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Terrace effects in grazing-incidence fast atom diffraction from a LiF(001) surface
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The effect produced by surface defects on grazing-incidence fast atom diffraction (GIFAD) patterns is studied
by considering the presence of terraces in a LiF(001) sample. For helium atoms impinging along the 〈110〉
direction of the LiF surface, we analyze the influence of a monolayer terrace with its edge oriented parallel or
perpendicular to the axial channel. We found that the presence of an outward transverse step introduces a diffuse
background above the Laue circle, which displays additional peaked structures. For inward transverse steps,
instead, such a background is placed below the Laue circle, showing a much weaker intensity. On the other hand,
parallel steps give rise to asymmetric angular distributions, which are completely confined to the Laue circle.
Therefore, these theoretical results suggest that GIFAD might be used to characterize terrace defects.
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I. INTRODUCTION

Grazing-incidence fast atom diffraction (GIFAD) is an
exceptionally sensitive technique of surface analysis which
provides detailed information on the electronic and morpho-
logical features of the surface [1,2]. During the 15 years since
its first observation [3,4], the GIFAD method has been suc-
cessfully applied to study the topmost atomic layer of a wide
variety of materials, ranging from insulators [5], semiconduc-
tors [6], and metals [7] to adsorbate-covered metal surfaces
[8], ultrathin films [9], organic-metal interfaces [10,11], and
graphene layers [12]. But in all cases, the use of well-ordered
crystal targets was considered an important prerequisite for
the observation of interference patterns [1].

In GIFAD the periodic ordering requirement of the crystal
sample is particularly crucial along the axial direction be-
cause projectiles probe long distances of the surface along
the incidence channel, about some hundred angstroms. Hence,
careful crystal manufacture and surface preparation represent
central issues in GIFAD experiments. Nevertheless, even un-
der extremely good cleanness conditions, real crystals have
step defects that could affect the interference patterns [13]. In
the case of alkali-halide crystals, such as NaCl, KBr, and LiF,
high-resolution images provided by atomic force microscopy
commonly reveal the presence of terraces or steps on the top-
most layer [14,15], which are unavoidable in the preparation
process of the sample [16].

In this paper we address how the existence of terraces in
a LiF(001) surface might affect the diffraction patterns pro-
duced by grazing impact of fast He atoms. The He/LiF(001)
system has been extensively studied with GIFAD, being
currently considered as a prototype for this phenomenon.
However, all the theoretical descriptions assume an ideal per-
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fect crystal surface [17], whereas defect contributions were
only qualitatively discussed [1,18].

The influence of surface terraces on GIFAD patterns is
investigated here by considering simple crystallographic ge-
ometries: A unique up- or downstep, oriented perpendicular
or parallel to the incidence channel. Different step locations,
relative to the focus position of the atomic beam, are analyzed.
Although such geometries represent an oversimplified de-
scription of actual LiF surfaces, they will allow us to shed light
on the expected contribution of more complex step defects.

Our study is based on the use of the surface initial value
representation (SIVR) approximation [19,20], which is a
semiquantum method that offers a satisfactory description
of GIFAD in terms of classical projectile trajectories. The
projectile-surface interaction, which is a key ingredient in all
GIFAD simulations, is described by means of the pairwise
additive (PA) potential of Refs. [21,22]. This PA potential is
built as a sum of binary interatomic potentials that represent
the interaction of the atomic projectile with individual ionic
centers in the crystal, incorporating nonlocal contributions of
the electron density, along with the effect of the Madelung
potential. Concerning our theoretical model, it should be men-
tioned that the combination of the SIVR approach with this
PA potential has already shown to provide GIFAD patterns
in very good agreement with available experimental data for
the He/LiF(001) system under different incidence conditions
[19,20,23]. Furthermore, the use of PA models to represent the
surface interaction makes it possible to modify the crystallo-
graphic structure to include defects, such as terraces, without
an additional computational cost, which represents an impor-
tant advantage in comparison with ab initio calculations, like
the ones based on density functional theory.

