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Wave-packet continuum discretization approach to He2+-He collisions
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The two-center wave-packet convergent close-coupling method is generalized to multiply charged ion col-
lisions with helium and applied to the He2+-He scattering problem. The approach is applicable in a wide
range of collision energies including low and intermediate energies, where coupling between various reaction
channels and electron exchange between the fragments in the rearrangement channel are important. The target
structure is treated using the configuration-interaction method within the frozen-core approximation, where one
of the electrons of the target is assumed to stay in the ground state throughout the collision. This accounts
for the indistinguishability and the correlations between the electrons of the target. We also use a simpler
alternative method that is based on an effective one-electron target description that neglects the electron-electron
correlations. In both methods, the continuum of the target atom and the hydrogenlike atom formed after electron
capture by the projectile is discretized using the wave-packet approach. We present cross sections for total and
state-selective electron capture, excitation, and single ionization of the target. The results are provided for the
incident energies from 10 keV/u to 5 MeV/u, where one-electron processes are expected to dominate. Particular
attention is focused on the intermediate-energy region where substantial deviations between various theoretical
results are found. However, overall, the present results are in good agreement with experimental data and other
calculations, where available. We demonstrate that both effective single-electron and two-electron methods can
provide a realistic picture of all single-electron scattering processes taking place in He2+-He collisions in terms
of the total cross sections. This creates a reliable platform for modeling differential scattering and ionization in
this four-body system.
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I. INTRODUCTION

In atomic physics, collisions of fully stripped ions with
helium are of particular interest. Studying the underlying
processes in such four-body scattering systems has essen-
tial applications in a wide range of fundamental sciences
such as astrophysics and plasma physics. These collisions
are also relevant to hadron therapy of cancer [1], where bare
ions are used to deliver a required dose of radiation to de-
stroy tumor cells. Recent reviews of ion-atom collisions and
their applications are provided in Refs. [2,3]. The importance
of studying collisions involving multiply charged ions with
large nuclear charges is that they can deliver higher doses
of radiation than protons due to their larger masses. For
these and many other reasons, scattering of various singly
and multiply charged ions on helium has been extensively
investigated both theoretically [4–15] and experimentally
[16–27].

Theoretically, describing ion collisions with the helium
atom is very challenging due to the two-electron nature of
the target. The corresponding Schrödinger equation for the
target atom cannot be solved analytically and the accuracy
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of solutions highly depends on the approximations and
numerical approaches applied. Therefore, some authors ig-
nore the electron-electron correlation effects by employing
the independent-electron model (IEM) in their approaches
[14,28–30]. In this method, the active electron moves inde-
pendently in the potential generated by the interaction with
the residual target (He+). The IEM approach is more efficient.
Its use is justified at the collision energies where the electron-
electron correlation is negligible.

Scattering problems involving the helium atom provide
a sensitive test for theoretical methods. Depending on the
projectile energy, a wide range of theories were employed to
investigate collisions of bare ions with helium with varying
success. One of the successful models to describe ion-atom
collisions is the corrected first Born (CB1) approximation first
introduced within the three-body formalism by Belkić et al.
[31]. The method overcomes the issue of residual long-range
Coulomb interactions by introducing the correct Coulomb
boundary conditions in the entrance and exit channels. The
CB1 method was applied to the four-body problem of fully
stripped ion collisions with heliumlike atoms. Applications
of the four-body boundary-corrected first Born (CB1-4B)
approximation were reported in Refs. [5,9,12,13] for the he-
lium target. In particular, for the He2+ projectile, the results
agreed very well with measurements at intermediate and high
energies.
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The boundary-corrected four-body version of the
continuum-distorted-wave theory was developed by
Belkić et al. [32] and later was successfully applied
to calculate single-electron-capture cross sections in
various ion-atom collision systems including He2+-He
scattering in Ref. [33]. Another distorted-wave theory is the
continuum-distorted-wave eikonal-initial-state (CDW-EIS)
approach [34,35]. Generalization of the CDW-EIS approach,
which uses a more accurate description of the states,
was developed by Abufager et al. [30]. Calculated cross
sections for electron capture in He2+-He collisions showed
good agreement with the experimental data. Terekhin et al.
[35] used the three-body CDW-EIS method to study electron
capture and ionization in multiply charged ion collisions with
helium. The results agreed well with the experimental data;
especially at high impact energies, agreement was very good.
Samaddar et al. [36] applied the four-body model of target
continuum-distorted-wave approximation to study scattering
of protons and α particles on helium in the energy range
from 30 to 1000 keV/u. Very recently, Delibašić et al. [37]
tabulated total and state-selective cross sections for single-
electron capture from the helium atom in its ground state
by a number of multiply charged ions using the three-body
boundary-corrected continuum intermediate state (BCIS-3B)
method at intermediate and high projectile energies.

At sufficiently high energies the probability of electron
capture is small in comparison with the probabilities of ex-
citation and ionization. Therefore, excitation and ionization
in He2+-He collisions can be described using a single-center
atomic-orbital coupled-channel (CC) method. Barna et al.
[38] and Pindzola et al. [39] showed that the single-center
CC approach can adequately describe the ionization process
above 600 keV/u. Their results showed good agreement with
the experimental data available in this energy region.

The classical trajectory Monte Carlo (CTMC) approach,
based on numerically solving the corresponding Hamilton
equations, is another widely used method in ion-atom colli-
sions. The CTMC method cannot be directly applied to study
the scattering problems involving helium and other multielec-
tron atoms due to the instability of the target description.
This problem, in the case of the helium target, was overcome
by several means: (i) Stabilizing potentials were employed.
Zajfman and Maor [7] in their work used the Heisenberg
uncertainty principle to stabilize the helium atom to study
collisions of bare ions with helium. (ii) The target was treated
as a one-electron system by neglecting the electron-electron
correlation. This approach was applied to study various post-
collisional processes in proton and antiproton scattering on
helium by Schultz and Olson [15]. (iii) Dynamical screening
was introduced for the initially bound electrons (DCTMC).
The DCTMC method was developed by Montemayor and
Schiwietz [40] and Meng et al. [41] for the helium target. It
was applied to calculate the total and state-selective electron-
capture cross sections in He2+-He collisions by Alessi et al.
[17]. Their results agreed well with experimental measure-
ments.

