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Determination of diffusion coefficients of mercury atoms in various gases from longitudinal spin
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We present a method to measure the binary diffusion coefficient of mercury atoms in a gas at room temperature
and low pressure. It is based on the measurement of the longitudinal spin relaxation of optically pumped mercury-
199 atoms in a magnetic field gradient. We provide a consistent set of diffusion coefficients for helium-3, helium-
4, argon, krypton, xenon, nitrogen, carbon dioxide, oxygen, and air.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) provides a versatile
and powerful probe of diffusion phenomena. In their seminal
work in 1954, Carr and Purcell [1] determined the self-
diffusion coefficient of ordinary water by measuring the decay
of transverse spin polarization in a magnetic field gradient.
Variants of this technique, such as pulsed gradient spin echo,
are now routinely used to measure diffusion coefficients in liq-
uids, which are of the order of 10−5 cm2/s. In gases, although
diffusion NMR experiments are less ubiquitous, diverse tech-
niques have been employed with hyperpolarized noble gases
to measure the diffusion coefficient of helium-3 [2–5] or
xenon-129 [6,7] in different gases. Compared to the case of
liquids, the diffusion is much faster in gases, of the order of
0.1 cm2/s at standard temperature and pressure.

In this article we report on a study of the diffusion of mer-
cury atoms in various gases at room temperature (20 ◦C). In
the present experiment, the mercury is polarized in a very low
field with optical pumping in a cell filled with mercury-199 at
a partial pressure of about 10−5 mbar. In addition the cell con-
tains a buffer gas at a pressure in the range 0.5 − 5 mbar. In
such a situation, the mercury atoms diffuse in the cell in a very
short time, about 10 ms. Contrary to the case of liquids, for
which the diffusion time across a sample of size 1 cm is about
105 s, the mercury atoms explore the entire cell many times
during the measurement duration of a few seconds. We have
developed a method to determine the diffusion coefficient in
this “motion narrowing” regime, based on the measurement
of the longitudinal relaxation rate (rather than the decay of the
transverse polarization in most NMR diffusion experiments)
in an applied magnetic field gradient.

The motivation for this work comes from the prospects
for a precision measurement of the gyromagnetic ratio of
mercury-199 using helium-3 as a comagnetometer in the same
cell. The helium-3 will be polarized by metastable-exchange
optical pumping and its precession will be read out with
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induction coils. This technique is adequate for helium-3 op-
erating in the millibar pressure range. Then, the presence of
the helium-3 buffer gas will increase the time it takes for
mercury atoms to average the field over the cell. In such
a situation the residual magnetic field gradients could sig-
nificantly shorten the decay time of the precession signal,
and therefore affect the precision of the measurement of the
Larmor precession frequency. In order to quantify the require-
ment on the acceptable field uniformity in the experiment, a
dedicated measurement of the diffusion coefficient of mercury
in helium-3 is desired.

The rest of the article is organized as follows. In Sec. II
we review the treatment of longitudinal relaxation of the spins
(i.e., the decay of the longitudinal component of the polariza-
tion) due to field gradients. The experimental apparatus and
the analysis procedure are described in Secs. III and IV. In
Sec. V we present our results for the binary diffusion coeffi-
cient of mercury in various gases (helium-3, helium-4, argon,
krypton, xenon, nitrogen, carbon dioxide, oxygen, and air) and
compare them with previous measurements using non-NMR
methods (see Ref. [8] for a comprehensive review) and the
predictions based on Chapman-Enskog theory.

II. LONGITUDINAL RELAXATION DUE TO FIELD
GRADIENT

Consider an ensemble of polarized spin 1/2 atoms confined
in a cell exposed to a nonuniform magnetic field. Due to their
random motion through the cell, each atom effectively sees a
fluctuating magnetic field, resulting in depolarization of the
ensemble [9–17]. In the motional narrowing case, i.e., when
the depolarization is slow compared with the correlation time
τD of the fluctuating field, the longitudinal and transverse po-
larization decay exponentially with relaxation rates �1 and �2

given by Redfield’s theory [13]. In sufficiently high holding
magnetic field B, that we take along the x axis, the longitudinal
relaxation rate due to the nonuniformity of the magnetic field
is given by

