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Relativistic Ritz approach to hydrogenlike atoms: Theoretical considerations
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The Rydberg formula along with the Ritz quantum defect ansatz has been a standard theoretical tool used in
atomic physics since before the advent of quantum mechanics, yet this approach has remained limited by its
nonrelativistic foundation. Here I present a long-distance relativistic effective theory describing hydrogenlike
systems with arbitrary mass ratios, thereby extending the canonical Ritz-like approach. Fitting the relativistic
theory to the hydrogen energy levels predicted by bound-state QED indicates that it is superior to the canonical,
nonrelativistic approach. An analytic analysis reveals nonlinear consistency relations within the bound-state
QED level predictions that relate higher-order corrections to those at lower order, providing guideposts for future
perturbative calculations as well as insights into the asymptotic behavior of the Bethe logarithm. Applications
of the approach include fitting to atomic spectroscopic data, allowing for the determination of the fine-structure
constant from large spectral data sets and also to check for internal consistency of the data independently from
bound-state QED.

DOI: 10.1103/PhysRevA.106.062810

I. INTRODUCTION

The Standard Model of particle physics is an impressive
scientific achievement, but is unlikely to be the final chap-
ter in our quest to describe nature at a fundamental level.
Several outstanding issues have been identified that appear
to require physics beyond the Standard Model, including the
observed matter-antimatter asymmetry of the Universe [1] and
the many observations supporting the dark matter hypothesis
[2]. Accelerator laboratories have been used for nearly a cen-
tury to perform particle physics experiments at increasingly
higher energies, pushing the limits of our knowledge. How-
ever, in recent decades it has also become more feasible to
seek new frontiers through the precision study of atoms and
molecules [3].

Within the Standard Model, quantum electrodynamics
(QED) provides a description of the interaction between
electrically charged particles and photons with an accuracy
unrivaled by anything in the physical sciences. The most strik-
ing agreement is arguably between the measurement of the
electron g-factor [4,5] and theoretical predictions (see, e.g.,
[6]) using the fine-structure constant (α) as an experimental
input [7,8], agreeing at a level below 1 part per trillion. It
remains imperative to continue to refine such empirical com-
parisons not only to see if any improvement in the theory is
needed, but also to probe for possible new physics beyond the
Standard Model.

Improving the precision of the theoretical description of
atoms within bound-state quantum electrodynamics (BSQED)
is increasingly difficult at higher orders in perturbation the-
ory (see, e.g., [9]) and, at the same time, spectroscopic
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experiments can be subject to unanticipated sources of error
[10]. Having an effective theory of atoms and molecules may
be of use in guiding future progress on both theoretical and
experimental fronts. The idea behind an effective theory is
simple but profound: nature has for many physical systems
allowed us to describe phenomena at long distances without
explicitly modeling the shorter-ranged interactions. Such an
approach is ubiquitous in the physical sciences and effective
field theory, in particular, has had much contemporary use
in condensed matter, particle physics and cosmology; see,
e.g., [11].

Here I apply an effective approach to the quantum mechan-
ics of hydrogenlike atoms. Consider that no atomic system is
purely Coulombic; the effects of finite particle size and spin
coupling depend on the system in question, but field-theoretic
effects like vacuum polarization and self energy corrections
are always present. However, for single-electron atoms, all of
these effects have a characteristic length scale1 less than or
equal to the (reduced) Compton wavelength of the electron,
rQED = m−1

e . Some interactions decay with distance exponen-
tially and are effectively local. Others are nonlocal, decaying
only as a power law, but faster than the leading (scale-free)
Coulomb term. Consider the common case in which an atom
is composed of a nuclear charge Ze and is bound with a
particle of charge −e. The characteristic atomic orbital ra-
dius is ratom = n2/(mredZα), where mred is the reduced mass,
α = e2/(4π ) is the fine-structure constant, and n is the integer
principal quantum number. It is hence plausible for a long-
range effective theory to have validity if the ratio of these

1Here the Heaviside-Lorentz unit choice h̄ = c = ε0 = 1 is used
except where otherwise noted.
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FIG. 1. Hydrogenlike atom illustration. (a) Two generic charged
particles bound electromagnetically. The QED length scale, rQED =

h̄
mec , is associated with short-ranged effects, such as spin-coupling,
vacuum polarization, and self-energy corrections; (b) Charged par-
ticles within the hydrogen atom exchanging a single Coulomb-like
virtual photon. Even in the ground state, the characteristic atomic
separation of the proton and electron, ratom = rQED

α
is much bigger

than rQED, meaning a long-distance effective theory is possible.

length scales,

rQED

ratom
= mred

me

Zα

n2
, (1)

is small. Figure 1 illustrates the situation. Alternatively, one
may consider this as the ratio of two energy scales,

Eatom

�
= mred

me

Zα

n2
, (2)

where, Eatom = mred(Zα)2/n2 and � = meZα. In any case, for
electronic hydrogen, deuterium, and positronium this ratio is
small even for the ground state, n = 1. For other hydrogenlike
systems, such as muonic hydrogen or multielectron atoms, we
should expect that n � 1 may be necessary to make reliable
predictions.