Along with their CC calculations, Barna et al. [38] pre-
sented two versions of the CTMC methods. They used an
equivalent electron (EE) and a nonequivalent electron (NEE)
approximation to study single and double ionization of helium

by heavy-particle impact. In the first approach, the problem
was treated as a four-body system, where the electron-electron
interaction was neglected and two electrons were treated as
nonequivalent. The helium wave functions were built as prod-
ucts of two different single-particle wave functions. In the
second method, a system of three particles (the projectile, the
active electron, and the remaining He+ ion) was considered.
The two-electron wave functions were constructed as products
of two identical single-particle wave functions. The NEE-
CTMC method was shown to agree better with the experiment
than the EE-CTMC one; however, both methods were not as
successful as the CC method for the purpose of investigating
the ionization process.

A method based on the time-dependent density-functional
theory (TDDFT) was developed by Baxter and Kirchner
[42] to study collisions involving helium atoms. They used
a multiconfiguration Hartree-Fock (MCHF) ground-state he-
lium wave function. Within the framework of TDDFT, the
results of two models, one based on the Wilken-Bauer (WB)
correlation integral model and the other on an independent-
electron model (IEM), were compared and the TDDFT WB
method was shown to have an advantage over the TDDFT
IEM one. In particular, the TDDFT WB method significantly
improved agreement between theory and experiment for the
total electron-capture cross section in the problematic region
below 100 keV/u.

Close-coupling approaches, which use atomic or molecular
orbitals as basis functions in the expansion of the electronic
time-dependent scattering wave function, are also commonly
applied to study ion-atom collisions. The atomic-orbital close-
coupling (AOCC) approach was employed in Refs. [43,44]
to study collisions of He2+ ions with the ground state or
metastable helium atom. In [43], He2+-He collisions were
studied at low and intermediate projectile energies, where
electron-electron interactions were taken into account. Partic-
ular attention was paid to obtaining partial cross sections for
single transfer, transfer-excitation, and excitation of the target,
which are sensitive to the target description. The one-electron
model of the method was applied to collisions with metastable
helium. A fully correlated two-active-electron semiclassical
atomic-orbital close-coupling method was recently applied
to collisions of multiply charged ions with helium [45].
The advantage of this method is that it uses a large basis,
takes the interaction of electrons into account, and includes
a set of pseudostates. One of the successful approaches
to studying very-low- to low-energy ion-atom collisions is
the quantum-mechanical orbital close-coupling (QMOCC)
method [46]. The QMOCC method applied to He2+-He colli-
sions [47,48] showed good agreement with the experimental
data.

The wave-packet convergent close-coupling (WP-CCC)
approach was developed by Abdurakhmanov et al. [49]. It
has been applied to various three-body scattering problems
including multiply charged projectiles [50–52]. The approach
is based on discretizing the continuum by subdividing it into
a certain number of bins. Within each bin, square-integrable
states are constructed by integrating the continuum eigen-
function. For four-body scattering problems involving the
helium target, the WP-CCC method was introduced by Ab-
durakhmanov et al. [53,6] to study scattering of antiprotons
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and energetic protons on helium within the frozen-core frame-
work. Later we extended the method to include electron
capture in proton-helium collisions [54]. One of the important
features of the two-center method is that it accounts for the
electron exchange between the fragments in the rearrange-
ment channels, particularly important at low energies. In the
four-body WP-CCC approach, the wave packets for the target
are constructed using the helium continuum functions ob-
tained by numerically solving the corresponding Schrödinger
equation. For single-electron capture, single ionization, and
excitation of the target, the results showed good agreement
with available experimental data and other calculations. Re-
cently, the method was applied to proton-helium differential
scattering problems [55,56]. At intermediate collision ener-
gies, the calculations of angular differential cross sections for
elastic scattering, target excitation, electron capture, and var-
ious singly differential cross sections for ionization agreed
with experimental measurements very well. The WP-CCC
approach has recently been extended to the proton-H2 system
as well [57,58].

In this paper we extend the two-center four-body WP-
CCC approach, originally developed for p-He collisions [54],
to multiply charged ion collisions with helium and apply
it to the He2+-He scattering problem. This is an example
of a four-body scattering problem with the residual long-
range Coulomb interaction in the rearrangement channel.
We present total electron-capture, excitation, and single-
ionization cross sections for He2+-He collisions. There are
many experimental measurements and other theoretical cal-
culations of the integrated cross sections for the considered
processes and we make comparisons wherever available. Fur-
thermore, we present state-selective electron-capture cross
sections into the 1s, 2s, 2p, 3s, 3p, and 3d states of
the hydrogen-like He+ ion formed after electron capture.
State-selective capture cross sections are compared with the
calculations of Mančev et al. [59], but there are not enough
experimental works for comparison. For the He2+ projectile,
the scarcity of experimental data can be explained by the fact
that after the electron is captured by He2+, the formed and
the residual ions (both are He+ ions) become indistinguish-
able, which makes the state-selective measurements more
challenging. In this work we pay particular attention to the
intermediate-energy region due to its relevance to the ITER
and JET fusion projects.

Unless specified otherwise, atomic units (a.u.) are used
throughout this paper.