�1 = D
G2

B2
, (1)
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FIG. 1. Different regimes for the longitudinal relaxation of mer-
cury atoms in a helium buffer gas. The horizontal line corresponds
to the separation between diffusive and ballistic regimes. The upper
gray zone corresponds to the validity domain of Eq. (2), including the
dotted region corresponding to the validity domain of Eq. (1). The
chartreuse dashed region, marked ROI, corresponds to the parameter
space explored experimentally in this study.

where D is the diffusion coefficient and G is the gradient of the
transverse field components, more precisely G2 = 〈( �∇By)2 +
( �∇Bz )2〉 [18].

Let us now discuss in detail the validity condition of
Eq. (1). For that, we consider for definiteness a cell of cylin-
drical shape, of radius R = 2 cm and length L = 10 cm, filled
with a mixture of mercury and helium-4 atoms at room tem-
perature. The helium pressure P and the value of the holding
magnetic field B define different regimes for the longitudinal
relaxation, shown in Fig. 1.

First let us consider the pressure. Without helium, mercury
atoms would have a ballistic motion in the cell, with a time
between two wall collisions set by 2R/v ≈ 0.4 ms, v = 11
cm/ms being the thermal velocity of mercury atoms at room
temperature. Note that atomic collisions between two mercury
atoms are much less frequent than wall collisions, because the
pressure of mercury atoms in the cell needs to be very low
(about 10−5 mbar in our experiment and in any case below
the vapor pressure of 2 × 10−3 mbar at room temperature).
Now, for sufficiently large pressure P of helium in the cell,
the mercury atoms undergo diffusive motion characterized by
the diffusion coefficient D inversely proportional to P, and the
diffusion time across the cell is set by τD = R2/D. This time is
much longer than the time it would have taken to cross the cell
in pure ballistic motion, so that the diffusive regime holds for
τD � 2R/v, i.e., D 	 vR/2. For helium in our specific cell
this corresponds to P � 0.05 mbar, i.e., the upper part of the
parameter space in Fig. 1.

In the diffusive regime, the spectral density of the fluctu-
ating magnetic field seen by the atoms randomly moving in

a static gradient can be derived from the diffusion equation.
Then, following McGregor [15], the Redfield theory of relax-
ation can be applied to yield expressions for the relaxation
rate, which depends on the geometry of the cell and the shape
of the magnetic field. We derive in detail in the Appendix an
expression adequate for the case of our study:

�1 = D
G2

B2

∞∑
k=1

(γ BτD)2

(γ BτD)2 + x4
1k

2

x2
1k − 1

, (2)

where γ is the gyromagnetic ratio (γ = 2π × 7.6 Hz/μT for
mercury-199) and x1k is the kth zero of the derivative of the
Bessel function J1. In fact, Eq. (2) becomes invalid at high
Larmor frequency γ B because the correlation function is not
described by the diffusion equation for times shorter than the
time between two atomic collisions τc = 4D/v2. The validity
domain of Eq. (2) is represented by the upper gray zone in
Fig. 1.

At moderate field B, specifically γ BτD � 1 and γ Bτc 	
1 (corresponding to the dark dotted zone in Fig. 1 labeled
adiabatic diffusive), the general expression (2) simplifies to
the formula (1). Physically, this regime is such that there
are many atomic collisions in one Larmor time (γ B)−1, but
many Larmor times during the time τD it takes to traverse
the cell diffusively. In the adiabatic diffusive regime, the re-
laxation rate becomes independent of the geometry of the
cell [18]. This is an advantage for determination of the dif-
fusion coefficient, because it reduces systematic errors due to
the imperfections of the geometry of the cell.

