculation where it was found that the differential cross section is
dominated by backwards scattering.
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I. INTRODUCTION

The process

H+ + H− → H(1s) + H(n), (1)

where n is the principal quantum number, is the most basic
example of mutual neutralization (MN) and has therefore at-
tracted much attention over the years. The relative simplicity
of the system makes it optimal to test out theoretical models
in order to build a deeper understanding of the process, which
could then serve as a starting point to study more complex
systems. Recently, there has been a renewed interest in MN
between atomic ions at the DESIREE facility in Stockholm
and at Louvain-la-Neuve in Belgium, and measurements have
been performed on MN in collisions of Li+ + D− [1], Na+ +
D− [2], Mg+ + D− [3], and O+/N+ + O− [4].

Early measurements on the H+ + H− MN cross sec-
tion [5–8] were in mutual agreement with each other and
the cross section showed well defined structures. Despite the
relative simplicity of the system, none of the theoretical calcu-
lations around that time [9–16] could reproduce the structures
nor the overall magnitude of the cross section. Later measure-
ments made by Szucs et al. [17] yielded a cross section that
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differs significantly from the earlier measurements and show
no such structures. Peart et al. [18] subsequently remeasured
the cross section and the result was found to agree with the
new measurement of Szucs et al. Ab initio semiclassical cal-
culations using a one-electron close coupling model by Sidis
et al. [16] supported the newer measurements. Additionally,
Fussen and Kubach [19] did a quantum mechanical calcula-
tion using a one-electron close-coupling model and obtained
a cross section that agrees with the low-energy data of [17]
and match the theoretical result of [16] within 10%. A later
refined experiment by Peart et al. [20] lends further support
to the result of Szucs et al., and these measurements are
now considered to be correct. For collision energies � 10 eV,
Eerden et al. [21] used a multistate Landau-Zener (LZ) model
and their result agrees with that of Fussen and Kubach within
20%.

In more recent times, some of the present authors made
ab initio fully quantum mechanical studies of H+ + H−
MN [22,23] in which the total cross section was found to
be in good agreement with experiment [17,18,20] for en-
ergies between 10 and 100 eV. It was also found to be in
good agreement with the calculation by Eerden et al. and
about a factor of 1.2 larger than the calculation by Fussen
and Kubach. In the ab initio calculations, excited states were
included of 1�+

g and 1�+
u symmetries up to the asymptotic

limit H(1s) + H(n = 3). It is generally thought that states
associated with n � 4 have a small contribution to the total
cross section based on the fact that these states only have
nonadiabatic couplings at small internuclear distances. An
exception are the n = 4 states which have avoided cross-
ings with the ionic state at very large internuclear distances
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(R ≈ 280 a0). These are, however, expected to be insignifi-
cant [9,14,16]. The MN branching ratios to H(1s) + H(n) for
different n have also been measured experimentally using an
ion-ion single-pass merged beam apparatus [23]. Computing
branching ratios is more difficult than computing the total
cross section and is therefore a more stringent test of the
theory. The ab initio calculations of [22,23] are in agree-
ment with the measured branching ratios for energies up to
50 eV, but deviates for larger energies. Naturally, this raises
the question whether higher excited states contribute. Another
effect which has not previously been considered is the effect
of rotational coupling which couples the 1�

+
g/u states to 1�g/u

states. It has been pointed out by Bardsley [24], referring to
unpublished calculations on H+ + H− MN by Browne and
Victor, that such couplings could be important for MN. This
could potentially explain the difference between calculated
and measured branching ratios at high collision energies.

The goal of present article is to return to the H+ + H−
collision system and investigate the limitations of the approx-
imations by including effects that have not previously been
included, such as excited states associated with the n � 4
limits, rotational couplings, and inclusion of autoionization
from electronic resonant states. There are few systems that
have been studied as much as the H2 system. However, there
is not yet any study that reports all adiabatic potential energy
curves and radial and rotational couplings for the states in
all symmetries we here consider. Therefore, we have here
computed all the relevant adiabatic potential curves as well
as radial and rotational nonadiabatic couplings ab initio. We
have performed electron scattering calculations to obtain in-
formation of the electronic resonant states. While the ab initio
potentials and couplings are used to describe the lower elec-
tronic states, a quasidiabatic model is developed to include
both the lowest electronic resonant state in each symmetry
as well as an arbitrary number of Rydberg states. The total
and differential cross sections as well as branching ratios are
computed for the H+ + H− MN process. With this model, the
importance of higher excited states can be studied as well
as the role of autoionization from electronic resonant states.
The same model can also be used to study other processes
such as associative ionization, dissociative recombination, and
ion-pair formation.

The article is structured as follows. In Sec. II we present
our calculated adiabatic potentials curves, radial nonadiabatic
couplings, and rotational couplings. In this section we also
discuss the resonant states and electronic couplings. The in-
clusion of rotational couplings and the quasidiabatic model
are described in Sec. III. Finally, the H+ + H− MN differ-
ential and total cross sections as well as branching ratios are
presented in Sec. IV. Throughout the article we use atomic
units, unless otherwise specified.