Quantum defect theory [12] would be the most obvious
thing to try first as an effective theory in this context; it has
been vital for the description of Rydberg states of multielec-
tron atoms [13]. However, that effective theory is limited by its
nonrelativistic foundation. With that approach, a two-particle
system with masses m1 and m2 has energy levels param-
eterized by the Rydberg-Ritz formula. Within the modern
quantum mechanical framework, this formula is

ERyd-Ritz = −1

2

m1m2

m1 + m2

(
Zα

n�

)2

, (3)

where the effective quantum number n� = n − δn and the
quantum defect, δn, effectively parametrizes deviations from
the Coulomb potential at short distance. It is generally as-
sumed to obey a series expansion in energy, such as the
extended Ritz formula

δn = δ(0) + δ(2)

(n − δn)2 + δ(4)

(n − δn)4 + . . . , (4)

which extends the early analysis performed by Ritz [14] and is
justified through a nonrelativistic quantum mechanical analy-
sis [15]. Alternatively, the modified Ritz formula,

δn = δ(0) + δ(2)

(n − δ(0) )2 + δ(4)

(n − δ(0) )4 + . . . , (5)

is commonly used. However, Eq. (3) cannot properly account
for all relativistic effects, as discussed in Ref. [16]. This is es-
pecially problematic for hydrogenlike atoms wherein kinetic
relativistic corrections are of the same order of magnitude as
the shorter-ranged relativistic corrections, such as spin-orbit
coupling.

To demonstrate the limitations of this standard nonrela-
tivistic Ritz approach, consider an infinitely massive (m2 →
∞) and spinless nucleus with charge Ze and zero size.2 If all
field theoretic effects are ignored, the energy levels are exactly
calculable as eigenvalues of Dirac-Coulomb equation,

EDirac = m1

⎛
⎜⎜⎜⎝ 1√

1 +
(

Zα
n−δDirac

)2
− 1

⎞
⎟⎟⎟⎠, (6)

where the n-independent constant

δDirac = ( j + 1/2) −
√

( j + 1/2)2 − (Zα)2 (7)

depends on the electron’s total angular momentum, j.
If Eq. (3) is capable of reproducing the energy levels given

by (6), we should be able to determine the values of δ(i) neces-
sary to do so. Assuming Zα < 1, it follows also that δDirac < 1
and thus matching the expansions of both formulas in small
n−1 order by order in powers of n−1 should accomplish this.
Asymptotically,

ERyd-Ritz

m1(Zα)2 = − 1

2n2
− δ(0)

n3
− 3

2

δ2
(0)

n4
+ O(n−5), (8)

whereas

EDirac

m1(Zα)2 = − 1

2n2
− δDirac

n3
− 3

2

δ2
Dirac

n4
+ 3

8

(Zα)2

n4
+ O(n−5).

(9)
Matching at order n−3, it follows that

δ(0) = δDirac. (10)

However, at order n−4 the matching cannot be completed
because of the fourth term in Eq. (9), and it cannot be ac-
counted for without a very specific modification to either (4)
or (5) that does not seem to be generalizable to other systems.
This offending term has nothing to do with spin-orbit cou-
pling, which falls off with distance faster than the leading 1/r
Coulomb interaction, but is a motional (or kinetic) relativistic
correction that is present for all particles, regardless of spin.
Given that it has been standard practice (see, e.g., Ref. [17]) to
apply the nonrelativistic Ritz approach of formula (3) to fits of

2This analysis is complementary to that found in Ref. [16], but I
thank Gordon Drake for prompting me to consider it.
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atomic spectral data,3 it is even more pertinent to revisit this
issue.

Attempts to construct a relativistic quantum defect theory
for the Dirac-Coulomb system may be found in the literature,
e.g., Ref. [18], but such analyses are appropriate only to the
extent that the finite nuclear mass, i.e., recoil effects, are
ignored. In Ref. [19] a relativistic quantum defect theory was
derived for positronium, the special case in which m1 = m2;
generalizing that work to systems with arbitrary mass ratios
is nontrivial and constitutes Sec. II of the present article. In
Sec. III a matching between this relativistic effective theory
and the numerical BSQED energy level predictions demon-
strates its accuracy and superiority over the nonrelativistic
Ritz approach. In Sec. IV an asymptotic analytic matching
between those energy levels reveals nonlinear consistency re-
lations within BSQED that appear to apply to all hydrogenlike
systems. In Sec. V implications for the Bethe logarithm are
described. A brief conclusion is presented in Sec. VI.