The rectangular region marked with dashes in Fig. 1 is our
region of interest, corresponding to the parameters used in the
experiment. Conceptually, the experiment consists of filling
a cell with a mixture of mercury and a gas with a controlled
pressure, applying a known field B and a known gradient G,
measuring the relaxation rate �1, and deducing an effective
diffusion coefficient Deff defined by

�1(G) ≡ Deff
G2

B2
+ �1(0). (3)

It is actually necessary to measure �1 as a function of the
applied gradient in order to separate the magnetic relaxation
from the other sources of relaxation �1(0). In the region of
interest, the effective diffusion coefficient departs from the
true coefficient D by up to 30%, which is larger than the
accuracy of the measurement (about 1%, as we will see). In
fact, based on Eq. (2), we have

Deff =
∞∑

k=1

D

1 + (
D

γ BR2

)2
x4

1k

2

x2
1k − 1

. (4)

In practice, as will be explained later, for a given cell Deff

was measured for different values of the holding field B, then
Eq. (4) was used to extract the true diffusion coefficient D.

III. EXPERIMENTAL SETUP

The experimental setup is composed of three parts: a
253.7 nm laser; a system generating magnetic fields and gra-
dients, which are both schematized in Fig. 2; and a cell filling
station, shown in Fig. 3.
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FIG. 2. A schematic representation of the laser and magne-
tometry setups. The initial beam is split in two linearly polarized
beams. The top one serves for locking the laser frequency on the
mercury-199 F = 1/2 transition obtained through saturated absorp-
tion spectroscopy. The bottom one is circularly polarized with a
quarter-wave plate and is used for optical pumping and precession
measurements.

The ground level 1S0 of mercury-199 has a total spin
F = 1/2 arising only from the nuclear spin. The excited 3P1

level at 253.7 nm is split in two hyperfine sublevels, F = 1/2
and F = 3/2, separated by 22 GHz. Mercury atoms can be
polarized by optical pumping on the F = 1/2 to F = 1/2
transition. A 253.7 nm TOPTICA TA-FHG pro laser is used
to realize the optical pumping. It consists of an infrared laser
diode coupled to two frequency doubling nonlinear crystals.
A grating allows for a fine variation of the laser frequency
around the resonance. Saturated absorption spectroscopy pro-
vides a reference to lock the laser on the precise frequency of
the F = 1/2 to F = 1/2 transition of mercury-199. The laser
output power is at maximum 20 mW. The beam is split in
two, most of the power is used for the laser locking scheme,
and only 30–60 μW are used for the experiment itself. Using
half-wave and quarter-wave plates, the laser beam is polarized
circularly for the experiment. A motorized filter and a shutter
allow for fast (a few tens of milliseconds) variation of the
beam intensity. The polarized beam is directed through a
spectroscopy cell filled with mercury and a few millibar of
buffer gas.

Our experimental cell is placed at the center of three pairs
of orthogonal square coils. Each pair of coils is capable of

Gas inletCell filling

Mercury-199

Helium-3 inlet

Gas cell

Pumping

Pressure 
gauge

Pneuma�c 
valve

FIG. 3. Photograph of the cell filling station, with the magne-
tometry cell connected. The arrows indicates the various gas flows
allowed within the system.

generating a magnetic field up to 200 μT. The coils are used
to cancel the ambient magnetic field, set the fields for op-
tical pumping and free precession, and generate magnetic
gradients. We generate the magnetic gradient by controlling
separately the current in the two coils forming the x pair. In
the volume of the cell the magnetic field takes the form

�B(x, y, z) =
⎛
⎝Bx(0)

By(0)
Bz(0)

⎞
⎠ + Gx

⎛
⎝ x

−y/2
−z/2

⎞
⎠. (5)

When the field is set along the x axis, the depolarizing gradient

in Eq. (2) is G =
√

( �∇By)2 + ( �∇Bz )2 = Gx√
2
. We performed

a magnetic mapping in the central region (without the cell)
to calibrate the magnetic generation system before the ex-
periment, and repeated the mapping after the experiment.
The uncertainty on the set field is �Bx = 0.5 μT and the
relative uncertainty on the set gradient is �Gx/Gx = 1%. As
the coil power supplies are unipolar, the maximum gradient
that can be applied is imposed by the earth’s magnetic field,
and goes from Gx = ±300 nT/cm at Bx = 15 μT) to Gx =
±1400 nT/cm at Bx = 120 μT). After crossing the cell, the
light is detected using a photodiode whose signal is digitized
through a 16-bit analog-to-digital converter (ADC). NI LAB-
VIEW is used to integrate and coordinate the control of the
various subsystems: field and gradient generation, UV light
intensity, and data recording.