II. POTENTIAL CURVES AND COUPLINGS

A. Potential curves

MN is a process driven by nonadiabatic couplings be-
tween ionic and covalent states and as such it involves several
excited states. Thus, in order to obtain a reliable theoreti-
cal description of the process it is crucial to have accurate

FIG. 1. Adiabatic potential energy curves (red solid lines) of
electronic states in (a) 1�+

g symmetry in comparison to the poten-
tials calculated by Wolniewicz and Dressler [25] (black crosses) and
(b) of 1�+

u symmetry in comparison to the potentials calculated by
Staszewska and Wolniewicz [26] (black crosses).

data on the relevant potential curves and nonadiabatic cou-
plings. The adiabatic potential curves corresponding to the
states (1–11) 1�+

g , (1–10) 1�+
u , (1–6)1�g, and (1–6)1�u have

been computed using the DALTON program [27,28]. These
calculations were carried out using the full Configuration
Interaction (CI) method with a hydrogen basis set com-
posed of (11s, 8p, 7d, 6 f ) primitive functions contracted to
(9s, 8p, 7d, 6 f ). This basis set was obtained by adding a set
of (5s, 5p, 5d, 5 f ) diffuse functions to the cc-pVQZ basis
set [29]. The exponents of the diffuse functions are geometric
series with ratios ks = 2.6, kp = 2.6, kd = 2.8, and k f = 3.2,
starting from the most diffuse functions of the cc-pVQZ basis
set. The exponents were optimized in order to accurately
describe the n = 4 dissociation limit and the large distance
avoided crossings as it is crucial to have an accurate descrip-
tion of these avoided crossings in order to compute reliable
cross sections for the MN process.

Figure 1 shows the adiabatic potentials of the [Fig. 1(a)]
(2–9) 1�+

g electronic states and the [Fig. 1(b)] (1–7) 1�+
u

electronic states, for internuclear distances between 0 and
40 a0. In both 1�+

g and 1�+
u symmetries there is one state that

062821-2



MUTUAL NEUTRALIZATION IN H+ + H− … PHYSICAL REVIEW A 106, 062821 (2022)

asymptotically correlates with the ion-pair H+ + H−, while
the other states correlate with covalent limits of n = 2–4.
The X 1�+

g potential correlating with the n = 1 limit is not
displayed in the figure. The potentials exhibit a large number
of avoided crossings, both for large (∼36 a0), intermediate
(∼12 a0), and small (∼4 a0) internuclear distances. At small
internuclear distances, the potentials (2–3) 1�+

g have the char-
acteristic double well, arising from the interaction with the
lowest electronic resonant state of 1�+

g symmetry.
In order to assess the quality of the calculated potentials,

they have been compared to previously calculated poten-
tials. The most accurate data on the (2–6) 1�+

g potentials are
from Wolniewicz and Dressler [25]. A comparison of the
absolute energies with our potentials yields excellent agree-
ment with differences varying in the order of 1 × 10−4 to
1 × 10−6 hartree. For the (1–6) 1�+

u we compare our data to
that of Staszewska and Wolniewicz [26], for which we also
find excellent agreement, with differences typically varying
between 1 × 10−4 to 1 × 10−6 hartree. For the (1–2) 1�g

and (1–4) 1�u, the most accurate calculations are those by
Wolniewicz [30] and Wolniewicz and Staszewska [31], re-
spectively. A comparison, shown in Fig. 2, to our computed
data yields excellent agreement, of the same order of magni-
tude as for the 1�+

g and 1�+
u potentials.

For the higher excited states (correlating with the n =
4 limit) we compare our results to that of Corongiu and
Clementi [32,33]. They have systematically computed a va-
riety of H2 potentials, including (1–11) 1�+

g and (1–10) 1�+
u .

Our calculated potentials (7–9) 1�+
g are in good agreement

with theirs with differences in absolute energies of the or-
der of 1 × 10−4 to 1 × 10−5 hartree, our potentials being
lower for some points of internuclear distance. The states
(10–11) 1�+

g are in good agreement with their results for in-
ternuclear distances larger than 5 a0. However, the agreement
is less satisfactory below 5 a0 where their potentials are much
lower in energy. A similar analysis for the potentials of 1�+

u
symmetry shows that the potentials (8–10) 1�+

u are too high
in energy below 7 a0. The n = 4 states relevant for our study
have also been calculated by Nakashima and Nakatsuji [34]
and Kurokawa et al. [35] who used their free-complement
theory to compute potentials of, among others, the states
(1–11) 1�+

g , (1–6) 1�+
u , (1–4) 1�g, and (1–4) 1�u. Here we

also see excellent agreement with most of our data. The
exception is again the states (10–11) 1�+

g and (8–10) 1�+
u ,

which are much higher than their potentials below 5 and 7
a0, respectively.

To further asses the accuracy of the calculated adiabatic
potential curves at small internuclear distances, we have also
computed the adiabatic effective quantum numbers from the
calculated potentials,

νad
i (R) = 1√

2
[
Vion(R) − V ad

i (R)
] . (2)

In Fig. 3 we show the effective quantum numbers obtained for
states of 1�+

g symmetry in comparison those obtained from
the potential curves of Corongiu and Clementi [32]. A similar
comparison was made also to the other above mentioned ref-
erences. From these comparisons, as is also evident in Fig. 3,
we can draw the conclusion that we have not obtained a

FIG. 2. Adiabatic potential energy curves (red solid lines) of
electronic states in (a) 1�g symmetry in comparison to the poten-
tials calculated by Wolniewicz [30] (black crosses) and (b) of 1�u

symmetry in comparison to the potentials calculated by Wolniewicz
and Staszewska [31] (black crosses).