II. MODEL DERIVATION

A. Matching calculation

Following the procedure first explored in [19], let us seek
an effective time-independent Schrödinger equation that de-
scribes the long distance interaction of two charged particles,
namely,

[ε1 − m1 + ε2 − m2 + Ueff(r)]ψ = Eψ, (11)

where r is the relative separation of the two particles, �p ≡
�p1 = −�p2 is the conjugate momentum operator for the center-
of-momentum motion, and E is the energy of the system less
the two masses. The relativistic energy operators

εi =
√

�p2 + m2
i , (12)

could, in principle, be implemented by expanding to any de-
sired order in the quantities �p2/m2

i . It should be understood
that εi represents an operator when working in configuration
space, whereas it is a c-number in Fourier space.

By matching the calculation of the differential scattering
cross section of the two particles using (1) the field-theoretical
method and (2) the Born approximation to scattering with
(11), we may obtain the effective potential, Ueff(r). Following
[20], the field theoretic calculation of the differential elastic
scattering cross section yields

dσ

d

= 1

64π2(ε1 + ε2)2

∣∣M f i

∣∣2
. (13)

Here we compute the scattering amplitude, M f i, for two distin-
guishable spin- 1

2 particles and discover below that the result is
the same for scalar particles. Take the electric charges to be e1

and e2, assuming that they scatter elastically with momentum
transfer

�q ≡ �p1
′ − �p1. (14)

3As noted in [17], a polarization formula may be used as an alterna-
tive to (3), at least for the purpose of extracting an ionization energy
from spectral data. However, such a formula neglects higher order
relativistic and relativistic recoil effects.

The lowest order QED amplitude, due to a single photon
exchange, is

M f i = e1e2(ū′
1γ

μu1)Dμν (q)(ū′
2γ

νu2), (15)

where ū′
i = ū( �pi

′, mi ). The photon propagator in the Feynman
(standard) gauge is

Dμν (q) = 4π

q2
gμν, (16)

and the square of the virtual photon four-momentum,

q2 = ω2 − �q 2. (17)

As the �q → 0 limit is taken,

ū′
iγ

μui = 2pμ
i + O(| �q|), (18)

which, at leading order, neglects any spin-dependent effects.
Temporarily reintroducing factors of h̄, loop diagrams that
give relative corrections to (15) must, for dimensional reasons,
scale as some positive power of h̄| �q|

Elight
,

M f i = 16πe1e2

q2
(ε1ε2 + �p2)

[
1 + O

(
h̄| �q|
Elight

)]
, (19)

where Elight is the smallest relevant energy scale. In the context
of the Standard Model, Elight is no less than me. In dropping the
correction terms in (19), we omit all spin-dependent and loop
corrections that contribute to fine and hyperfine structure. All
such terms diminish in the real-space potential with distance
faster than r−1. To reiterate, QED is only assumed to be valid
and sufficient for very low momentum-exchange scattering,
i.e., at very large spatial separation.

Omission of the terms described above has a very im-
portant simplifying consequence for the analyses that follow.
Two propositions are made which we confirm below. First, we
assume Ueff(r) ∝ r−1 at leading order, which is plausibly true
given Eq. (19). Second, we suppose that (11) will yield an
equation that displays the long-distance behavior

lim
r→∞ �p2ψ ∼

(
C0 + C1

r

)
ψ, (20)

for some c-numbers, C0 and C1. This means that the commu-
tation relation

lim
r→∞[ �p2,Ueff(r)]ψ ∼ 0 (effectively) (21)

may be used because the terms omitted in (21) decay with
distance faster than r−2ψ and are therefore subdominant at
long distance to each term in the commutator.

To use (11) for the analysis of a scattering event in the long-
distance limit, we assume the two incoming particles to have
momenta �k and −�k, and make the identifications

E ≡ ε1 + ε2 − m1 − m2,

εi ≡
√

k2 + m2
i . (22)

Equation (21) allows us to use purely algebraic means to solve
(11) for �p2ψ :

�p2ψ =
[

k2 − 2ε1ε2

ε1 + ε2
Ueff(r) + O

(
U 2

eff

)]
ψ. (23)
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A first-order scattering analysis then yields

dσ

d

= 1

4π2

(
ε1ε2

ε1 + ε2

)2∣∣Ũeff(�q)
∣∣2

, (24)

where Ũeff(�q) is the Fourier transform of Ueff(r), and the factor
ε1ε2/(ε1 + ε2) can be interpreted as a relativistic generaliza-
tion of the reduced mass.

Finally, by using (19) to match (13) with (24), we find the
effective potential in Fourier space to be

Ũeff(�q) = −4πe1e2

q2

(
1 + �p2

ε1ε2

)
, (25)

where this choice of sign is consistent with the known nonrel-
ativistic behavior of the electric potential energy between two
charged particles.