The article is organized as follows. The theoretical model is
summarized in Sec. II, while results for step defects transverse
and parallel to the axial direction are presented and discussed
in Secs. III A and III B, respectively. In Sec. IV we outline
our conclusions. Atomic units (a.u.) are used unless otherwise
stated.
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II. THEORETICAL MODEL

Within the SIVR approximation, the effective transition
amplitude for elastic atom-surface scattering reads [23,24]

A(SIVR)(b) =
∫

dRo fs(Ro − b)
∫

dKo fm(Ko)

×a(SIVR)(Ro, Ko), (1)

where

a(SIVR)(Ro, Ko) =
∫ +∞

0
dt |JM (t )|1/2eiνt π/2 VPS(Rt )

× exp [i(φt − Q · Ro)] (2)

is the partial amplitude corresponding to the classical pro-
jectile trajectory Rt ≡ Rt (Ro, Ko), which starts at the initial
time t = 0 in the position Ro with momentum Ko. The func-
tions fs and fm describe the spatial and momentum profiles,
respectively, of the incident projectile wave packet, while
the vector b denotes the initial position of the wave-packet
center. In Eq. (2), JM (t ) = det[∂Rt/∂Ko] = |JM (t )| exp(iνtπ )
is the Maslov factor (a determinant), VPS(Rt ) represents
the projectile-surface interaction along the projectile path,
and Q = K f − Ki is the projectile momentum transfer, with
Ki(K f ) being the initial (final) projectile momentum and
Kf = Ki. The SIVR phase at time t reads [19]

φt =
∫ t

0
dt ′

[
(K f − Kt ′ )2

2mP
− VPS(Rt ′ )

]
, (3)

where mP is the projectile mass and Kt = mPdRt/dt is the
classical projectile momentum.

In this work, the projectile-surface potential is evaluated
with the PA model of Refs. [21,22]. It is expressed as

VPS(Rt ) =
∑

rB

vrB (Rt − rB) + UPS(Rt ), (4)

where vrB
(r) describes the short-range binary interaction be-

tween the projectile and the crystal ion placed at the Bravais
lattice site rB , as a function of the relative vector r, and
UPS(Rt ) denotes the projectile polarization term, which de-
scribes the long-range projectile-surface interaction due to the
rearrangement of the electron density of the atomic projectile.

The binary potentials vrB
are expressed in terms of the

unperturbed electron densities of the projectile and the ionic
sites, incorporating not only nonlocal contributions of these
electron densities, but also the Madelung contribution, i.e., the
effect of the ionic crystal lattice on the electron density around
each individual ionic site. In turn, the potential UPS depends
on the surface electric field at the position Rt of the atomic
projectile, reading

UPS(Rt ) = −αP

2

∣∣∣∣∣∣
∑

rB

ErB (Rt − rB)

∣∣∣∣∣∣
2

, (5)

where αP is the dipole polarizability of the projectile (αP =
1.38 a.u. for He atoms) and ErB (r) is the electric field pro-
duced by the asymptotic charge of the crystal ion placed at
rB . In Eqs. (4) and (5) the summation on rB covers all the
occupied lattice sites of the crystal sample, taking into consid-
eration the presence of flat terraces, as well as the rumpling of

FIG. 1. Depiction of (a) up- and (b) downsteps oriented perpen-
dicular to the axial channel (̂x).

the topmost atomic layer of each terrace, while the subindex
rB in vrB and ErB was included to distinguish the two different
ions of the crystallographic basis.

From Eq. (1), the differential probability of scattering in
the direction of the solid angle � f = (θ f , ϕ f ), with θ f (ϕ f )
being the final polar (azimuthal) angle measured with respect
to the surface (axial channel), can be obtained as

dP(SIVR)

d� f
= K2

f

∫
db|A(SIVR)(b)|2, (6)

where the integral on b covers an area equal to a reduced
unit cell of the crystal surface. This integration, associated
with the spot-beam effect [23], takes into account that it is
experimentally impossible to control the focus position of
the atomic beam with nanoscale precision. Details about the
SIVR method can be found in Refs. [19,20,23,24].