FIG. 3. Effective quantum numbers of electronic states in 1�+
g

symmetry (red solid lines) in comparison those computed from the
potentials curves of Corongiu and Clementi [32] (black crosses).
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FIG. 4. Radial nonadiabatic coupling elements of electronic
states in (a) 1�+

g symmetry and (b) 1�+
u symmetry. The notation fi j

denotes the radial coupling between states i and j.

satisfactory description at small internuclear distances of the
highest excited calculated potentials (10 1�+

g , 11 1�+
g , 8 1�+

u ,
9 1�+

u , 10 1�+
u , 5 1�g, 6 1�g, 5 1�u, and 6 1�u). Given the

above analysis we made the decision not to include the men-
tioned potentials in our calculations of the MN cross sections.

B. Radial and rotational couplings

The radial nonadiabatic couplings,

f �
i j = 〈�i�| ∂

∂R
|� j�〉 , (3)

among all adiabatic states included in the model have been
calculated using a three-point version of the finite difference
method, as described in Ref. [36], with a derivative step length
of 	R = 5 × 10−5 a0. This method allows for the conver-
gence of the result with respect to the basis set and wave
functions used. The couplings of Eq. (3) only couple states
of the same parity and the label g/u is omitted for a cleaner
notation. In Fig. 4 we show some of the important nonadia-
batic coupling elements to the n = 4 states in the symmetries
[Fig. 4(a)] 1�+

g and [Fig. 4(b)] 1�+
u . These couplings have

peaks at various internuclear distances below about 12 a0 and

are significant in size only in that region (we here consider
internuclear distances � 55 a0). To our knowledge, the radial
nonadiabatic couplings involving the n = 4 states in 1�+

g and
1�+

u symmetries have not been published before. Therefore
no comparison has been made to the literature.

The couplings between the states (2–6) 1�+
g (not shown in

Fig. 4) are in good agreement with the couplings calculated
by Wolniewicz and Dressler [25] for internuclear distances up
to 15 a0. Some minor deviations can be found for larger inter-
nuclear distances. However, their calculations do not extend
further than 20 a0. Most of the nonadiabatic couplings among
the states (1–6) 1�+

u and (1–4) 1�u are in agreement with
those calculated by Wolniewicz et al. [37]. Among the 1�+

u
states, some disagreement is found primarily around the curve
crossing at 36 a0. For internuclear distances larger than 36 a0,
the n = 3 states are almost degenerate and beyond the curve
crossing the order of the states in our calculation is switched
compared to Ref. [37]. Consequently, the radial couplings of
Ref. [37] that involve the 3 1�+

u state become equal to our
couplings that involve the 4 1�+

u state and vice versa after the
R = 36 a0 curve crossing. The couplings of 1�u symmetry are
in good agreement with [37] up to 10 a0.

The rotational couplings between the 1�+
g and 1�g states

and between the 1�+
u and 1�u states included in our model

have also been calculated. Some of these couplings are shown
in Fig. 5 in comparison to previously published results. For
internuclear distances <15 a0, the calculated rotational cou-
plings between the 1�+

u and 1�u symmetries are in excellent
agreement with Ref. [37], but some of the couplings disagree
for larger distances. The adiabatic potential curves and radial
and rotational nonadiabatic couplings are available as Supple-
mental Material [39].

C. Resonant states and electronic couplings

In order to include autoionization from electronic reso-
nant states and to include Rydberg states, a quasidiabatic
model (described in Sec. III B) was used. The model includes
the complex resonant state potential, electronic couplings
between the resonant state and the Rydberg series and the
diabatic quantum defects. These quantities are needed both
for internuclear distances when the resonant state lies in the
continuum, i.e., above the ion potential, and also for inter-
nuclear distances where the resonant state lies in the discrete
spectrum. We have performed electron scattering calculations
using the Complex-Kohn variational method [40] to determine
the potential as well as total and partial autoionization widths
of the lowest resonant state in the 1�+

g , 1�+
u , 1�g, and 1�u

symmetries, respectively. In these calculations a modified ver-
sion of the basis set described in Sec. II A was used, where
the most diffuse s, p, d , and f functions were eliminated
leaving a basis set of (5s, 6p, 5d, 1 f ). A full CI was used in
this basis to obtain a set of nine natural orbitals, 3σg, 2σu,
1πux, 1πuy, 1πgx, and 1πgy which formed the active space
for the scattering calculation. Full CI was carried out in the
active space and all single external excitations were included
out of the reference configurations. The electron scattering
variational calculations included spherical harmonics up to
l = 6. The calculations were carried out in each symmetry at
a fixed internuclear distance. At the resonant energy Er , the
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FIG. 5. Rotational couplings between (a) the states 3 1�+
g and

1 1�g compared to the results of Dressler and Wolniewicz [38] and
(b) between states of 1�+

u and 1�u symmetries (solid lines) com-
pared to the results of Wolniewicz et al. [37] (symbols).

electron can be temporarily captured into a “metastable state,”
which will cause a sharp variation of the elastic scattering
cross section.