The cell used in the experiment is a 10-cm-long glass
cylinder with an internal diameter of 4 cm. It is closed on
both ends with quartz windows. A small glass tube ended
with a pressure-controlled valve allows to connect the cell
to a filling station through a KF16 flange. The filling station
consists of a small volume to which several items isolated
by valves are connected: a turbo pump to empty the whole
system, a pressure gauge, a small volume containing a droplet
of enriched mercury-199, and two gas inlets. The valve for
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these last devices allows for a fine control of the opening,
allowing to adjust precisely the pressure of gas within the
system. One inlet is connected to a small helium-3 bottle that
is never removed, whereas the gas bottle on a second inlet can
be changed. The pressure gauge is a capacitance manometer
that gives absolute measurements with a microbar accuracy
in the microbar to tens of millibar range, independently of
the nature of the gas. To prepare a cell, the full system is
first evacuated, then filled with the desired gas, close to the
targeted pressure. The valve to the mercury droplet is then
opened and we wait for mercury at saturated vapor pressure
(at ambient temperature) to diffuse into the cell. The quantity
of mercury is controlled through the absorption of UV light.
When the absorption is within 45% ± 5%, the cell is isolated
and disconnected from the filling station. Either the pneumatic
valve or the toric seals at the cell windows have small leaks.
These leaks are monitored by measuring the pressure within
the cell at the end of each measurement.

IV. ANALYSIS PROCEDURE

A. Data taking strategy

The basic element of the data taking is a sequence for a set
of parameters (τ, Bx, Gx ) consisting of:

(1) Optical pumping at 60 μW, with a holding magnetic
field along the x axis (of magnitude Bx) for 8 s;

(2) Closure of the beam shutter and setting of a magnetic
gradient Gx along the x axis over 0.2 s;

(3) Relaxation during a time τ in the dark; it is during this
time that the depolarization we want to measure occurs;

(4) Opening of the beam shutter with the gradient at zero
and setting of a field along the z axis (of magnitude Bz =
40 μT). We take care that during the transition, the magnetic
field never goes to zero to avoid depolarization. The change
of direction over 0.4 s of the magnetic field is fast enough so
the polarization stays along the x axis and can precess in the
xy plane;

(5) Recording of the precession signal in the 40 μT field
for 3 s, with a light power reduced to 30 μW;

(6) Setting of the field to zero to depolarize the mercury
atoms.

The time structure of a sequence is illustrated in Fig. 4. The
analysis of each sequence will give a value of the polarization
after a dark time τ . Five consecutive sequences make a τ scan
for a set (Bx, Gx ) with varying dark time. From a τ scan one
extracts a value of �1. Using short τ scans of 2–2.5 min makes
the analysis insensitive to drifts of the laser intensity as well as
variations of the cell absorption which have a larger timescale.
A set of seven consecutive τ scans for a fixed Bx, varying
Gx, is a gradient scan from which we extract a value of Deff .
A gradient scan lasts for approximately 15 min, making the
analysis insensitive to slow drifts of the ambient field. A full
run is a collection of gradient scans performed several times
for each value of Bx.

B. Precession signals and extraction of the polarization
from a sequence

In order to extract the longitudinal relaxation rate �1 from a
τ scan, the polarization p of the atoms at the beginning of the

FIG. 4. General time structure of the polarization measurement
sequence for the transmitted laser intensity, the magnetic field and the
gradient. The transitions between the main steps are not indicated.

precession must be measured from sequences with different
values of dark times τ , as shown in Fig. 4. The precession
signal, that is, the power of the transmitted light, is not a
simple damped-oscillator signal, but is given by

S(t ) = S0 exp{ −nHgσHg[1 + p‖(t )]L}, (6)

where S0 is the light power entering the cell, nHg the Hg atoms
density in the cell, σHg the light absorption cross section, and
L the optical path length, and p‖(t ) is the instantaneous pro-
jection along the beam of the precessing atomic polarization:

p‖(t ) = p cos(γ Bzt )e−�2t . (7)

Here �2 accounts for the decay of the transverse polarization
during the precession. Then, the polarization p is obtained
from the ratio of the maximum Smax to minimum Smin of the
signal S by

p = ln Smax
Smin

− ln(1 − A)
. (8)

In the expression (8), A = 1 − exp(−nHgσHgL) is the total ab-
sorption of the cell with unpolarized atoms, which is measured
at the beginning (and also at the end) of the run when filling
the cell.