III. RESULTS

With the aim of studying the effect produced by the pres-
ence of terraces in alkali-halide crystal surfaces, we evaluated
diffraction patterns for 4He atoms scattered off LiF(001) along
the 〈110〉 direction considering a crystal sample with one step
of height H oriented perpendicular or parallel to the incidence
channel. The height of the step was assumed to be equal to
the distance between layers, that is, H = ±a/2, where a is
the lattice parameter (a = 4.02 Å for LiF) and the sign ±
indicates an outward (+) or inward (−) terrace parallel to
the surface plane (see Fig. 1). Notice that for alkali-halide
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surfaces, atomically flat terraces with sizes ranging from 1000
to 2000 Å can be observed under the usual cleanness condi-
tions [15]. But the heights of these terraces are also variable
and they can be higher than the monolayer height [14].

The terrace was simulated by adding or removing a mono-
layer (according to the sign of H) in the topmost half-plane of
the crystal sample, as depicted in Fig. 1. The topmost atomic
layer of the terrace includes the rumpling, that is, the different
relaxation of the outermost F− and Li+ ions with respect to
the unreconstructed plane [21]. However, our simplified step
model neglects the reconstruction effects at the edge of the
terrace, describing the crystal defect as a sharp step. Even
though such an ideal cutting of the crystal terrace represents a
rough description of real surface defects, this assumption can
be considered as a zero-order approach to study the influence
of step defects in GIFAD. Moreover, recent topographic im-
ages of other alkali-halide crystal, KBr, show sharp profiles of
the monatomic steps [25].

In this article, we chose a fixed impact energy, E =
K2

i /(2mP ) = 1.25 keV, for which experimental GIFAD dis-
tributions are available [26]. Two normal incidence energies
E⊥ = E sin2 θi (θi denotes the glancing incidence angle) are
analyzed, E⊥ = 0.20 and 0.46 eV, which correspond respec-
tively to low and intermediate E⊥ values for He/LiF GIFAD
[27]. Notice that for the latter normal energy, the experimental
projectile distribution reported in Ref. [26] was adequately
described with our theoretical method without taking into
account the presence of crystal defects [23]. Then, such a
good theory-experiment agreement suggests that typical GI-
FAD experiments are carried out on large flat terraces, being
unaffected by step defects [18].

For different configurations and relative positions of the
monolayer step, two-dimensional projectile distributions, as
a function of the final polar and azimuthal angles, were cal-
culated within the SIVR approach, as given by Eq. (6). In the
calculation of A(SIVR) [Eq. (1)], the spatial and momentum
profiles of the incident wave packet were determined as given
in Refs. [20,24] by considering a collimating scheme formed
by a rectangular slit of area 0.40 ×0.09 mm2 (the latter length
in the transverse direction) placed at 30 cm from the sur-
face, with an angular beam dispersion of 0.006 ◦. From these
collimating parameters, which are in agreement with current
experimental setups [28], we derived the transverse coherence
lengths in the directions perpendicular (σy) and parallel (σx)
to the incidence channel [20,24]—σy 	 13 Å and σx 	 240
(160) Å for E⊥ = 0.20 (0.46) eV—which verify the relation
σx 
 σy. It reinforces the fact that under grazing incidence,
helium projectiles probe much longer distances along the axial
channel than in the perpendicular direction, making GIFAD
patterns more sensitive to transverse steps, oriented perpen-
dicular to the channel, than to those oriented in the parallel
direction.