From the eigenphase sum 	(E ) of the S-matrix one can
obtain the resonant state position relative to the ion, Er , and
the total autoionization width, �, by fitting it to a Breit-Wigner
form [41]

	(E ) =
∑

n

δn(E ) = 	bg(E ) + arctan

[
�

2(Er − E )

]
. (4)

The partial widths can then be extracted by a fit of the S-matrix
elements [42]

Si j (E ) = Sbg
i j (E ) − i

γiγ j

E − Er + i�/2
, (5)

where � = ∑
i �i = ∑

i |γi|2. From the background scattering
matrix, Sbg, which is fitted to a second degree polynomial in
energy, one can obtain the diabatic quantum defects.

For geometries where the potential of the resonant
state has crossed the ion we have taken another approach
where we perform an optimization procedure to obtain the

relevant quantities. In this procedure, the resonant state en-
ergy, electronic couplings and diabatic quantum defects are
parameterized by their values at sufficiently separated points
of internuclear distance in the region where the interaction
between the Rydberg states and resonant state takes place. A
quasidiabatic potential matrix is then set up and diagonalized.
The sum

f =
∑
i, j

(
V ad

j (Ri ) − V diag.
j (Ri )

)2
, (6)

is then minimized using simulated annealing [43]. The sub-
script i refers to different R points, V ad

j to the jth ab initio

adiabatic potential energy curve and V diag.
j denotes the jth

eigenvalue of the quasidiabatic potential matrix. In order
to cover the full range of internuclear distances we have
combined the optimization procedure with the scattering cal-
culations. We define an interaction region (2.0–4.0 a0 for 1�+

g ,
4.0–6.0 a0 for 1�+

u , and 3.0–6.0 a0 for 1�g and 1�u), which
approximately spans the region of the avoided crossings at
small internuclear distances, and we assume that the the elec-
tronic couplings are zero outside this region. This implies that
the diabatic quantum defects can be joined smoothly with
the adiabatic quantum defects computed from our ab initio
potentials outside the interaction region.

In Fig. 6 the lowest 1�+
g resonant state potential energy

and autoionization width are displayed in comparison to pre-
viously published results by Tennyson [44] and Sanchez and
Martin [45]. The present resonant energy is slightly lower than
Refs. [44,45]. The total autoionization width is slightly larger
at some points of internuclear distance but agree in the general
shape. The same procedure has been applied to determine
the potential and autoionization width of the lowest resonant
state in the 1�+

u , 1�g, and 1�u symmetries. A good overall
agreement with [44,45] is found for these symmetries. The
molecular data are available as Supplemental Material [39].

III. THEORY AND MODEL

A. Inclusion of rotational couplings

The theoretical model that we use for MN is largely
the same as in previous studies and has been described in
detail elsewhere; see, e.g., Ref. [22]. Here we will outline
how the rotational couplings are included in our model. We
use the following conventions for describing the coordinates
of the system. In a space-fixed coordinate system, the position
of the electrons are described by the coordinates (xi, yi, zi ),
and the nuclear coordinates are given by (R, θ, φ). We per-
form a transformation to a coordinate system which moves
with the molecule, i.e., a body-fixed coordinate system, since
this transforms the rotational couplings to potential form. For
the electrons, we will let the coordinates (ξi, ηi, ζi ) denote the
new coordinates in the body-fixed coordinate system. We take
the body-fixed coordinate system to be such that the ζ axis
coincides with the internuclear distance vector �R and lies in
the xy plane. The η axis is orthogonal to the zζ plane. This
is the same convention as in, e.g., [46]. The Hamiltonian H
is transformed to a body-fixed coordinate system. The total
wave function is expanded in a complete set of simultaneous
eigenstates of H , �J2, and Jz and is written as a rotation of a
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FIG. 6. (a) Energy and (b) total autoionization width of the low-
est 1�+

g resonant state. The green dash-dotted line shows the present
calculation while the solid orange and dashed dark blue lines show
the results of Ref. [44] and Ref. [45], respectively.

body-fixed wave function. We further expand the wave func-
tion in terms of a complete set of orthonormal eigenfunctions
of the Lζ operator and write down the body-fixed coupled
radial Schrödinger equation in an adiabatic representation. We
let Fn′J� denote the radial part of the nuclear wave function.
The quantum number � is the projection of the electronic
orbital angular momentum onto the molecular axis, and it can
be both positive and negative when |�| > 0. By taking into
account parity and inversion symmetry, one can connect states
of � to those of −� and thus eliminate this arbitrariness. We
also introduce symmetry-adapted electronic wave functions,
denoted by �n�, which are eigenfunctions of the reflection
operator ση. Using these conventions, the radial Schrödinger
equation for the nuclear states takes the form [46,47]

[
− 1

2μ

∂2

∂R2
I + J (J + 1) − �2

2μR2
I − EI

]
FJ�

= −V�FJ� + 1

2μ

[
2f� ∂

∂R
+ D�

]
FJ�

− 1

2μR2
B�FJ� − 1

μR2
C−��,�−1FJ�−1

+ 1

μR2
C+��,�+1FJ�+1, (7)

where

V �
i j = 〈�i�|Hel |� j�〉 δi j,

f �
i j = 〈�i�| ∂

∂R
|� j�〉 ,

D�
i j = 〈�i�| ∂2

∂R2
|� j�〉 ,

B�
i j = 〈�i�|(L2

ξ + L2
η )|� j�〉 ,

C± =
√

J (J + 1) − �(� ± 1),

��,�±1
i j = 〈�i�|iLη|� j�±1〉 . (8)

In Eq. (7), � runs only over nonnegative integers, and the term
containing FJ�−1 is not present if � − 1 < 0.