For each run, we provide a file in the Supplemental Ma-
terial [19] with the results of the analysis of each sequence,
including in particular Smin and Smax.

C. Extraction of the longitudinal relaxation rate from a τ scan

The polarization p is measured for several dark times τ in
order to produce a τ scan. Figure 5 shows an example of τ

scan for a given configuration of magnetic field for a cell of
helium-4 at 1 mbar. An exponential model is then fitted to
extract the relaxation rate �1 for each τ scan.

D. Extraction of Deff from a gradient scan

The extraction of the longitudinal relaxation rate is re-
peated for several values of transverse magnetic gradients G
while keeping the same value of the holding magnetic field
Bx. Figure 6 shows the relaxation rate �1 obtained for seven
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FIG. 5. Example of polarization evolution with the dark time for
a holding magnetic field of 15 μT and a gradient of −202 nT/cm.
The cell is filled with 1 mbar of helium-4. The time constant �1 of
the exponential model is obtained by fitting the data.

values of magnetic field gradient between −290 nT/cm and
290 nT/cm.

This collection of measurements represents a parabola
whose curvature corresponds to the diffusion coefficient Deff

described in Eq. (3). In fact, we fit with a general parabola
using

�1(G) = �1(0) + C × G

Bx
+ Deff × G2

B2
x

, (9)

FIG. 6. Longitudinal relaxation rate �1 extracted from a gradient
scan for a cell of 1 mbar of helium-4 as a function of the relative
transverse gradient G/Bx . Data are fitted using Eq. (9) to extract Deff .

TABLE I. Gradient-independent relaxation time 1/�1(G = 0)
and diffusion coefficient D extracted from each run. The correction
applied to each value (right column) is detailed in Sec. IV E.

Initial pressure 1/�1(G = 0) D Corrected D
Gas (mbar) (s) (cm2/s) (cm2/s)

3He 1.0 39.7(3) 578(10) 617(12)
3He 2.0 40.3(3) 267(5) 289(6)
3He 5.0 43.5(4) 119(6) 121(6)
4He 1.0 34.6(4) 495(9) 519(10)
4He 2.0 36.4(1) 262(5) 265(5)
4He 5.0 36.6(1) 105(4) 107(4)
Ar 1.0 39.2(5) 110(7) 111(7)
Ar 1.0 38.5(4) 111(7) 112(7)
Kr 0.5 36.1(1) 149(8) 150(8)
Kr 1.0 36.4(3) 75(5) 75(5)
Xe 0.5 39.4(6) 106(5) 107(5)
Xe 1.0 41.2(3) 41(5) 41(4)
N2 0.5 34.2(4) 257(7) 265(7)
N2 1.0 37.7(4) 115(6) 116(6)
N2 2.0 35.8(4) 71(4) 73(4)
N2 2.0 43.9(6) 57(5) 57(5)
CO2 0.5 44.2(4) 174(5) 178(5)
CO2 1.0 42.6(4) 90(6) 91(6)
O2 0.2 7.22(8) 577(35) 598(37)
O2 0.3 4.63(4) 339(76) 340(77)
Air 0.5 9.50(4) 235(10) 243(11)
Air 1.0 5.40(5) 88(28) 89(29)
Air 1.0 5.73(5) 177(18) 180(19)

where �1(0), and C and Deff are the adjusted parameters.
The coefficient �1(0) corresponds to all the field-independent
depolarization processes, such as the collision of the Hg with
the cell walls or with other atoms in the gas. It also includes
the small magnetic relaxation rate contribution induced by
magnetic gradients produced by and proportional to the hold-
ing magnetic field. The linear term C is the cross-term that
accounts for a possible offset of the magnetic gradient; after
the analysis this term is found to be compatible with zero. The
average values of 1/�1(0) for each run are listed in Table I.
The values are all similar and of the order of 40 s except
for O2 and air, due to the paramagnetic nature of the oxygen
molecule.