A. Effects due to a transverse terrace

In this subsection, we consider a LiF(001) surface with a
monolayer step oriented perpendicular to the axial direction.
To investigate the influence of the position of the border of the
terrace on the diffraction patterns, we determine the relative
position of the transverse step by means of the distance dx

FIG. 2. Two-dimensional projectile distributions, as a function of
θ f and ϕ f , for 1.25 keV 4He atoms scattered off LiF(001) along the
〈110〉 channel with E⊥ = 0.46 eV. SIVR simulations for (a) a perfect
crystal surface and (b) a surface with a transverse upstep placed at
dx 	 +120 Å, with dx as defined in Eq. (7), are displayed.

between the edge of the terrace and the mean focus point of
the incident beam, that is,

dx = xstep − XF, (7)

where xstep is the step position along the incidence channel (̂x)
and XF denotes the mean position along x̂ of the focus point of
the helium beam. The value of XF is defined as the average of
the x positions corresponding to the turning points (Xt p, Zt p)
of projectile trajectories specularly reflected from a perfect
surface (see Fig. 1). For an ideal LiF(001) crystal, these trajec-
tories run on the flat regions of the projectile-surface potential,
i.e., along the F− or Li+ rows.

Using the relative step position defined by Eq. (7), pos-
itive distances dx indicate that He projectiles should reach
the turning point before being affected by the step in the
outgoing path, while negative values are associated with steps
affecting the incoming path of the incident atoms. Clearly,
this is only an overall description of the scattering process
in the presence of surface terraces because depending on the
incidence conditions and the dx value, the turning points of
scattered projectiles could be modified by the strong change
in the surface potential introduced by the presence of the
outward or inward step.

We start analyzing projectile distributions for the higher
normal energy, E⊥ = 0.46 eV, for which terrace effects are
expected to be more important. For this normal energy, corre-
sponding to the incidence angle θi = 1.1◦, simulated diffrac-
tion patterns respectively derived from a perfect LiF(001)
surface and from a surface with an upward step placed at a
distance dx 	 +120 Å are compared in Fig. 2. Taking into ac-
count that large terraces are usually present in the LiF samples
used in GIFAD experiments [18], this distance dx corresponds
to a step position relatively close to the beam focus point.

Both panels of Fig. 2 present similar interference struc-
tures, with equally ϕ f -spaced Bragg maxima lying on a thin
annulus associated with the Laue circle [4,29], which is de-
fined by θ

(L)
f = (θ2

i − ϕ2
f )1/2. However, as a consequence of
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FIG. 3. Azimuthal spectra, corresponding to the Laue annulus,
for the normal energy E⊥ = 0.46 eV. Blue (thin black) line indicates
SIVR simulations for a transverse (a) upstep and (b) downstep, both
placed at dx 	 +120 Å; gray (thick light gray) line shows SIVR
results for a perfect crystal surface.

the presence of the upward step, the angular distribution of
Fig. 2(b) shows outermost peaks noticeably extended towards
larger polar angles, along with different relative intensities
of the inner peaks, in comparison with those for a perfect
surface [Fig. 2(a)]. Regarding this latter effect, notice that
the intensities of the Bragg maxima are modulated by the
intrachannel interference, associated with the profile of the
surface potential across the axial direction [19,29], which
suffers a local change at the edge of the terrace. Instead, the
ϕ f positions of the Bragg peaks are determined by the inter-
channel interference, which depends on the spacing between
equivalent parallel channels [19,29], a parameter that is not
altered by the transverse step.

To thoroughly analyze the step effect on Bragg-peak in-
tensities, in Fig. 3(a) we compare the azimuthally projected
distributions corresponding to the two panels of Fig. 2, ob-
tained by integrating Eq. (6) over a reduced area on the Laue
circle [30]. In Fig. 3(a) we observe that the presence of the
transverse upstep introduces an almost constant background
in the azimuthal spectrum. Furthermore, the distortion of the
surface potential caused by the outward step strongly affects
the peak intensities, markedly reducing the relative intensity
of the maxima of orders five and seven, as well as that of
the central peak (zeroth order) whose intensity becomes much
lower than those of the adjacent maxima, in contrast to what
is observed for a perfect surface. Also, the intensity of the
outermost maxima [not shown in Fig. 3(a)] is lowered as a

FIG. 4. Analogous to Fig. 2(b), extending the θ f range and in-
creasing the sensitivity of the intensity scale, as explained in the text.

result of the surface defect, whereas the intensity of sixth-
order maxima is raised, making these latter peaks visible.