For diatomic molecules it is possible to perform a strict di-
abatization, where an orthogonal transformation of the states
transforms the nonadiabatic couplings among a finite number
of coupled states to potential form [22,48]. For Eq. (7), the
procedure needs to be generalized slightly because we now
include states of different symmetries that are coupled by
rotational couplings. We suppose that, for each symmetry �,
the adiabatic to diabatic orthogonal transformation matrix is
given by [48] (

I
∂

∂R
+ f�

)
T� = 0. (9)

The diabatic radial wave functions are given by the transfor-
mation

F̃J� = TT
�FJ�. (10)

Note that the transformation matrix TT
� for different sym-

metries will have different dimensions depending on how
many states we include in that symmetry. By inserting the
transformation (10) into the matrix Schrödinger equation and
multiplying from the left by TT

�, we obtain[
− 1

2μ

∂2

∂R2
I + J (J + 1) − �2

2μR2
I − EI

]
F̃J�

= −Ṽ�F̃J� − 1

2μR2
B̃�F̃J� − 1

μR2
C−�̃�,�−1F̃J�−1

+ 1

μR2
C+�̃�,�+1F̃J�+1, (11)

where

Ṽ� = TT
�V�T�, (12)

�̃�,�−1 = TT
���,�−1T�−1. (13)

Equation (11) is solved separately for the gerade and ungerade
manifolds.
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FIG. 7. Quasidiabatic potential curves of 1�+
g symmetry. Ryd-

berg states are shown as red solid curves, the H+
2 potential by the

dashed black curve, and the resonant state by the blue dash-dotted
curve.

B. The quasidiabatic model

A quasidiabatic model is introduced in order to include
electronic resonant states (and thereby to incorporate autoion-
ization) and to include couplings between the resonant states
and the Rydberg manifolds. The quasidiabatic model is known
to accurately describe the molecular system at small internu-
clear distances and for higher excited electronic states. The
eigenvalues of the quasidiabatic potential matrix are approx-
imately equal to the computed Born-Oppenheimer adiabatic
energies at small internuclear distances. Thus, once the qua-
sidiabatic potential matrix is set up and its eigenvalues are
obtained, we can combine these with our ab initio potential
curves. In this way we can include an arbitrary number of
higher excited states in order to assess their influence on the
MN cross section.

At small internuclear distances, the adiabatic potential
curves are part of Rydberg series converging to the ground
state of the H+

2 ion plus a free electron with orbital angular
momentum quantum number l . The Rydberg state potential
curves are given by the well known Rydberg formula

Vi(R) = Vion(R) − 1

2
[
νd

i (R)
]2 , (14)

where νd
i (R) is the diabatic effective quantum number. The

effective quantum number is given by νd
i (R) = ni − μl (R)

where ni is the principal quantum number and where μl (R)
is the quantum defect. In the quasidiabatic picture, we let the
resonant state cross the potential of the ion and then proceed
to cross the diabatic Rydberg states. This is illustrated in Fig. 7
for 1�+

g symmetry.
In the present model we let the resonant state couple to

all the Rydberg states included in the model, but we assume
the Rydberg states do not couple to each other. To put this
in mathematical terms, we introduce the electronic (quasidia-
batic) resonant state, |φqd

r 〉, along with the diabatic Rydberg

states, |φqd
i 〉, and these states are defined by the following

conditions [49]: 〈
φqd

r

∣∣φqd
i

〉 = 0, (15)〈
φ

qd
i

∣∣φqd
j

〉 = δi j, (16)〈
φqd

r

∣∣Hel

∣∣φqd
r

〉 = V qd
r (R), (17)〈

φ
qd
i

∣∣Hel

∣∣φqd
j

〉 = V qd
i j (R)δi j, (18)〈

φqd
r

∣∣Hel

∣∣φqd
i

〉 = V qd
ri (R) = V qd

ir (R), (19)

where the electronic coupling between the resonant and Ryd-
berg states are obtained using the scaling relation [50]:

V qd
ri (R) =

√
�l (R)

2π

[
νd

i (R)
]−3/2

. (20)

With these definitions, the bound part of the electronic
Hamiltonian in a given symmetry has the following matrix
representation:

Hel =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

V qd
r V qd

r1 V qd
r2 . . . V qd

rn

V qd
1r V qd

11 0 . . . 0

V qd
2r 0 V qd

22 . . . 0
...

...
...

. . . 0

V qd
nr 0 0 . . . V qd

nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

By diagonalizing this matrix we obtain an approximation of
the adiabatic potential curves at small internuclear distances.
The matrix in Eq. (21) is real, and symmetric and hence it can
be diagonalized by

Vad = STVqd S. (22)

We can also obtain approximative nonadiabatic coupling ele-
ments from the transformation matrix S by noting that Eq. (22)
implies that

φad
i =

∑
k

(ST)ikφ
qd
k , (23)

and hence that

f ad
i j (R) = 〈

φad
i

∣∣ d

dR

∣∣φad
j

〉 =
∑

k

(ST)ik
d

dR
Sk j

+
∑

kl

(ST)ik
〈
φ

qd
k

∣∣ d

dR

∣∣φqd
l

〉
Sl j . (24)

The second term requires that we compute 〈φqd
k | d

dR |φqd
l 〉,

which can be approximated by the scaling relations introduced
in [51]. This term is small and we therefore neglect it.