II. THEORY

A. The WP-CCC approach with a correlated two-electron
description of the target

Here we describe the two-center WP-CCC approach to
P(Z )-He collisions, where P(Z ) is a fully stripped projectile ion
of charge Z (for He2+, Z = 2). We follow Refs. [60,61], where
a similar extension was performed for one-electron targets.
The total scattering wave function � is the solution of the
Schrödinger equation

(H − E )� = 0, (1)

where H is the full four-body Hamiltonian. The total energy
E can be written in any one of the three forms

E = E0 + k2
α

2μT
+ εα

= E0 + k2
1β

2μP
+ ε

(Z )
1β

= E0 + k2
2β

2μP
+ ε

(Z )
2β , (2)

with E0 the binding energy of the frozen target electron. The
indices α and β denote the full set of quantum numbers
representing states in the P(Z )-He and P(Z−1)-He+ channels,
respectively. Channel 1β is the same as channel 2β but with
the electron of the residual target and that of the P(Z−1) ion
exchanged. Furthermore, kα is the momentum of the projectile
relative to the helium atom in the α channel, μT is the reduced
mass of this system, εα is the energy of the pseudostate α, k1β

(and k2β) is the momentum of the formed P(Z−1) ion relative
to the residual helium ion in the 1β (2β) channel, μP is the
reduced mass, and ε

(Z )
1β (ε (Z )

2β ) is the energy of the hydrogenlike

ion P(Z−1) in the 1β (2β) channel. We note that ε
(Z )
1β = ε

(Z )
2β .

The full Hamiltonian H can be represented in three equiv-
alent forms

H = Kσ + HT1 + HT2 + VP + V12 (3)

= Kρ1 + HP1 + HT2 + V1 + V12 (4)

= Kρ2 + HP2 + HT1 + V2 + V12, (5)

where kinetic energy operators are defined as

Kσ = − ∇2
σ

2μT
, Kρi = − ∇2

ρi

2μP
, i = 1, 2 (6)

and Coulomb interaction potentials as

VP = 2Z

R
− Z

x1
− Z

x2
, (7)

V1 = 2Z

R
− 2

r2
− Z

x1
, (8)

V2 = 2Z

R
− 2

r1
− Z

x2
, (9)

V12 = 1

|r1 − r2| . (10)

The vectors R, r1, and r2 define the positions of the inci-
dent projectile and the two electrons relative to the origin,
respectively, x1 and x2 are the position vectors of the helium
electrons relative to the projectile, σ is the position vector of
the projectile relative to center of mass of the helium atom,
and ρ1 (ρ2) is position vector of the system of the projectile
and the first (second) electron relative to the helium ion (see
Fig. 1). The Hamiltonians of the P(Z−1) ion and the He+ ion
formed by each of the target electrons are written as

HPi = −∇2
xi

2
− Z

xi
, i = 1, 2 (11)

HTi = −∇2
ri

2
− 2

ri
, i = 1, 2, (12)
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FIG. 1. Jacobi coordinates for the He2+-He system.

respectively. With these definitions the Hamiltonian of the
helium atom is written as

HT = HT1 + HT2 + V12. (13)

We employ an impact-parameter method in modeling the
collisional system, which assumes that the target nucleus is
fixed at the origin and the incident projectile is moving along
the straight-line trajectory R ≡ R(t ) = b + vt , where b is the
impact parameter and v is the initial velocity of the projectile.
We set the z axis along v. The vector b is set perpendicular to
the direction of the moving projectile, i.e., b · v = 0.

The results of close-coupling approaches are dependent
on the choice of the expansion of the total scattering wave
functions. In our two-center WP-CCC approach, the scattering
wave function is expanded in terms of N target-centered and
M projectile-centered pseudostates as

� =
N∑

α=1

Fα (t, b)ψHe
α (r1, r2)eikασ

+ 1√
2

M∑
β=1

Gβ (t, b)
[
ψ

(Z )
β (x1)ψHe+

1s (r2)eik1βρ1

+ ψ
(Z )
β (x2)ψHe+

1s (r1)eik2βρ2
]
, (14)

where ψHe
α and ψ

(Z )
β are the wave functions for the helium

atom and P(Z−1), the hydrogenlike atom of nuclear charge
Z formed after electron capture by the projectile, respec-
tively. The helium wave functions ψHe

α and energy levels
are obtained by numerically solving the Schrödinger equa-
tion corresponding to the helium atom using the symmetric
expansion ψHe

α (r1, r2) = ψα (r1)ψHe+
1s (r2) + ψα (r2)ψHe+

1s (r1).
The wave function ψHe+

1s represents the ground state of He+.
For their detailed definitions, refer to Refs. [54,62]. The
expansion coefficients Fα (t, b) and Gβ (t, b) as t → +∞ rep-
resent the transition probability amplitudes into the various
target and projectile states.

Next we insert the expansion in Eq. (14) into Eq. (1) and
apply the semiclassical approximations. Then we successively
multiply it by the pseudostates and integrate over all vari-
ables except for σ, ρ1, and ρ2 to get a system of differential

equations for the time-dependent coefficients:

iḞα′ + i
M∑

β=1

ĠβKT
α′β =

N∑
α=1

FαDT
α′α +

M∑
β=1

GβQT
α′β,

i
N∑

α=1

ḞαKP
β ′α + i

M∑
β=1

ĠβLP
β ′β =

N∑
α=1

FαQP
β ′α +

M∑
β=1

GβDP
β ′β,

α′ =1, 2, . . . , N, β ′ =1, 2, . . . , M.

(15)

Here the direct-scattering matrix elements are defined as

LP
β ′β =1

2

∑
i, j=1,2

〈
kiβ ′ , ψ

(Z )
β ′ , ψHe+

1s

∣∣ψ (Z )
β , ψHe+

1s , k jβ
〉
, (16)

DT
α′α =〈

kα′ , ψHe
α′

∣∣HT − EHe
α + VP

∣∣ψHe
α , kα

〉
, (17)

DP
β ′β = 1

2

∑
i, j=1,2

〈
kiβ ′ , ψ

(Z )
β ′ , ψHe+

1s

∣∣HPi − ε
(Z )
β

∣∣ψ (Z )
β , ψHe+

1s , k jβ
〉

+ 1

2

∑
i, j=1,2

〈
kiβ ′ , ψ

(Z )
β ′ , ψHe+

1s

∣∣Vi

∣∣ψ (Z )
β , ψHe+

1s , k jβ
〉

(18)

and the rearrangement matrix elements are of the forms

KP
β ′α = 1√

2

∑
i=1,2

〈
kiβ ′ , ψ

(Z )
β ′ , ψHe+

1s

∣∣ψHe
α , kα

〉
, (19)