B. Real space effective potential and solutions

Let us now specialize to the case of e1 = −e, and
e2 = +Ze for some positive integer, Z . The q2 in the denom-
inator of (25) makes a the Fourier transform to real space
challenging; this complication is simply not present in the
special equal-mass case considered in [19]. To proceed note
that, given the definition

�q ≡ �p1
′ − �p1,

the energy of the virtual photon obeys

lim
�q→0

ω = �p · �q
2ε1ε2

(ε2 − ε1). (26)

In this limit, its squared four-momentum is

q2 = ( �p · �q)2
(

(ε2 − ε1)

2ε1ε2

)2

− �q 2, (27)

and from (25) it follows that

Ũeff(�q) = −4πZα

�q 2

(
1 + �p2

ε1ε2

)
1 − ( �p· �q)2

�q 2

(
(ε2−ε1 )
2ε1ε2

)2 . (28)

In Fourier space the following inequality is obeyed:

( �p · �q)2

�q 2

(
(ε2 − ε1)

2ε1ε2

)2

� 1

4
, (29)

which means that (28) may be written as a geometric series

Ũeff(�q) = −4πZα

�q 2

(
1 + �p2

ε1ε2

)

×
∑
n=0

[
( �p · �q)2

�q 2

(
(ε2 − ε1)

2ε1ε2

)2
]n

. (30)

For the special case in which m1 = m2, considered in [19],
only the n = 0 term is nonzero and gives a Coulomb-like
result. For the general case all terms must be considered, so
the real-space effective potential has the form

Ueff(r) ∝
∑
n=0

I (n), (31)

where

I (n) =
∫

d3q

(2π )3 ei �q·�r 1

�q 2

(
( �p · �q)2

�q 2

)n

. (32)

For n = 0,

I (0) = 1

4πr
, (33)

and for n = 1,

I (1) = 1

8πr

(
�p2 − �r · (�r · �p) �p

r2

)
, (34)

a result found readily in the literature, e.g., [20]. Consider
that �p2 = −∂2

r − 2
r ∂r + 1

r2 ∇2

 and �r · (�r · �p) �p = −r2∂2

r . This
means that the n = 1 term acting on ψ scales as

O

(
1

r2
∂rψ

)
or O

(
1

r3
ψ

)
, (35)

which, at large distance, is negligibly small compared to the
Coulomb-like n = 0 term.

For arbitrary integer n, discussed below, a different tack is
taken, but the conclusion is that all n �= 0 terms acting on ψ

fall off with distance faster than r−1ψ and therefore may be
discarded when compared to the leading Coulomb-like term.
Choosing coordinates such that �r is aligned with the z axis so
that �q · �r = qr cos θ , let w = qr and x = cos θ , integrate over
the azimuthal angle, and write Eq. (32) as

I (n) = 1

4π2

1

r

∫ ∞

0
dw

∫ 1

−1
dx eiwx(q̂i pi )

2n, (36)

where q̂ is a unit vector in the direction of �q. If Eq. (36) is
to decay with distance no faster than r−1 when acting on the
wave function ψ , given Eq. (20), the integral must contain
a term proportional to �p2n = p2n

r + · · · . This requires the
following contribution to (36) to be nonzero:

I(n) = 1

4π2r

∫ ∞

0
dw

∫ 1

−1
dx eiwx(q̂r pr )2n

= 1

4π2r
(pr )2n

∫ ∞

0
dw

∫ 1

−1
dx cos (wx) x2n, (37)

where the substitution q̂r = cos θ = x has been made and
the symmetry of the x integral has been exploited. A series
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representation of the cosine may be used to show that∫ 1

−1
dx cos (wx) x2n

= 1

n + 1/2
1F2

[
n + 1

2
;

1

2
, n + 3

2
; −w2

4

]
, (38)

where 1F2 is a hypergeometric function. With the variable
substitution χ = w2

4 , it follows that

I(n) = 1

4π2r
(pr )2n

∫ ∞

0

dχ χ−1/2

n + 1/2
1F2

[
n + 1

2
;

1

2
, n + 3

2
,−χ

]

= 1

4π2r
(pr )2n�

(
1

2

)
lim

μ→0+
μnγ

(
n + 1

2
,

1

μ

)

= 1

4π2r
(pr )2n�

(
1

2

)
lim

μ→0+
μn�

(
n + 1

2

)
, (39)

where, in the second line, a known integral [21] was used in
conjunction with the series representation of the incomplete
gamma function, γ (α, x), and in the third line use was made
of the limiting behavior

lim
μ→0+

γ

(
n + 1

2
,

1

μ

)
∼ �

(
n + 1

2

)
+ O(e−1/μμ1/2−n). (40)

It follows that

I(n �=0) = 0, (41)

therefore, I (n �=0) acting on ψ decays with distance faster than
1/r and hence only the n = 0 term contributes to the effective
potential a term proportional to 1/r. After Fourier transform-
ing Eq. (30), we learn

lim
r→∞Ueff(r) = −Zα

r

(
1 + �p2

ε1ε2

)
, (42)

a result that would also follow from setting by hand ω = 0 in
Eq. (25).