Once we have transformed the quasidiabatic potentials to
the adiabatic representation and computed the approximative
nonadiabatic couplings we can combine the potentials with
the calculated ab initio adiabatic potentials. We can then use,
for instance, the lowest M ab initio potentials in a given
symmetry. For the radial couplings among these states we
use the ab initio data. For higher excited states, i > M, we
then use the approximative potentials that we have obtained
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by transforming the quasidiabatic potentials to the adiabatic
representation. The radial couplings among these states and
between the ab initio calculated potentials and the approxima-
tive potentials are obtained using Eq. (24). We can then use the
new combined ab initio and approximated adiabatic potentials
and nonadiabatic couplings to transform to the strict diabatic
representation as described above.

To conclude the discussion of the quasidiabatic model,
one should also note that we need to consider the coupling
between the resonant state and the continuum. The electronic
Hamiltonian of (21) is the bound part of the full electronic
Hamiltonian

H full
el =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εδ(�ε − �ε′) V qd
εr 0 0 . . . 0

V qd
rε V qd

r V qd
r1 V qd

r2 . . . V qd
rn

0 V qd
1r V qd

11 0 . . . 0

0 V qd
2r 0 V qd

22 . . . 0
...

...
...

...
. . .

...

0 V qd
nr 0 0 . . . V qd

nn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(25)

where we let ε denote the energy of the continuum. The
quantity V qd

εr is the coupling between the resonant state and the
continuum. By using the PQ formalism of Feshbach [52,53]
and assuming a local approximation [54–57] it is possible to
show that these couplings lead to a Schrödinger equation of
nuclear motion in a complex potential:[

− 1

2μ

∂2

∂R2
I + J (J + 1) − �2

2μR2
I − EI

]
F̃J�

= −Ṽ�F̃J� + i

2
W̃�F̃J� − 1

2μR2
B̃�F̃J�

− 1

μR2
C−�̃�,�−1F̃J�−1 + 1

μR2
C+�̃�,�+1F̃J�+1,

(26)

where the imaginary part of the potential matrix, W̃�, is given
by

W̃� = TT W�,adT = TT ST W�,qd ST. (27)

The matrix W�,qd is the imaginary part of the potential matrix
in the quasidiabatic representation and has only one nonzero
element, given by �(R), at the same index as the resonant
state. Because we now have a complex potential, the Hamil-
tonian will be non-Hermitian at small internuclear distances
where the imaginary part of the potential is nonzero. The
equations are solved for the nuclear wave functions using
positive real values of the total energy. The scattering theory
can therefore be formulated in the usual way, and the fact
that the Hamiltonian is non-Hermitian at small internuclear
distances introduces no further difficulties.

The local approximation requires the assumption that the
vibrational channels of the ion that are open at each collision
energy form a complete set. For H+ + H− MN, this is true
only for high collision energies, and thus the local approxima-
tion is strictly not valid for low collision energies. However,
at low energies the cross section to n = 3 is completely domi-

nating owing to the strong nonadiabatic radial couplings at 36
a0 [22], and hence it is not likely that the small internuclear
distances where autoionization takes place are reached.

C. Differential cross section

Scattering of H+ + H− involves identical nuclei and for-
mulas for the MN differential cross section that takes this into
account can be formulated by forming a linear combination of
the direct and exchange scattering amplitudes. The direct and
exchange scattering amplitudes are given by [58,59]

f d
i j (E , θ ) = 1

2

[
f g
i j (E , θ ) + f u

i j (E , θ )
]
, (28)

f ex
i j (E , θ ) = 1

2

[
f g
i j (E , θ ) − f u

i j (E , θ )
]
, (29)

where the superscripts g and u refer to gerade and unger-
ade symmetry, respectively. The scattering amplitude is given
by [42]

fi j (θ, E ) =
∑

J

(2J + 1)ei(σ J
i +σ J

j ) f J
i j (E )PJ (cos θ ), (30)

where

f J
i j (E ) = SJ

i j (E ) − δi j

2i
√

kik j
. (31)

The phase factor ei(σ J
i +σ J

j ) is present because we have one
Coulomb channel in the symmetries 1�+

g and 1�+
u , respec-

tively. The Coulomb phase is given by σ J
i = arg �(J + 1 +

iηi ) where the Sommerfeld parameter, ηi = μq1q2/ki, is set to
zero for non-Coulomb channels.

Because the nuclei are identical, there is no way of dif-
ferentiating between the direct and exchange interactions.
Furthermore, the potential asymptotically correlating with the
ion-pair state may be of either 1�+

g or 1�+
u symmetry, and

therefore the reflection symmetry of the electronic wave func-
tions needs to be considered. Taking these things into account,
the differential cross section is given by [42,58,59]

dσi j

d�
(E , θ ) = 3

4

ki

k j

∣∣ f g,odd
i j (E , θ ) + f u,even

i j (E , θ )
∣∣2

+ 1

4

ki

k j

∣∣ f g,even
i j (E , θ ) + f u,odd

i j (E , θ )
∣∣2

, (32)

where the superscripts even and odd indicate that the summa-
tion of the scattering amplitudes are over even and odd angular
momentum quantum numbers, respectively.