KT
α′β = 1√

2

∑
i=1,2

〈
kα′ , ψHe

α′
∣∣ψ (Z )

β , ψHe+
1s , kiβ

〉
, (20)

QP
β ′α = 1√

2

∑
i=1,2

〈
kiβ ′ , ψ

(Z )
β ′ , ψHe+

1s

∣∣HT − EHe
α + VP

∣∣ψHe
α , kα

〉
,

(21)

QT
α′β = 1√

2

∑
i=1,2

〈
kα′ , ψHe

α′
∣∣HPi − ε

(Z )
β + Vi

∣∣ψ (Z )
β , ψHe+

1s , kiβ
〉
,

(22)

where EHe
α = E0 + εα is the energy of He in channel α and

ε
(Z )
β ≡ ε

(Z )
1β = ε

(Z )
2β is the energy of the hydrogenlike atom of

nuclear charge Z .
We assume that the active electron of helium is initially in

the ground state; therefore, the above system of equations is
solved subject to the initial boundary condition

Fα (−∞, b) = δα,1s, α = 1, . . . , N

Gβ (−∞, b) = 0, β = 1, . . . , M. (23)

The transition probability amplitudes Fα (+∞, b) and
Gβ (+∞, b) are obtained by solving the system of differential
equations (15) as t → +∞. This is performed using the
standard Runge-Kutta technique over a finite z grid from
−zmax to +zmax, where zmax was set to 200 a.u. This requires
accurately calculated matrix elements at each time step.
These amplitudes are used to find the probability of the active
electron, after the collision, to be in the direct-scattering
channel α or in the rearrangement channel β,

Pα (b) = |Fα (+∞, b) − δα,1s|2, (24)

Pβ (b) = |Gβ (+∞, b)|2, (25)
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respectively. The obtained probabilities for the required range
of impact parameters are used to calculate partial direct-
scattering (DS) and electron-capture (EC) cross sections

σ DS
α = 2π

∫ bmax

0
db bPα (b), (26)

σ EC
β = 2π

∫ bmax

0
db bPβ (b), (27)

where bmax, the upper limit for the impact-parameter range,
is chosen to be sufficiently high, as detailed below. The total
electron-capture cross section is the sum of the cross sec-
tions for transitions into the negative-energy eigenstates of the
helium ion projectile:

σ EC =
∑

β,ε
(Z )
β <0

σ EC
β . (28)

The total single-ionization (SI) cross section is the sum of the
partial cross sections for excitation into the positive-energy
pseudostates of the target and electron transfer into the con-
tinuum of the projectile:

σ SI =
∑

α,εα>0

σ DS
α +

∑
β,ε

(Z )
β >0

σ EC
β . (29)

B. The WP-CCC approach with effective one-electron
treatment of the target

The correlated two-electron target description used in the
preceding section is theoretically complex. It ultimately leads
to scattering equations, the solving of which is computa-
tionally demanding. Recently, we have developed a simpler
technique which models the target as an effective one-electron
system. Details of the theory are given in Ref. [63] and its
application to the helium target is described in Refs. [55,56].

Briefly, we first generate an accurate ground-state wave
function for the target using a computational atomic-structure
package that is based on the multiconfiguration Hartree-Fock
approximation. Then we calculate the probability density for
the target system before averaging over the electronic spin and
the spatial coordinates of all but one electron, thus obtaining
a single-electron density function which represents the prob-
ability of finding one electron at a certain distance from the
nucleus. The single-electron wave function is then obtained by
taking the square root of this function. Then the multielectron
Schrödinger equation is reduced to an effective one-electron
equation by inserting this wave function and we can inversely
solve it to determine the effective potential that represents the
collective field of the nucleus and all other electrons. Finally,
using this numerical potential, we can generate excited states
and a non-normalizable continuum state for the active elec-
tron. This is achieved using an iterative Numerov approach to
solve the Schrödinger equation for the effective one-electron
system. Positive-energy pseudostates representing the contin-
uum are constructed using the wave-packet approach. This
involves integration of the helium continuum-state wave func-
tion over a set of discretization bins [63].

Ultimately, we obtain a set of orthonormal pseudostates
for the helium atom in an effective one-electron representa-
tion. While this makes computations significantly easier, the

method neglects the correlation effects between the electrons
that become particularly important at lower impact energies.
In addition, there is no electron exchange in the He+-He+

channel as the residual target ion He+ is effectively a single
particle. For comparison, here we show results from both
approaches.

Hereafter, we refer to the simplified effective one-electron
method as E1E WP-CCC and the more accurate two-electron
method that takes into account the correlation between the
target electrons and exchange effects simply as WP-CCC.

III. RESULTS

In both approaches, the accuracy of the predictions depend
on several factors such as the accuracy of the helium wave
functions and corresponding energy levels, as well as the
matrix elements. This was carefully taken care of in providing
the final results. For example, calculated energy levels of
the helium atom described the experimental data very well.
Moreover, we studied the dependence of the cross sections on
the number of discretization bins Nc, the maximum energy
of the ejected electron εmax, the maximum principal quantum
number of negative-energy states nmax, and the maximum
angular momentum quantum number lmax of all the included
states. Systematic calculations were performed to test the con-
vergence of the results by gradually increasing the number
of both target-centered and projectile-centered states while
maintaining the accuracy of the employed wave functions for
the states. As mentioned in the preceding section, the resulting
cross sections depend also on the choice of bmax, the upper
limit for the impact parameter. In our calculations we set
bmax = 15, which was sufficient to produce reliable integrated
cross sections. Increasing this parameter further had no sig-
nificant effect on the final results. To get accurate results and
better convergence in terms of positive-energy pseudostates,
the maximum energy of the included bin states, εmax, needs to
be large enough. Correspondingly, to obtain sufficiently dense
bin states, the number of bins needs to be increased as εmax

gets larger. Taking these into consideration, εmax ranged from
8 to 32 a.u. depending on the incident projectile energy.