The effective commutation relation (21) may be used to
rearrange (11) algebraically to yield

�p 2ψ =
(

−q2 + 2m̂Zα

r
+ O

(
α2

)
r2

)
ψ, (43)

which is superficially identical to the canonical Schrödinger-
Coulomb equation. However, here

q2 = −E (E + 2m1)(E + 2m2)(E + 2m1 + 2m2)

4(E + m1 + m2)2 (44)

and

m̂ = E2 + 2m1m2 + 2E (m1 + m2)

2(E + m1 + m2)
. (45)

The radial solutions to the Schrödinger-Coulomb equa-
tion involve the superposition of two independent (regular
and irregular) confluent hypergeometric functions. Here we
focus exclusively on bound states (E < 0), for which the

normalizeable4 radial solutions are

R(r) = e−qrr �̃ U

(
1 + �̃ − m̂Zα

q
, 2(�̃ + 1), 2qr

)
, (46)

where U (a, c, x) is Tricomi’s confluent hypergeometric
function,

�̃ = � + O(α2)

2� + 1
(47)

and

q = m̂Zα

n�

, (48)

where n� is the effective quantum number. Two remarks are
here warranted. First, because the quantity 1 + �̃ − m̂Zα

q will
never be exactly equal to a negative integer in a real system,
the regular radial solution diverges exponentially at large r
and cannot be normalized, therefore it has been discarded.
Second, the singular behavior of the solution involving the
(irregular) Tricomi function near r = 0 is not a concern with
this approach because we would not, for example, try to
normalize wave functions on the entire domain 0 � r < ∞.
A Hartree-like approach [15] may be employed in which
these exterior solutions are matched at a finite radius onto
appropriate “interior” wave functions. Alternatively, we can
treat this radius as a system boundary and posit that boundary
conditions encode information about the omitted interactions
in the vicinity of the origin [22].

The solutions here are nevertheless thought to be in some
sense near to their “pure relativistic Coulomb” forms, which
are regular at r = 0; this corresponds to n� = n, where n is a
positive integer, n. As is standard, we write

n� = n − δ, (49)

where the quantum defect, δ, accounts for the shorter-ranged
interactions that have not been modeled explicitly [12,15,22].
From Eqs. (44), (45), and (48) it follows that the physical
energy eigenvalues are

E =
√√√√√m2

1 + m2
2 + 2m1m2√

1 +
(

Zα
n�

)2
− (m1 + m2). (50)

Equation (50) can also be obtained as a special case5 of the
analysis in Ref. [23], a point that is addressed in Appendix A.
However, it appears not to have been appreciated in Ref. [23]
that this result is exact for the electromagnetic interaction in
the large n (large r) limit, and hence may be used as the
starting point of a relativistic effective atomic theory.

To see that the energies in (50) are plausible, a Taylor
expansion in small Zα/n� yields a series whose first term is
the Rydberg-Ritz formula, Eq. (3), followed by relativistic

4I continue to be grateful to Harsh Mathur for emphasizing the
importance of seeking solutions that are normalizeable in the r → ∞
limit.

5I am grateful to an anonymous referee for pointing out this existing
body of work on the relativistic two-body problem.
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kinetic correction terms,

E = −1

2

m1m2

m1 + m2

(
Zα

n�

)2[
1 − 3m2

1 + 5m1m2 + 3m2
2

4(m1 + m2)2

(
Zα

n�

)2

+ O

(
Zα

n�

)4]
. (51)

In the limit m1/m2 → 0, Eq. (50) becomes the canonical
Dirac-Coulomb energy levels of Eq. (6). In the case of m1 =
m2 = m, Eq. (50) is consistent with the results of [19], namely,

E = m

⎛
⎜⎜⎜⎝

√√√√√2 + 2√
1 +

(
Zα
n�

)2
− 2

⎞
⎟⎟⎟⎠. (52)

C. Relativistic Ritz-like defect theory

Finally, we must consider the form of the quantum defect.
In a previous article concerning the special case of positron-
ium [19], a Ritz-like expansion was posited, namely a series
expansion in which the energies are assumed to be small
relative to some high-energy scale, �:

δ�s j = δ(0)�s j + λ(1)�s j
E

�
+ λ(2)�s j

(
E

�

)2

+ . . . , (53)

where, for a nonannihilating system, the defect parameters,
δ(0)�s j, λ(1)�s j, λ(2)�s j, . . . are real and should depend on the
orbital (�), total spin (s), and total ( j) angular quantum num-
bers of the state; alternatively, the system can be described
by the orbital, total “electronic,” and total system quantum
numbers, �, j, and f , respectively. A modified ansatz written
as a series in inverse powers of (n − δ(0) ) is equivalent and
is significantly easier to use for data fitting. Analyzing the
asymptotic (large n) behavior of (50), it may be verified that