E. Extraction of D from a run

As shown in Fig. 7, for a given run, we get several values
of Deff for each value of the holding magnetic field Bx (black
circles), that we average to get the red dots. The previous fits
are performed using a linear regression, with all the points
having the same weights, and no errors are computed. For
a given holding field, the error on the average Deff in Fig. 7
is computed from the standard deviation of Deff divided by
the square root of the numbers of measurement. This error
captures the statistical precision as well as the imperfections
of the fitting procedure.

The number of repetitions for each holding field value Bx

was optimized in order to have an almost identical statistical
error for each point. The statistical fluctuation on the param-
eter Deff increases with Bx since the possible range of G/Bx
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FIG. 7. Parameter Deff obtained from several gradient scans as a
function of the holding magnetic field Bx for a 1 mbar helium-4 cell
(black circles). The red dots represent the average value and error for
each Bx . Model (4) (red line) is fitted to the data in order to extract
the diffusion coefficient D.

gets smaller with larger Bx. In addition, the magnetic field and
gradient are not perfectly known, which leads to systematic
errors on the extracted Deff . The error bars represented on the
averaged values of Deff (red dots) include both statistical and
systematic errors in quadratic sum.

Finally, we can extract the value and error of the parameter
D from Eq. (4) by fitting this model to the data of each run
using a χ2 minimization method. Table I presents the ex-
tracted diffusion coefficient D for each run. Figures analogous
to Fig. 7 are provided in the Supplemental Material [19] for all
the runs.

The cell is known to leak with the pressure increasing
linearly over time at an approximate rate of 0.8 μbar/h. The
average quantity of air in the cell over the measurement is
determined by recording the pressure within the cell before
and after the measurement. We consider a stagnant mixture of
mercury in some gas at partial pressure Pgas with an additional
quantity of air (treated as a single species) at partial pressure
Pair. The concentration of mercury is negligible with respect
to the other gases. Then the effective diffusion coefficient of
mercury in the mixture is [20]

Pmix

Dmix(Pmix)
≈ Pair

Dair (Pmix)
+ Pgas

Dgas(Pmix)
, (10)

where Pmix = Pair + Pgas is the total pressure of the mixture.
As D(P)P is a constant, inverting this formula relates the
diffusion coefficient of mercury in the gas Dgas(Pgas) to the
measured Dmix(Pmix):

1

Dgas(Pgas)
= 1

Dmix(Pmix)
− Pair

Dair (P0)P0
, (11)

TABLE II. Comparison between the diffusion coefficient D ex-
tracted from our measurements, theory (Chapman-Enskog), and
other results from the literature. The values displayed with an as-
terisk [21] are a combination of other measurements. The values
expressed in cm2/s are extrapolated at 1 mbar pressure and 293 K.

Gas This work Theory Literature

3He 598(8) 786
4He 523(7) 693 566 [22]
Ar 111(5) 113 113 [22], 147 [23]
Kr 75(3) 70 69(4) [24]
Xe 64(4) 50 49(3) [24]
N2 129(3) 129 145 [22], 121(9) [24], 138∗ [21]
CO2 89(2) 80 113 [22]
O2 118(7) 123
Air 125(5) 128 136∗ [21]
Aira 126(3) – –

aThis value is obtained by combining our measurements of nitrogen,
oxygen, argon, and carbon dioxide.

where the diffusion coefficient Dair (P0) at some reference
pressure P0 is measured independently. The diffusion coeffi-
cients corrected using Eq. (11) are reported in the last column
of Table I. We use the combination of the measurements of
diffusion coefficient in air listed in Table II to implement this
correction. The error on this measurement is propagated on all
the final results. As there are three independent measurements
for air, all three are slightly modified by this correction but the
overall combination is not.