In calculations, for simplicity we used an equal number of
basis functions centered around the target and projectile. For
given values of Nc, nmax, and lmax, the total number of states
in each basis is found as

N =
lmax∑
l=0

(nmax + Nc − l )(2l + 1). (30)

Setting nmax = 5 and lmax = 3 was shown to be sufficient to
get stable results and increasing these values further did not
show any significant changes. The convergence of the cross
sections in terms of the number of bin states was achieved with
Nc = 20 at lower and intermediate energies and with Nc = 30
at higher energies. The bases with these parameters consist of
the 366 and 526 functions, respectively.

Below we present integrated cross sections for total and
state-selective electron capture and excitation as well as sin-
gle ionization in He2+-He collisions at incident energies
from 10 keV/u to 5 MeV/u where one-electron processes
are expected to dominate, with particular emphasis on the
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FIG. 2. Total cross section for electron capture in He2+ +
He(1s2) collisions as a function of the incident projectile energy. The
present two-electron and E1E WP-CCC results are represented by
the red and black solid lines, respectively. The experimental data are
due to Rudd et al. [20], Shah and Gilbody [22], Shah et al. [23], de
Castro Faria et al. [21], and Alessi et al. [17]. The other theoretical
results are from the BCIS-3B method by Delibašić et al. [37], the
CB1-4B method by Mančev et al. [59], the CDW-EIS method by
Abufager et al. [30], the DCTMC method by Alessi et al. [17], and
the TDDFT WB and TDDFT IEM methods by Baxter and Kirchner
[42] with MCHF. In (a) the low-energy region is highlighted using a
linear scale. The error bars reported in Ref. [22] are too small to be
visible.

intermediate-energy region. Here and hereafter, the incident
energy is given in the laboratory frame where the target is at
rest. The two-electron and E1E WP-CCC results are shown by
the crosses and pluses, respectively. The calculated points are
connected by solid lines to guide the eye.

A. Total and state-selective electron capture

In Fig. 2 the two-electron and E1E WP-CCC total cross
sections for single-electron capture in He2+-He collisions are
compared with the corresponding experimental data [17,20–
23] and other theoretical results [30,37,42,43,59]. The exper-
imental data are only available below 1 MeV/u. The cross
section falls sharply at high energies; therefore, it is customary
to depict it in a logarithmic scale. Figure 2(b), which covers
a wide energy range using the logarithmic scale, shows that

FIG. 3. State-selective electron-capture cross sections into the
1s state of He+ in He2+-He(1s2) collisions as a function of the
incident projectile energy. The WP-CCC and E1E WP-CCC results
are represented by the red and black solid lines, respectively. The
experimental data are due to Alessi et al. [17] and Mergel et al. [24].
The DCTMC calculations by Alessi et al. [17], the BCIS-3B ones by
Delibašić et al. [37], the CB1-4B results by Mančev et al. [59], and
the AOCC results by Fritsch [43] are also shown.

there is very good agreement between all the theoretical calcu-
lations and the experimental measurements above 200 keV/u.

Thus, we can conclude that the high-energy electron-
capture problem is fairly well understood as far as the
integrated cross section is concerned. However, the situation
is less clear in the intermediate-energy region highlighted in
Fig. 2(a) using a linear scale. As one can see, there is sig-
nificant deviation among the theoretical results. As expected,
the high-energy perturbative methods [30,37,59] substantially
overestimate the experimental data in this region. On the
other hand, nonperturbative methods [42] predict dumping
of the cross section as energy decreases. The present results
produce the maximum of the cross section to be around
35 keV/u, in agreement with the measurements. However,
both two-electron and E1E WP-CCC methods overestimate
the experimental data near the maximum of the cross section.
Not surprisingly, the two-electron WP-CCC method performs
better as it accounts for the electron-electron correlation and
electron-exchange effects. The deviation from the data by
Rudd et al. [20] is about 15% at most. This can be considered
reasonably good agreement given the fact that the deviation
between the two sets of independent measurements by Rudd
et al. [20] and Shah et al. [23] reaches 25%. The two sets of
results by Baxter and Kirchner [42] based on the WB and IEM
implementations of the TDDFT method are similar in shape,
with the TDDFT WB method giving a systematically larger
cross section than the TDDFT IEM one, in better agreement
with experiment, at all energies. The DCTMC calculations are
in very good agreement with the experiments [22,23] starting
from 30 keV/u. Overall, we can see that the two-electron
WP-CCC and TDDFT WB calculations are in better agree-
ment with the experimental data in the entire energy range
considered.
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FIG. 4. State-selective electron-capture cross sections into the
(a) 2s and (b) 2p states of He+ in He2+ + He(1s2) collisions as a
function of the incident projectile energy. The WP-CCC and E1E
WP-CCC results are represented by the red and black solid lines,
respectively. Other theoretical results are from the CB1-4B method
by Mančev et al. [59], the BCIS-3B method by Delibašić et al. [37],
and the AOCC method by Fritsch [43].

Further we concentrate on the intermediate-energy region
and compare some of the state-selective electron-capture cross
sections with other calculations and experimental data, where
available. Figure 3 represents the cross sections for electron
capture into the ground state of the He+ ion. Our two-electron
and E1E WP-CCC results are compared with the experimental
data by Alessi et al. [17] and Mergel et al. [24] and the
DCTMC [17], CB1-4B [59], BCIS-3B [37], and AOCC [43]
calculations. The figure exposes a huge discrepancy between
various theoretical methods for this important capture chan-
nel. The two-electron WP-CCC results are overall in fairly
good agreement with the experimental data, while the E1E
WP-CCC ones significantly overestimate the data near its
maximum, highlighting the importance of accounting for the
electron-electron correlation and electron-exchange effects.
The AOCC method of Fritsch [43], which also takes the
interaction of the electrons into account, is the only theory
that agrees well with the experimental data of Alessi et al.
[17]; however, the results are available only below 65 keV/u.
We can also see that DCTMC calculations of Alessi et al.
[17] overestimate the two-electron WP-CCC results at lower
energies; however, they are in good agreement with our data
above 60 keV/u.