δ�s j = δ(0)�s j + δ(2)�s j

(n − δ(0)�s j )2
+ δ(4)�s j

(n − δ(0)�s j )4
+ 2δ2

(2)�s j

(n − δ(0)�s j )5
+ δ(6)�s j

(n − δ(0)�s j )6
+ 6δ(2)�s jδ(4)�s j

(n − δ(0)�s j )7
+ δ(8)�s j

(n − δ(0)�s j )8

+ 4δ2
(4)�s j + 8δ(2)�s jδ(6)�s j

(n − δ(0)�s j )9
+ δ(10)�s j

(n − δ(0)�s j )10
+ −40δ4

(2)�s j + 10δ(4)�s jδ(6)�s j + 10δ(2)�s jδ(8)�s j

(n − δ(0)�s j )11
+ · · · . (54)

This form differs from that hitherto used widely in the lit-
erature, Eq. (5), because (54) contains all inverse powers of
(n − δ(0) ) beyond fourth order, a result that follows from the
low-energy expansion of the defect. In fact, it may be verified
that (54) applies even when using the nonrelativistic energy
formula, Eq. (3).

Equation (50) and the modified defect ansatz in (54) are
foundational for the remainder of this article. Given that it has
a proper relativistic foundation, the use of these formula will
here be referred to as the relativstic Ritz approach.

III. FITS TO THEORETICAL ENERGY LEVELS
OF HYDROGEN

Analyzing the bound-state energy levels predicted by
BSQED with formulas (3) and (50) is perhaps the most ex-
pedient way to establish superiority of the latter relativistic
formula. A tabulation of bound-state energies of hydrogen
(Z = 1) by Horbatsch and Hessels [24], which includes hy-
perfine structure, will be used as a fiducial set of data for this
purpose. I will analyze here a selection of the nS, nP, and nD
energy levels of hydrogen, which may be found in Tables III,
IV, and V of Ref. [24].

Here we reintroduce factors of Planck’s constant and the
speed of light. Prior to fitting it is important to note that in
Ref. [24] the following parameter values were used:

mp/me = 1 836.152 673 89(17), (55)

α−1 = 137.035 999 139(31), (56)

mec2α2

2h
≡ cR∞ = 3 289 841 960 248.9(3.0) kHz. (57)

It will therefore be consistent to use as input values for the
electron and proton masses

mec2

h
= 1.235 589 964 81 × 1017 kHz (58)

and

mpc2

h
= 2.268 731 817 71 × 1020 kHz. (59)

Any fit requires truncation of Eq. (54). At lowest order
(LO), only α and the defect parameter δ(0)� j f is used in
a numerical fit; at next-to-leading order (NLO) δ(0)� j f and
δ(2)� j f are used, and so on. This means that at order NbLO
there are b + 2 fit parameters. Fitting was computed using the
Levenburg-Marquardt algorithm, weighting each data point
interval by the inverse square of its uncertainty. As a practical
matter regarding numerical precision, it was necessary to first
expand Eq. (50) in powers of α before applying the N5LO fit;
an expansion to order α8 was deemed sufficient as it showed
negligible changes to the fit parameters and various goodness-
of-fit measures compared to the order α6 expansion. The same
was found to be true for all other lower order fits.

A. Comparing the nonrelativistic
to the relativistic Ritz approach

The results from fitting Eqs. (3) and (50) to all 20 of the
nS( f =0)

1/2 states are summarized below; fit values for α−1 are
displayed in Table I and the relative residuals from each fitting
formula are displayed in Fig. 2. It should be noted that the
nS( f =0)

1/2 energies reported in [24] are given at a precision level
no better than one part per 1012 for n � 6.
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FIG. 2. Relative residuals from the fits to all 20 of the nS( f =0)
1/2 QED-predicted energy levels reported in Ref. [24]. Each graph corresponds

to a different perturbative order. The relative residuals from the nonrelativistic Ritz formula (3) are indicated with red triangles and those from
the relativistic Ritz formula (50) are in blue squares.

B. Fitting and predicting with subsets of levels

To compare fit results among different angular momentum
channels on equal footing, the first seven levels of the nS( f =0)

1/2 ,

nS( f =1)
1/2 , nP( f =0)

1/2 , nP( f =1)
1/2 , nD( f =1)

3/2 and nD( f =2)
3/2 states are fit

with Eq. (50) at various orders in the defect expansion, and
extrapolations are made to the remaining levels reported in
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TABLE I. Values of α−1 from model fits to BSQED-predicted
energy levels of the nS f =0

1/2 states of atomic hydrogen. Values should
be compared with the input value of α−1 = 137.035 999 139(31)
used in Ref. [24].

Order NR Ritz α−1 Rel. Ritz α−1

LO 137.035 27(7) 137.036 001 1(2)
NLO 137.035 86(1) 137.035 999 31(2)
NNLO 137.035 949(5) 137.035 999 165(3)
N3LO 137.035 975(2) 137.035 999 1449(8)
N4LO 137.035 9859(9) 137.035 999 1404(1)
N5LO 137.035 9911(5) 137.035 999 1395(1)

the corresponding tables in Ref. [24]. The notation used for
the defect parameters is δ(i)� j f .