IV. RESULTS AND DISCUSSION

A. Mutual neutralization total cross section

The H+ + H− MN cross section has been calculated for en-
ergies between 0.001 and 600 eV. In Fig. 8 the calculated cross
section, including covalent states that correlate with the n � 4
limits, autoionization and rotational couplings, is shown in
comparison to previous theoretical calculations [16,19,21,22]
and experimental measurements [17,20]. The present result is
in reasonable agreement with the experimental data by Szucs
et al. [17] and Peart et al. [20] for energies below about
200 eV. The measured cross section of Ref. [20] does not ex-
hibit the E−1 behavior for low energies predicted by Wigner’s
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FIG. 8. Calculated total H+ + H− MN cross section, including
autoionization and rotational couplings, in comparison to previous
theoretical calculations [16,19,21,22] and experimental measure-
ments [17,20].

threshold law [60] and which is seen in the theoretical results.
The present calculation agrees with the low-energy Landau-
Zener calculation by Eerden et al. [21] and is a factor of about
1.2 larger than that of Fussen and Kubach [19]. Compared to
the previous calculation of Stenrup et al. [22], which included
states up to the n = 3 limit and did not include autoionization
or rotational couplings, the present calculation is larger for
energies above a few eV while the two calculations overlap
for smaller energies.

The effects of including autoionization and rotational cou-
plings in the model have been investigated and the results are
presented in Fig. 9. When rotational couplings are included,
the cross section is increased by about 10% between 5 and
20 eV. At higher energies, the increase ranges between 15%
and 20%. The magnitude of the cross section is increased be-
cause rotational couplings will induce interactions with more
covalent states. The effect of autoionization has been assessed
by turning the imaginary part of the potential matrix on and

FIG. 9. Calculated total H+ + H− MN cross section with and
without rotational couplings and autoionization.

FIG. 10. Calculated total H+ + H− MN cross section with the
inclusion of higher excited states. The label n = 4 indicates that ex-
cited states were included that correlate to limits up to and including
the n = 4 limit and so on.

off in the calculations. When autoionization is included, the
cross section is slightly decreased, which can be understood
since there is a loss of flux to the ionization continuum. This
effect is small, however. The present calculation only included
the lowest resonant state in each symmetry considered in the
model, and in principle higher lying resonant states also could
contribute as a loss mechanism. Additionally, autoionization
from Rydberg states due to nonadiabatic interactions is not
included in present model. This could explain why our calcu-
lated cross section in Fig. 8 is larger than the experimental
cross sections at high collision energies. In principle, rota-
tional couplings to 1	g/u states could also be included, which
would be a second-order effect. An additional calculation was
made where we included these couplings using a pure preces-
sion approximation [61]. This increased the cross section by at
most 1.6% and made an equally small change in the branching
ratios.

In order to assess the effect of higher excited states, the
total MN cross section has been calculated including covalent
states that asymptotically correlate with the limits n = 4, n =
5, n = 6, and n = 7. These calculations have been carried out
using the quasidiabatic model described in Sec. III B (without
rotational couplings) and the results are shown in Fig. 10.
The cross sections almost entirely overlap in the energy range
considered and thus the influence of higher excited states is
negligible. Excited states that asymptotically correlate with
limits n > 4 have significant radial nonadiabatic couplings
only at small internuclear distances and therefore they have
a small contribution to the magnitude of the total MN cross
section.

B. Final state distributions

From the cross section calculations we are also able to
obtain information on the final state distributions. Figure 11
shows the calculated n = 2, n = 3, and n = 4 branching ratios
of the MN process, calculated with and without autoioniza-
tion and rotational couplings. The n = 1 branching ratio is
negligible in all cases and is not shown in Fig. 11. As a
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FIG. 11. Branching ratios of H+ + H− MN. Also shown are the
calculated and measured results of Ref. [23].

comparison, the black dotted lines and the black dots show the
results of a previous combined experimental and theoretical
study [23]. In the previous theoretical study, covalent states
that correlate with the limits n = 1, 2, 3 were included and no
rotational couplings nor autoionization were considered. The
calculated and measured branching ratios were found to be in
good agreement for energies below 50 eV. It was suggested
that higher excited states, rotational couplings and autoion-
ization are possible explanations of the disagreement at high
energies. From Fig. 11 we can conclude that with the inclusion
of the n = 4 states there is a redistribution from the n = 3
channels to the n = 4 channels making the n = 3 branching
ratio smaller. The agreement of the n = 3 branching ratio with
experiment is somewhat better than [23] for energies larger
than about 50 eV. Autoionization has a negligible effect on
the branching ratios. The inclusion of rotational couplings
has a large influence on the n = 2 and n = 3 branching ra-
tios. However, the agreement with experiment when rotational
couplings are included is worse than the previous theoretical
prediction of Ref. [23]. Measuring the n = 4 channel is ex-
perimentally challenging because the n = 4 fragments are not
well separated from the n = 3 fragments. However, even if
we assume that the n = 4 fragments can not be resolved, the
agreement with the experiment at high collision energies is
worse than the calculation of Ref. [23]. The branching ratios
to states of n > 4 are at the most of order of 10−2 and are thus
negligible.