At this point, it is important to recall that typical GIFAD
patterns for perfect crystal surfaces are essentially determined
by the surface potential averaged along the axial direction
[31,32]. But the presence of a transverse step breaks the
translation invariance associated with this averaged surface
potential, altering the effective slope of the reflection plane
around the edge of the terrace. This fact is evidenced in Fig. 4,
where we have extended the θ f range of Fig. 2(b), lowering
also the intensity scale by one order of magnitude to show the
terrace effects. The projectile distribution of Fig. 4 presents a
diffuse background for θ f � θ

(L)
f , with additional peaks at the

central and outermost azimuthal angles. In this case, a large
proportion of the scattered projectiles (∼54%) are deflected
above the Laue circle due to the steep increase of the surface
potential at the step position, while about 15% of the incident
projectiles penetrate in the terrace bulk.

Since the most remarkable feature of the projectile distribu-
tion of Fig. 4 is the central peak above the Laue circle, which
is placed at θ f 	 1.47 ◦, in Fig. 5 we show a sample of random
projectile paths that contribute to the central region of this
angular distribution. Such trajectories are confined to the scat-
tering plane (i.e., in-plane trajectories), initially running along
the F− or Li+ rows of the topmost layer in the initial half-plane
(note that F− or Li+ rows switch at the terrace), as respectively
shown in Figs. 5(a) and 5(b). In both panels, the wide x spread
of the classical turning points is associated with the large σx

value. Hence, projectile paths with turning points far away
from the step end on the Laue circle, without being affected
by the presence of the upward terrace. But those trajectories
with turning points placed at distances |xstep − Xt p| � 130
(170) Å in Fig. 5(a) [Fig. 5(b)] are deflected with a final polar
angle θ f � θ

(L)
f due to the change in the surface potential,

which abruptly becomes repulsive at the step. We stress that
in Fig. 4, the on-Laue interference maxima, as well as the
intense outermost peaks above the Laue circle, are produced
by quantum interference among partial transition amplitudes
corresponding to different projectile paths, that is, they can-
not be explained as points of accumulation of trajectories.
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FIG. 5. Sample of projectile trajectories contributing to the cen-
tral region (i.e., in-plane trajectories) of Fig. 4, after running along
(a) F− and (b) Li+ rows of the initial half-plane (see Fig. 1). Both
panels display the normal position Z as a function of the coordinate
X along the 〈110〉 channel. Gray and blue lines indicate trajectories
ending, respectively, on and off the Laue circle.

However, the central maximum above the Laue circle has a
classical origin, also being observed in the classical projectile
distribution.

A similar central off-Laue maximum, associated with the
presence of the transverse terrace, can be seen in Fig. 6(a) for
dx 	 +67 Å, a step position even closer to XF. But in this
case, since the atomic beam is almost focused on the step
region, Bragg peaks start to wash out, whereas the central peak
above the Laue circle is clearly visible without increasing the
sensitivity of the intensity scale. The same upstep effects are
also observed in the projectile distribution of Fig. 6(b) corre-
sponding to an upward step placed in front of the focus point
at dx 	 −67 Å. Nevertheless, the intensity of the background
and the off-Laue peaks markedly decreases as the projectile
trajectories meet the terrace edge in their incoming paths.

FIG. 6. Analogous to Fig. 2(b) for a LiF surface with a transverse
upstep placed at (a) dx 	 +67 Å and (b) dx 	 −67 Å.

FIG. 7. Analogous to Fig. 2(b) for a LiF surface with a transverse
upstep placed at dx 	 +200 Å.