Parameter values for a representative sample of the NNLO
fits is shown in Tables II, III, and IV. The results in the
form of relative residuals are also summarized in Fig. 3.
It is apparent that, with the exception of the nS states, the
inclusion of more parameters does not necessarily yield a
better fit, i.e., a longer series expansion of the quantum defect
parameter does not necessarily improve accuracy. This may
be the result of the fact that many of the values used for
fitting were only reported to a relative precision no better
than 10−12, so an improved fit is impossible. On the other
hand, the nP residuals in Fig. 3 suggest that at larger n more
parameters may be more appropriate. This is consistent with
the idea that the quantum defect series should be treated an
asymptotic series expansion in small E , or large n, which
does not necessarily converge. This motivates the analysis
in the following section. Last, it is noteworthy that relative
residuals in Fig. 3 and the progressively accurate fit values
for α−1 in Tables II, III, and IV suggests that fewer defect
parameters are needed for progressively higher orbital angular
momentum states. This is consistent with the fact that those
states are progressively less sensitive to interactions close to
the origin.

In any case, not only does Eq. (50) clearly provide a supe-
rior fit to the canonical Rydberg-Ritz formula (3), it has the
potential to provide a novel means of determining at least one
physical parameter (α) by applying it to actual transition data.
It may also allow for consistency checks of data, which is of
particular interest in light of possible correlated errors within
the hydrogen and deuterium [10] data sets.

TABLE II. Fit parameters from NNLO fit to the first 7 nS( f =0)
1/2

levels from [24].

Parameter

α−1 137.035 999 176(7)
δ(0)0 1

2 0 2.55042(2) × 10−5

δ(2)0 1
2 0 5.61(7) × 10−8

δ(4)0 1
2 0 −1.48(6) × 10−8

TABLE III. Fit parameters from NNLO fit, as in Table II, for the
nP( f =0)

1/2 levels.

Parameter

α−1 137.035 999 1452(8)
δ(0)1 1

2 0 2.669299(4) × 10−5

δ(2)1 1
2 0 1.44(3) × 10−8

δ(4)1 1
2 0 −1.37(8) × 10−8

IV. INSIGHTS INTO BOUND-STATE QED

The remarkable success of the relativistic Ritz approach
to characterize the BSQED energy levels, as described in the
previous section, warrants additional investigation. To this
end, we here consider exclusively nonannihilating systems,
hence the energies are taken to be real.6 Let m1 and m2 be
the mass of the lighter and heavier particles, respectively, and
the dimensionless quantity

μ =
(

1 + m1

m2

)−1

, (60)

which takes a value between 1/2 and 1, is used to quan-
tify the recoil effect. The BSQED perturbative expression
for the energy levels can be found in various publications,
e.g., [24–26]. Cumbersome as they may appear, their form
simplifies asymptotically with increasing n. The mathematical
relationship

n∑
i=1

1

i
= ψ (n) + 1

n
+ γ , (61)

where γ is the Euler-Mascheroni constant and the digamma
function, ψ (n) ≡ d

dx ln �(x), is useful in what follows, espe-
cially when also noting the asymptotic behavior

ψ (n) ∼ ln n − 1

2n
− 1

12n2
+ O(n−4). (62)

The so-called Bethe logarithm that appears in the energy
expression, which will be discussed more in the following
section, displays an asymptotic behavior that may be fit with a
series expansion in inverse powers of n, as well; see, e.g., [27].
It follows that the energy levels may be written in following

6The case of positronium, an unstable system known to decay by
annihilation, was considered in [19].

TABLE IV. Fit parameters from NNLO fit, as in Table II, for the
nD( f =1)

3/2 levels.

Parameter

α−1 137.035 999 1410(3)
δ(0)2 3

2 1 1.332842(2) × 10−5

δ(2)2 3
2 1 6.9(3) × 10−9

δ(4)2 3
2 1 −1.2(2) × 10−8
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FIG. 3. Relative residuals for predictions made from the first seven states indicated.

the asymptotic (large n) form,

E ∼
∞∑

A,N=2

CA,N
μ m1(Zα)A

nN
, (63)

where the CA,N may contain logarithms of α and/or powers of
Z . Using the known BSQED results

CA,2 = 0 (A > 2), (64)

C2,N = 0 (N > 2), (65)
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C3,N = 0 (for all N ), (66)

C4,N = 0 (N > 4), (67)

C6,N = 0 (N > 6), (68)

we can match the BSQED and relativistic Ritz results, term by
term in a double expansion in small Zα and n−1. Suppressing
angular momentum indices for clarity, we find

δ(0) = −(Zα)2(C4,3 + (Zα)C5,3 + O(Zα)2)

= (Zα)2

2 j + 1
+ O(Zα)3, (69)

which is consistent with the fit values from Tables II, III, and
IV. Additional defect parameters are given in Appendix B.