In Figs. 4 and 5 the two-electron and E1E WP-CCC cal-
culations for capture into excited states are compared with

FIG. 5. Same as in Fig. 4 but for the (a) 3s, (b) 3p, and (c) 3d
states.

the similar results based on the CB1-4B method by Mančev
et al. [59] and the BCIS-3B one by Delibašić et al. [37]. The
cross sections for the 2s and 2p states are shown in Fig. 4 and
the results for the 3l states are presented in Fig. 5, summed
over the magnetic quantum numbers where applicable. Again,
Fig. 4 reveals substantial discrepancy between various theo-
retical methods for these dominant n = 2 capture channels.
We emphasize, however, that all the methods are in excellent
agreement with each other at high energies not only for the
total cross section [see Fig. 2(b)] but also for practically all
the state-selective cross sections (not shown). We can see
substantial deviations for the n = 3 capture channels as well;
however, the two-electron WP-CCC and the AOCC are in
reasonably good agreement except for the capture into the
3s state, where the WP-CCC results are much higher. It can
be seen that the E1E cross sections somewhat overestimate
the two-electron WP-CCC ones at intermediate energy region,
but the difference is not as high as it was for the ground
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FIG. 6. State-selective electron-capture cross sections for the
He2+-He(1s2) → He+(n)-He+(n′) processes (see the text) for
(a) (2, 1) + (1, 2) and (b) (3, 1) + (1, 3). The experimental data
are due to Alessi et al. [17] and Mergel et al. [24]. The experi-
ments do not distinguish which ion He+ is in the excited state. The
DCTMC calculations by Alessi et al. [17], the BCIS-3B ones by
Delibašić et al. [37], and the CB1-4B results by Mančev et al. [59]
are also shown. The asterisk after the method name indicates that
the corresponding calculations include the contributions from the
He2+-He(1s2) → He+(n)-He+(n′ = 1) channels only.

state. The results from all the methods merge as the incident
energy increases above 200 keV/u. Another observation is
that both two-electron and E1E WP-CCC calculations for
electron capture into the 3d state show oscillatory behavior
at low energies, where there is no clear maximum.

Figure 6 shows the cross sections for electron capture into
the n = 2 and 3 shells (summed over the orbital angular mo-
mentum and magnetic quantum numbers). We use the notation
suggested by Mergel et al. [24] to denote the states of the
ion formed by the projectile after electron capture and the
residual target ion in the final channel. In this notation, (n, n′)
indicates the He2+-He(1s2) → He+(n)-He+(n′) process. We
contrast our results against the experimental data by Alessi
et al. [17] and Mergel et al. [24] for the (n, n′) + (n′, n) pro-
cess, meaning that the experiments do not distinguish which
He+ ion is in the excited state. When the reaction products
are symmetric, like in the (1,2) and (2,1) processes, their ex-
perimental separation becomes very challenging. Therefore,
for n = 2 and 3, the experiments provide data for the sum of
the cross sections for electron capture and residual target-ion
excitation into the corresponding shell. We emphasize that

the DCTMC calculations [17] shown in the figure are for the
(n, n′) + (n′, n) process; however, our results and the CB1-4B
[59] and BCIS-3B [37] ones correspond to the (n, 1) case.
As one can see from the figure, our E1E and two-electron
WP-CCC results for the (2,1) channel agree with the exper-
imental data for (2, 1) + (1, 2) starting from 60 keV/u. For
the (3,1) channel agreement with the experimental data for
(3, 1) + (1, 3) is seen starting from 100 keV/u. This allows
us to conclude that above 60 and 100 keV/u the dominant
contribution to the cross section of the (2, 1) + (1, 2) and
(3, 1) + (1, 3) processes come from the (2,1) and (3,1) chan-
nels, respectively. A similar conclusion was drawn by Alessi
et al. [17] with regard to the (2, 1) + (1, 2) process where the
(2,1) channel was shown to be dominant. We also note that
there is fair agreement between our two approaches through-
out the entire energy range; especially at high energies, the
agreement is very good. The DCTMC results for the (2, 1) +
(1, 2) process roughly follow the experimental data even at
low energies; however, they completely fail to reproduce the
data for the DCTMC (3, 1) + (1, 3) process. Figure 6(b) ap-
pears to suggest that the CB1-4B [59] method better describes
the (3, 1) + (1, 3) data at 20 and 50 keV/u. However, the
agreement is accidental since, first, the CB1-4B results are for
the (3,1) process only and, second, the method is known to
significantly overestimate the state-selective electron-capture
cross sections at these energies. Overall, there is clearly a
need for better modeling the (n, n′) + (n′, n) process. This
should include developing a method that is capable of in-
corporating two-active-electron processes, like capture of one
electron with simultaneous excitation of the residual target
ion. Naturally, such a method should also include capture of
one electron with simultaneous ionization of the residual ion.

The WP-CCC cross sections for electron capture into the
n = 1–5 shells of the He+ ion are tabulated in Table I. The
total electron-capture cross section which is obtained by sum-
ming the cross sections into all these shells (and presented
in Fig. 2) is also tabulated. Our results reveal that at lower
energies the highest contribution is due to the n = 2 shell.
However, starting from 80 keV/u, electron capture into the
ground state becomes dominant. It should also be noted that
at projectile energies above 0.5 MeV/u, about 80% of the total
cross section comes from electron capture into the ground
state. As expected, the cross sections for capture into the
n = 3, 4, and 5 shells of the He+ ion are in decreasing or-
der. The cross sections for capture into the n = 5 shell show
the lowest contribution and are smaller than the results for
the ground state by more than two orders of magnitude in
the entire energy range considered. The present results are
compared with the BCIS-3B ones by Delibašić et al. [37].
While there is good agreement between the two methods at
high energies, there is significant deviation below 100 keV/u,
which is especially noticeable for electron capture into the
ground state.