As expected, the step effects gradually disappear as the dis-
tance dx increases. The projectile distribution for an upward
step placed at dx 	 +200 Å, plotted in Fig. 7, looks similar
to that for a perfect crystal surface [Fig. 2(a)], without any
signature of the terrace effects, except for the polar elongation
of the outermost peaks with respect to those derived from a
perfect surface. Under these incidence conditions, most he-
lium projectiles (∼70%) hit the detector plane with θ f 	 θ

(L)
f ,

while only a very small fraction (∼2%) penetrate into the bulk
at the step, indicating that the projectile distribution tends to
the one corresponding to a perfect LiF surface.

The distance dx for which unperturbed GIFAD patterns
can be obtained depends on the normal energy. When θi de-
creases, so does E⊥, grazing projectiles probe longer distances
along the axial direction, being affected by transverse upward
steps placed at longer distances dx. This fact can be ob-
served in Fig. 8(b), where the projectile distribution for E⊥ =
0.20 eV(θi = 0.7 ◦), produced by a crystallographic configu-
ration similar to that of Fig. 7, shows noticeable changes in

FIG. 8. Analogous to Fig. 2 for the normal energy E⊥ = 0.20 eV
and a transverse upstep placed at dx 	 +200 Å.
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FIG. 9. Analogous to Fig. 2(b) for a LiF surface with a transverse
downstep placed at dx 	 +120 Å.

the relative peak intensities with respect to those derived by
considering a perfect crystal surface, displayed in Fig. 8(a).

Finally, we analyze the influence of a transverse downstep,
as depicted in Fig. 1(b). In Fig. 9, we plot the angular distribu-
tion for E⊥ = 0.46 eV derived by considering an inward step
placed at dx 	 +120 Å. In contrast to the upstep effects shown
in Fig. 2(b), the presence of the downstep does not affect the
on-Laue distribution, which is similar to that for a perfect
surface [Fig. 2(a)]. This feature can be quantitative confirmed
by comparing the corresponding azimuthally projected spec-
tra, which are quite alike, as observed in Fig. 3(b). In the
case of Fig. 9, however, although approximately 80% of the
trajectories are scattered from the LiF surface with θ f 	 θ

(L)
f ,

there are trajectories whose outgoing paths are distorted by
the decrease of the potential at the edge of the terrace, being
deflected below the Laue circle. It gives rise to a diffuse
background below the Laue circle, whose intensity is several
orders of magnitude lower than those of Bragg peaks.

B. Effects due to a parallel terrace

The terrace effects described in Sec. III A. change when
the monolayer step is oriented parallel to the axial direction.
Analogously to the case of transverse terraces, we determine
the relative position of the parallel step by means of the dis-
tance dy between the edge of the terrace and the mean focus
point, that is,

dy = ystep − YF, (8)

where ystep is the step position across the incidence channel
(̂y) and YF denotes the mean position of the focus point of the
incident beam along ŷ. As a consequence of the symmetry of
the problem, only outward steps placed at positive distances
dy will be considered in this subsection.

Taking into consideration that the transverse length of
the surface area that is probed by helium projectiles is
much smaller than the axial one, in Fig. 10 we show two-
dimensional angular distributions for surface steps along
the 〈110〉 channel considering closer distances to the focus
point of the beam, that is, dy 	 +7.1 Å in Fig. 10(a) and

FIG. 10. Analogous to Fig. 2(b) for a LiF surface with a parallel
upstep placed along (a) a Li+ row (at dy = +7.1 Å) and (b) a F− row
(at dy = +8.5 Å) of the perfect crystal surface.

dy 	 +8.5 Å in Fig. 10(b). These steps are placed respec-
tively on top of Li+ and F− rows of the ideal perfect surface.
We found that the angular distributions of Fig. 10 are fully
confined to the Laue circle, that is, all scattered projectiles
leave the surface with θ f 	 θ