V. RESULTS AND DISCUSSION

For each gas, several runs have been performed for differ-
ent gas pressures, as summarized in Table I. The dependency
as an inverse of the pressure is verified, and we combine all
available data for each gas to compute the diffusion coefficient
for a pressure of 1 mbar. These are reported in Table II.

A theoretical model for binary diffusion coefficients can be
obtained from the kinetic theory of gases. The formula derived
independently by Chapman and Enskog [20,25,26] relies on a
Lennard-Jones interaction with parameters σ = σ1 + σ2 and
ε = √

ε1ε2, where σ1, σ2, and ε1, ε2 are, respectively, the
diameter and the depth of the individual Lennard-Jones po-
tential for each species. The Chapman-Enskog formula is then

D = 3kT

8Pπσ 2
∗(ε/T )

(
πkT (m1 + m2)

2m1m2

) 1
2

, (12)

where m1 and m2 are the masses of the two species, T the
temperature, and 
∗ the collision integral, quantifying the
correction from the hard sphere model, which depends on
the depth of the Lennard-Jones potential and the tempera-
ture. To compute the values given in Table II, we use the
Lennard-Jones parameters derived from viscosity data listed
in Ref. [25] and the 
∗ tabulated in Ref. [20].

Our measurements are in rather good agreement with
the theoretical calculations, except for helium. This is to
be expected, as Lennard-Jones potential does not model
correctly the behavior of mercury helium mixture [27].
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Nevertheless, the ratio of diffusion coefficient between
helium-3 and helium-4 should only depend on the masses:

r2 =
(

D
3He

D4He

)2

≈ m4He

m3He
≈ 1.33. (13)

Indeed, our measurement leads to r2 = 1.31 ± 0.05, which is
in agreement with the expected value.

We also report in Table II the results of other measurements
(using non-NMR methods) available in the literature. The
values are extrapolated to the temperature of 293 K using the
Chapman-Enskog temperature dependence 1


∗ T
3
2 . Although

the measurements are not all compatible within the quoted
errors, our set is in general in rather good agreement with the
previous determinations.

In conclusion, we have developed a method to measure
the diffusion coefficient of mercury in a generic gas at room
temperature and low pressure, which led to a consistent set of
measurements for nine gases, including helium-3 and oxygen,
which were not measured before.
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APPENDIX: COMPUTATION OF THE LONGITUDINAL
RELAXATION RATE FOR A CYLINDRICAL CELL

IN UNIFORM MAGNETIC GRADIENTS

In the motional narrowing regime of spin relaxation, the
effect of a random perturbation can be evaluated with the help
of second-order perturbation theory [28]. The longitudinal
depolarization rate �1 can be written as

�1 = γ 2
∫ ∞

0
Re[〈b∗(0)b(t )〉eiωt ]dt, (A1)

where ω is the Larmor angular precession frequency and b
is a complex noise representing the transverse components of
the magnetic field �B. If the main magnetic field is taken to be
along x, then b = By + iBz.

Now, we have to compute the correlation function of b.
Following the work of McGregor [15], we write

〈b∗(0)b(t )〉 =
∫

V

1

V
d−→r0

∫
V

d�rb∗(−→r0 )b(�r)π (�r, t | −→r0 ), (A2)

where V is the volume of the cell and π (�r, t | �r0) is the
conditional probability (or propagator) for an atom to be at
�r at the time t given that it started at the position �r0 at t = 0.

In the case of the diffusive regime, it is possible to obtain
an analytical expression for the propagator. Indeed, the prop-
agator follows the diffusion equation

D�π (�r, t | −→r0 ) = ∂

∂t
π (�r, t | −→r0 ), (A3)

where D is the diffusion coefficient. Then, π (�r, t | �r0) must
satisfy the initial condition

π (�r, t = 0 | −→r0 ) = δ(�r − −→r0 ), (A4)

and the boundary condition on the cell walls

�∇π (�r, t | −→r0 ) · �n = 0, (A5)

where �n is the vector normal to the surface.
Let us consider the diffusion within a cylindrical cell of

length L and radius R where its axis is aligned with the x
axis. A convenient coordinate system is the cylindrical one
(ρ, θ, x): let us use the method of separation of variables and
search for solutions in the form of

f (ρ, θ, x, t ) = R(ρ)A(θ )X (x)T (t ).