For the H2 system, some of the nonadiabatic couplings
are nonzero asymptotically. This could induce transitions be-
tween states at arbitrarily large internuclear distances. This
problem arises because the coordinates used to describe
the collision complex are not suited to describe the free
atoms [62]. A similar problem arises in semiclassical the-
ory where the remedy is the inclusion of electron translation
factors [63,64]. In our calculations, such a solution is not
practical. One approach to this problem is the reprojection
method [62,65,66], which in principle could be applied in the
present case. However, the nonadiabatic couplings that are
nonzero asymptotically are only among covalent states and
their asymptotic values are small compared to their values

FIG. 12. Differential cross section of MN in H+ + H− collisions
at selected energies.

at the avoided crossings. In order to assess the influence that
these nonadiabatic couplings have on our results, we have per-
formed calculations at various energies where we integrated
the log derivative to 80 a0 instead of 50 a0. This was found to
have a negligible influence on the cross section and branching
ratios for the entire range of energies considered here.

C. Differential cross section

The differential cross section of MN in H+ + H− collisions
has been calculated at selected energies and the result is pre-
sented in Fig. 12. In these calculations both autoionization and
rotational couplings are included. The cross section is domi-
nated by forward and backward scattering and is symmetric
at all energies. As the energy is increased, the cross sec-
tion becomes more symmetric. In the forward and backward
directions, the cross sections exhibit fast oscillations. In the
forward direction, the angle at which these oscillations change
character decreases as the energy increases. The reverse is true
in the backward direction. The differential cross section of
H+ + H− MN has previously been calculated by Nkambule
et al. [23]. Their calculation did not include the phase factor
containing the Coulomb phase (see Sec. III C) and is therefore
incorrect. This phase factor is not present in the expression for
the total cross section but must be included when computing
the differential cross section if there is a Coulomb channel
present. Interestingly, the reason that the previously calcu-
lated differential cross section [23] is not symmetric around
θ = 90◦ is not due to the missing Coulomb phase. Using
the same set of potentials and couplings, we do not obtain
symmetric differential cross sections. However, with our new
potentials and couplings, we obtain a symmetric differential
cross section even if we in the calculation only include the
same number of states (all n � 3 covalent states) as in the
previous study.

The shape of the differential cross section is altered as the
energy increases from 0.1 eV to 1 eV. In order to understand
this pattern, the direct and exchange differential cross sec-
tions have been calculated. A comparison of the direct and
exchange differential cross sections to the total differential
cross section is shown in Fig. 13. The direct differential cross
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FIG. 13. Comparison of the direct and exchange differential
cross sections at (a) E = 0.1 eV and (b) E = 1.0 eV.

section is dominated by forward scattering while the exchange
differential cross section is dominated by backwards scatter-
ing. This gives rise to the symmetric total differential cross
section. Comparing the direct differential cross section at the
two energies 0.1 eV and 1.0 eV, we see that the angle where
the oscillations change character decreases as the energy in-
creases. The reverse is true for the exchange differential cross
section. For larger collision energies, as is seen in Fig. 13(b),
this gives rise to the dip in the total differential cross section.
This dip is not present at lower energies because of the overlap
of the direct and exchange differential cross sections.

In order to investigate how rotational couplings and
autoionization influence the differential cross section, calcula-
tions have been performed with and without these effects. The
result is shown in Fig. 14 for a collision energy of 1.0 eV. The
differential cross sections differ negligibly for angles in the
intervals 20◦ to 50◦ and 130◦ to 160◦. The main difference is
for angles between 50◦ and 130◦ where the cross sections in-
cluding autoionization is somewhat smaller.

V. SUMMARY

We have studied mutual neutralization in collisions of
H+ + H− and we have investigated the role of autoionization,

FIG. 14. Differential cross section of MN in H+ + H− collisions
at E = 1.0 eV calculated with and without rotational couplings and
autoionization.

rotational couplings and excited covalent states associated
with n � 4. Relevant adiabatic potential curves of 1�+

g , 1�+
u ,

1�g, and 1�u symmetries as well as radial and rotational
nonadiabatic couplings have been computed ab initio. It was
found that rotational couplings cause a significant increase of
the total cross section at collision energies above a few eV.
Autoionization plays the role of a loss mechanism but the
influence on the total cross section is small. Applying a
quasidiabatic model, the importance of higher excited states
(n � 4) has been investigated. These states have a negligible
influence on the total cross section. The branching ratios of the
H+ + H− MN process have been computed with and without
the effects of rotational couplings and autoionization. When
rotational couplings are included, the agreement with exper-
iment becomes worse over almost the entire energy range
considered here. The differential cross section of H+ + H−
MN has been calculated at selected energies. The differential
cross sections are symmetric with respect to the scattering
angle and are dominated by forward and backward scattering.

The model of H2 can be applied to study other processes
such as double charge transfer, associative ionization, disso-
ciative recombination and resonant ion-pair formation. We
have here presented a method that makes it possible to in-
clude an accurate description of bound electronic states as
well as Rydberg states and electronic resonant states. We
include couplings between bound states at both small and
large internuclear distances as well as couplings to the ioniza-
tion continuum. The model can be applied to other diatomic
systems for which it is possible to carry out accurate structure
calculations.
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