(L)
f , while the fraction of tra-

jectories penetrating into the terrace bulk is lower than 1%.
Nonetheless, the presence of a parallel step in the area that
is coherently illuminated by the atomic beam introduces an
azimuthal asymmetry in the GIFAD patterns of Figs. 10(a)
and 10(b), which display some interference maxima with
structures elongated along the Laue circle. This latter effect
depends on the exact position of the step, which determines
the shape of the equipotential curves in the region of the
terrace edge. In Fig. 11 we plot the equipotential curves,
corresponding to surface potential averaged along the axial
direction, for the two cases of Fig. 10. Around the step region,
the equipotential contours vary if the terrace edge is along a
Li+ or a F− row of the perfect surface. Similar differences

FIG. 11. Equipotential curves of the axial potential (averaged
along the 〈110〉 channel) for a LiF(001) surface with a parallel upstep
placed along (a) a Li+ row and (b) a F− row of the perfect crystal
surface. Energy scale in electron volt.
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FIG. 12. Azimuthal spectra, corresponding to the Laue annulus,
for the cases of Fig. 10. Lines analogous to Fig. 3.

in the equipotential curves are also observed for transverse
terraces. But the influence of such border effects on GIFAD
patterns seems to be stronger for parallel than for transverse
upward steps. To investigate in more detail the asymmetry
introduced by parallel steps, in Fig. 12 we plot the azimuthal
spectra corresponding to the distributions of Fig. 10, contrast-
ing them with that derived from a perfect crystal surface. In
both panels of Fig. 12, the intensities of the Bragg peaks of
order −3 and +6 increase as a consequence of the presence
of the parallel step, while the central region of the spectrum is
not affected by the surface defect. Furthermore, in Fig. 12(a)
the sharp increase of the third-order maxima smudges the
fourth-order peak, both forming a broad intense peak on the
left side of the projectile distribution, whereas in Fig. 12(b)
the peak of order −4 is not altered by the terrace border.

IV. CONCLUSIONS

In this work, the influence of surface defects on GIFAD
patterns for the He/LiF(001) system was investigated by

considering the presence of a monolayer step in the coher-
ently illuminated region of the crystal target. Our theoretical
description was based on the use of the SIVR method to
represent the grazing scattering process, combined with a PA
atom-surface potential [21]. This potential model allowed us
to easily incorporate outward or inward monolayer terraces by
adding or removing, respectively, an atomic layer in a portion
of the LiF sample.

In order to simplify the analysis, only two different ori-
entations of the terrace edge—transverse and parallel to the
incidence channel—were considered. For transverse upsteps
placed close to the focus point of the incident beam, at
distances dx smaller than a few hundred angstroms, simu-
lated projectile distributions display the characteristic Bragg
peaks on the Laue circle, along with a diffuse background
above the Laue circle, which presents additional central and
outermost peaks. The upward step also affects the relative
intensities of the on-Laue maxima, which are relevant for the
use of GIFAD as a surface analysis technique. For transverse
downsteps, instead, the projectile distribution approximates
the one derived from a perfect crystal surface, while the ter-
race border introduces only a very weak background below
the Laue circle, whose intensity is several orders of magnitude
smaller than those of the on-Laue maxima. As expected, these
terrace effects depend on the incidence conditions, gradually
disappearing as dx increases.

On the other hand, as a consequence of the smaller
transverse coherence length of the beam in the direction per-
pendicular to the axial channel, the presence of a parallel step
affects the projectile distribution only if the step is placed at a
distance dy less than a few tens of angstroms from the focus
point of the incident beam. In this case, the parallel upstep
introduces an azimuthal asymmetry in the angular spectrum,
which is fully localized on the Laue circle.

Summarizing, we found that terrace effects on GIFAD
patterns strongly depend on the orientation of the edge of
the monolayer terrace, as well as on the height (outward or
inward) and the position of the step. Even though real surfaces
may present more complex defects, such as multiple steps,
which would require further investigation, these findings sug-
gest that GIFAD may be a useful tool for studying terrace
defects on alkali halide surfaces. We hope that this study will
be helpful to trigger experimental research on this topic.
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