When injecting this equation into the diffusion equation, we
obtain

R(ρ) = R0Jn(kρ), A(θ ) = A0eimθ ,

X (x) = X1 cos(lz) + X2 sin(lz),

T (t ) = T0 exp[−D(k2 + l2)t],

where Jn is the cylindrical Bessel function of order n.
The boundary conditions (A5) on the cell imposes that k

and n should be integers and

R(ρ) = R0Jn

(
xnk

ρ

R

)
, (A6)

X (x) = X1 cos
(

nπ
z

L

)
+ X2 sin

(
nπ

z

L

)
, (A7)

where xnk is the kth zero of the Jn derivative.
The general solution of the diffusion equation in the cylin-

drical cell is then the linear combination of all the solutions
found above, whose coefficients can be computed using the
initial condition (A4). In the end we obtain the conditional
probability π (�r, t | −→r0 ):

π (�r, t | −→r0 ) = π⊥(ρ, θ, t | ρ0, θ0)π‖(x, t | x0), (A8)

with

π⊥(ρ, θ, t | ρ0, θ0) = 1

2πR2

∑
m∈Z,k∈N∗

�−1
mk,1Jm

(
xmk

ρ

R

)
Jm

(
xmk

ρ0

R

)
eim(θ−θ0 )e−D( xmk

R )2|t |,

π‖(x, t | x0) = 1

L
+ 2

L

∑
n=2,4,...

cos
(

nπ
x

L

)
cos

(
nπ

x0

L

)
e(−D nπ

L )2|t | + 2

L

∑
n=1,3,...

sin
(

nπ
x

L

)
sin

(
nπ

x0

L

)
e(−D nπ

L )2|t |,

with �mk,α = 1
Rα+1 [

∫ R
0 Jm(xmk

ρ

R )ραdρ].
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Let us now return to the expression (A2). In the case where b is a linear function of the spatial coordinates, we have

b(�r) = ∂b

∂x
x + ∂b

∂y
y + ∂b

∂z
z. (A9)

By injecting Eq. (A9) in Eq. (A2) and using Eq. (A8), we get

〈b∗(0)b(t )〉 =
∣∣∣∣∂b

∂x

∣∣∣∣
2

〈x(0)x(t )〉 +
(∣∣∣∣∂b

∂y

∣∣∣∣
2

+
∣∣∣∣∂b

∂z

∣∣∣∣
2
)

〈z(0)z(t )〉, (A10)

where

〈x(0)x(t )〉 = 8L2

π4

∑
n=1,3,...

1

n4
e−D( nπ

L )2|t |, 〈z(0)z(t )〉 = R2
∑
k∈N∗

�1k,2

�1k,1
e−D(

x2
1k
R )2|t |.

Finally, by injecting Eq. (A10) into Eq. (A1), we obtain the general expression for the longitudinal relaxation rate for a cylindrical
cell immersed in a uniform gradient:

�1 = γ 2D

ω2

⎡
⎢⎣

∣∣∣∣∂b

∂x

∣∣∣∣
2 ∑

n=1,3,...

(
ω L2

D

)2

(
ω L2

D

)2 + (nπ )4

8

(nπ )2
+

(∣∣∣∣∂b

∂y

∣∣∣∣
2

+
∣∣∣∣∂b

∂z

∣∣∣∣
2
) ∑

k∈N∗

(
ω R2

D

)2

(
ω R2

D

)2 + x4
1k

2

x2
1k − 1

⎤
⎥⎦. (A11)

Now, this general expression can be simplified for specific shapes of the magnetic field. In particular, if ∂b
∂x = 0 [valid in the

experimental setup used in this study, see Eq. (5)], Eq. (A11) simplifies into Eq. (2) given that

G2 = 〈( �∇By)2 + ( �∇Bz )2〉 =
∣∣∣∣∂b

∂x

∣∣∣∣
2

+
∣∣∣∣∂b

∂y

∣∣∣∣
2

+
∣∣∣∣∂b

∂z

∣∣∣∣
2

. (A12)
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