B. Elastic scattering and excitation

The WP-CCC cross sections for elastic scattering and tar-
get excitation into the 2l and 3l states are shown in Fig. 7.
For target excitation, the AOCC calculations of Fritsch [43]
are also shown. The figure reveals that elastic scattering is
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TABLE I. Cross sections for electron capture into the n = 1–5 shells in He2+-He(1s2) collisions (in 10−16 cm2). The WP-CCC results are
compared with the BCIS-3B ones by Delibašić et al. [37]. The last column shows the corresponding total electron-capture cross section.

Energy (keV/u) Method n = 1 n = 2 n = 3 n = 4 n = 5 Total

15 WP-CCC 6.42 × 10−1 1.33 7.81 × 10−2 2.37 × 10−2 9.97 × 10−3 2.09
20 WP-CCC 7.99 × 10−1 1.89 1.10 × 10−1 3.00 × 10−2 1.36 × 10−2 2.89

BCIS-3B 2.18 × 101 1.87 × 10−1 2.26 × 10−2 7.23 × 10−3 2.20 × 101

30 WP-CCC 9.84 × 10−1 2.23 2.68 × 10−1 7.76 × 10−2 3.83 × 10−2 3.60
40 WP-CCC 1.04 1.94 3.68 × 10−1 1.25 × 10−1 6.52 × 10−2 3.55

BCIS-3B 8.47 7.47 × 10−1 1.34 × 10−1 4.63 × 10−2 9.47
60 WP-CCC 9.46 × 10−1 1.19 3.40 × 10−1 1.37 × 10−1 7.53 × 10−2 2.69

BCIS-3B 4.21 8.40 × 10−1 2.03 × 10−1 7.80 × 10−2 5.46
80 WP-CCC 7.25 × 10−1 7.16 × 10−1 2.38 × 10−1 1.03 × 10−1 5.85 × 10−2 1.84

BCIS-3B 2.38 6.79 × 10−1 1.94 × 10−1 6.58 × 10−2 3.45
100 WP-CCC 5.56 × 10−1 4.43 × 10−1 1.57 × 10−1 7.05 × 10−2 4.05 × 10−2 1.26

BCIS-3B 1.45 4.94 × 10−1 1.55 × 10−1 6.58 × 10−2 2.27
150 WP-CCC 2.61 × 10−1 1.55 × 10−1 5.74 × 10−2 2.64 × 10−2 1.52 × 10−2 5.15 × 10−1

BCIS-3B 5.28 × 10−1 2.06 × 10−1 7.13 × 10−2 3.16 × 10−2 8.86 × 10−1

300 WP-CCC 3.98 × 10−2 1.44 × 10−2 5.17 × 10−3 2.46 × 10−3 1.38 × 10−3 6.33 × 10−2

BCIS-3B 6.31 × 10−2 2.19 × 10−2 7.81 × 10−3 3.51 × 10−3 1.02 × 10−1

500 WP-CCC 6.00 × 10−3 1.65 × 10−3 5.66 × 10−4 2.70 × 10−4 1.59 × 10−4 8.65 × 10−3

BCIS-3B 9.42 × 10−3 2.65 × 10−3 9.13 × 10−4 4.07 × 10−4 1.40 × 10−2

800 WP-CCC 1.01 × 10−3 2.11 × 10−4 7.10 × 10−5 3.30 × 10−5 1.78 × 10−5 1.34 × 10−3

BCIS-3B 1.29 × 10−3 2.95 × 10−4 9.80 × 10−5 4.30 × 10−5 1.79 × 10−3

1000 WP-CCC 4.19 × 10−4 8.51 × 10−5 2.78 × 10−5 1.22 × 10−5 6.43 × 10−6 5.51 × 10−4

BCIS-3B 4.67 × 10−4 9.77 × 10−5 3.19 × 10−5 1.39 × 10−5 6.32 × 10−4

2000 WP-CCC 1.57 × 10−5 2.73 × 10−6 8.68 × 10−7 3.78 × 10−7 1.97 × 10−7 1.99 × 10−5

BCIS-3B 1.57 × 10−5 2.63 × 10−6 8.25 × 10−7 3.55 × 10−7 2.01 × 10−5

3000 WP-CCC 1.99 × 10−6 3.21 × 10−7 1.01 × 10−7 4.61 × 10−8 2.47 × 10−8 2.48 × 10−6

BCIS-3B 1.90 × 10−6 2.91 × 10−7 8.96 × 10−8 3.83 × 10−8 2.38 × 10−6

the dominant direct-scattering channel in the entire energy re-
gion. Starting from 50 keV/u, the cross section for excitation
into the 2p state becomes larger than all the other excitation
cross sections, making this channel the most probable target-
excitation channel at higher energies. Generally, it appears
that within each shell, excitation into the p states becomes
dominant at higher projectile energies.

We observe different levels of agreement between the
two sets of calculations for different states. While below
40 keV/u the AOCC and WP-CCC partial excitation cross
sections appear more or less to agree with the corresponding
counterparts, at 65 keV/u they deviate substantially. For in-
stance, the AOCC cross sections for 2s and 2p excitation are
about 70% larger than the corresponding WP-CCC results.
Disagreement is even bigger for 3p excitation. We note the
present the cross sections for excitation into states with the
largest orbital angular momentum show a minimum at small
energies. For 2p and 3d states, the minima can also be seen
in the AOCC calculations, though the density of the energy
points used by Fritsch [43] is not sufficient to exhibit this
feature clearly.

C. Single ionization

Finally, we consider ionization of the helium target.
Figure 8 shows the present two-electron and E1E WP-CCC
results for the integrated cross section for single ionization
of helium in comparison with the corresponding experimen-
tal measurements [19,22,23,25,64], as well as the theoretical

calculations [35,38,39,42]. We note that both our methods
include not only direct ionization of the target but also
electron capture to the continuum of the projectile. The two-
electron and E1E results agree well with each other at low-
and high-energy regions. However, the E1E results some-
what overestimate the two-electron ones at the intermediate
energies, the difference being especially noticeable around
150 keV/u, where the peak of the cross section is observed.
Overall, the discrepancy between the two theories is within
15%.

Our results are generally similar in shape to the experimen-
tal data by Shah and Gilbody [22] and Shah et al. [23]. While
they are in good agreement with the data at low and high
energies, one can see a noticeable discrepancy at intermediate
energies. Near the peak, the two-electron WP-CCC results
overestimate the data from Shah et al. [23] by about 20%.
This appears to be a systematic problem in practically all
close-coupling approaches to ionization in ion-atom collisions
(see Refs. [10,54,65–67]). The WP-CCC results are also in
very good agreement with the experiment of Puckett et al. [25]
in the energy range above 150 keV/u.

We note that our two-electron calculations agree very well
with the experimental data of Knudsen et al. [19] available
at three projectile energies (0.63, 1.44, and 2.31 MeV/u). At
these energies, Barna et al. [38] provided the results of three
distinct theoretical methods: the single-center close-coupling
approach and two versions of the CTMC method, one based
on the equivalent electron approximation and the other on
the nonequivalent electron approximation. The CC results are
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FIG. 7. Cross sections for (a) elastic scattering and target excita-
tion into the (b) 2l and (c) 3l states in He2+-He(1s2) collisions. The
calculations of Fritsch [43] are also shown.

in excellent agreement with the experimental data and our
calculations. However, both of the CTMC theories underes-
timate the experimental data, with the NEE-CTMC method
agreeing better than the EE-CTMC one. Pindzola et al. [39]
also performed single-center CC calculations at high energies.
As expected, their results were practically identical to those by
Barna et al. [38].

The TDDFT WB and TDDFT IEM methods by Baxter
and Kirchner [42] were also applied to calculate the single-
ionization cross section. We can see that the results obtained
using the TDDFT WB approach agree with the TDDFT IEM
calculations at low and high energies, but overestimate in the
intermediate-energy region. The TDDFT WB calculations are
in very good agreement with the available experimental data
above 250 keV/u.

FIG. 8. Total cross section for single ionization in He2+ +
He(1s2) collisions as a function of the incident projectile energy.
The present WP-CCC and E1E WP-CCC results are represented by
the red and black solid lines, respectively. The experimental data are
due to Shah and Gilbody [22], Shah et al. [23], Puckett et al. [25],
Knudsen et al. [19], and DuBois [64]. The other theoretical results
are from the CC, EE-CTMC, and NEE-CTMC methods by Barna
et al. [38], the CDW-EIS method by Terekhin et al. [35], and the
TDDFT WB and TDDFT IEM methods by Baxter and Kirchner [42]
with the MCHF wave function for He. The error bars reported in
[22,23] are too small to be seen on this scale.

The 3B-CDW-EIS approach by Terekhin et al. [35] shows
very good agreement with the data of Shah et al. In their
approach, the four-body reaction is reduced to a three-body
one, assuming the nonactive electron remains bound to the
residual target throughout the collision. There are also cal-
culations by Dunseath and Crothers [11] available for this
collision system (they are not shown in the figure). They
applied the continuum-distorted-wave approach using the
Pluvinage wave functions to derive the ionization amplitude
for evaluating the cross section. Overall, these calculations
do not agree with the experimental data either quantitatively
or in shape. Also, the method failed to predict the maximum
observed in the experiments [22,23,25] and in the other the-
oretical calculations that cover the energy region around 150
keV/u.

IV. SUMMARY AND CONCLUSIONS

To summarize, we studied the four-body scattering prob-
lem of He2+ collisions with the helium atom using the
wave-packet convergent close-coupling approach and a re-
cently developed effective one-electron method. In both
approaches, the continuum for all involved atoms was dis-
cretized into a number of bins to obtain the corresponding
positive-energy pseudostates. In the two-electron approach the
electron-electron correlation and electron-exchange effects,
which are particularly important at low collision energies,
were fully taken into account. The frozen-core approximation
was employed to treat the target atom, which assumes that one
of the helium electrons remains in the ground state of the He+

ion throughout the collision. The effective single-electron
method makes the collisional system more convenient in
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terms of numerical calculations. In presenting the final results,
the cross sections were checked for convergence in terms of
the included target and projectile states.

We presented cross sections for total and state-selective
electron capture, excitation, and single ionization of the
target. The results are provided for the incident energies
from 10 keV/u to 5 MeV/u, where one-electron processes
are expected to dominate. Attention is focused on the
intermediate-energy region where we find substantial devia-
tions between various theoretical methods. Overall, our two
approaches show fairly good consistency with each other for
all considered processes. The cross sections for total and state-
selective electron capture as well as for single ionization show
good agreement with the available experimental results and
other theoretical calculations. For total electron capture, we
observe generally good agreement between our results and
the experimental data throughout the entire energy range con-
sidered. However, discrepancies between various theoretical
results for the total and state-selective electron-capture cross
sections below 100 keV/u require more investigation using
independent methods. For single ionization, excellent agree-
ment with experiment is obtained at high and low energies,
whereas at intermediate energies the agreement with the data
remains somewhat unsatisfactory.

In general, it is concluded that both approaches presented
in this work are able to describe the overall picture of all

underlying processes in He2+-He collisions in terms of the
integrated cross sections. For electron capture and ioniza-
tion processes, the correlated two-electron calculations show
much better agreement with the available experimental data
than the effective single-electron ones. In particular, our re-
sults demonstrate that accurate description of state-selective
electron capture at intermediate and low energies requires
proper account of the electron-electron correlations in the
target treatment and electron-exchange effects between the
reaction products in the electron-transfer channels. Overall,
the obtained results lay a reliable foundation for modeling
two-electron processes like transfer excitation and transfer
ionization, as well as differential scattering and ionization in
this four-body system.
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