In fact, there are too few free parameters in the relativistic
Ritz model to account for all terms in (63) unless the following
relations hold true:

C2,2 = − 1
2 , (70)

C4,4 = 1
8 (3 − μ + μ2), (71)

C5,N = 0 (even N), (72)

C6,4 = − 3
2C2

4,3, (73)

C6,6 = 1
16 (−5 + 3μ − 4μ2 + 2μ3 − μ4), (74)

C7,4 = −3C4,3C5,3, (75)

C7,6 = −5C4,3C5,5, (76)

C7,8 = −7C4,3C5,7, (77)

C7,10 = −9C4,3C5,9, (78)

C8,4 = − 3
2

(
C2

5,3 + 2C4,3C6,3
)
, (79)

C8,6 = − 5
4 (3 − μ + μ2)C2

4,3

− 5(C5,3C5,5 + C4,3C6,5), (80)

C8,8 = 1
128 (35 − 29μ + 47μ2 − 41μ3 + 33μ4

− 15μ5 + 5μ6) − 7
2C2

5,5 − 7C5,3C5,7, (81)

C8,10 = −9(C5,5C5,7 + C5,3C5,9), (82)

and additional relations up to A = 10 and N = 10 are given in
Appendix B.

It appears that all even-N terms obey an asymptotic consis-
tency relation7 to odd-N terms that is, remarkably, exact to all
orders in the mass ratio m1/m2. Equations (71) and (74) may
be readily checked in two special cases: (1) when m2 → ∞
it follows that C44 = 3/8 and C66 = −5/16 and (2) when

7This even-odd correspondence is similar to that found by G. W. F.
Drake in a nonrelativistic context [28].

m2 = m1 it follows that C44 = 11/32 and C66 = −69/256.
At intermediate mass ratios, treating m1/m2 as a small pa-
rameter, these results are consistent up to O(m1/m2) with
results presented in Ref. [29], whose results are based off of
Ref. [25]. All terms up to O(α6) are confirmed, including the
nonlinear relation (73). Equations (72) and (75) through (78)
have implications for the Bethe logarithm which we consider
in the following section.

V. IMPLICATIONS FOR THE BETHE LOGARITHM

Beyond the leading-order Bohr and fine-structure correc-
tion terms, proportional to (Zα)2 and (Zα)4, respectively,
there are quantum field-theoretic effects predicted within
BSQED to contribute to the energy at order α(Zα)4 or, equiva-
lently, Z−1(Zα)5. These terms arise from self-energy, vacuum
polarization, and anomalous magnetic-moment corrections
[30].

At second order in perturbation theory, the leading one-
loop self-energy corrections include terms proportional to

m1μ
3

n3

(Zα)5

Z
ln k0(n, �), (83)

where ln k0(n, �) is the called the nonrelativistic Bethe log-
arithm; it is nonrelativistic in the sense that it is computed
in perturbation theory using the unperturbed nonrelativis-
tic wave functions of the Schrödinger-Coulomb equation.
Roughly speaking, k0(n, �) is a normalized weighted average
of excitation energies between the bound state with quantum
numbers n and � and all other intermediate states (bound and
continuum) that are reached during the emission and absorp-
tion of the virtual photon [31]. The Bethe logarithm is a pure
number that has no known method of analytic calculation,
so it must be computed numerically for a given n and �.
More than 20 000 values have been have been computed,
up to n = 200 and � = 199, by the authors of [27], although
conceivably values could be needed to even higher values of
n. Investigations have demonstrated that it asymptotes to an
l-dependent constant as n → ∞ and may be fit with a series
expansion in inverse powers of n:

ln k0(n, �) ∼ ln k0(∞, �) + β
(1)
�

n
+ β

(2)
�

n2
+ β

(3)
�

n3
+ · · · .

(84)
However, as they appear in terms like (83), Bethe logarithms
are predicted by Eq. (72) to admit an asymptotic expansion
that excludes inverse odd powers of n. Using the numerical
results of [27] for n = 190 through n = 200, some of which
are reproduced in Table V, we can fit for the parameters
indicated in the general fit Eq. (84) as well as in the even-only
fit in which the restriction β

(i=odd)
� = 0 is made.

In Tables VI, VII, and VIII the best-fit parameters are
shown as well as a comparison of the second-order Akaike
Information Criterion (AICc) of each fit, made using Math-
ematica, to the 11 entries of each column. Reference [32]
contains an excellent discussion of the use of AICc for com-
paring the goodness of fit of various models to data. This
criterion is defined by

AICc = −2 logL(θ̂ ) + 2K

(
n

n − K − 1

)
, (85)
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TABLE V. Numerically computed values of the Bethe logarithm
from [27].

ln k0(n, �) � = 0 � = 1 � = 2

n = 190 2.72266958 −0.0490489444 −0.00993712588
n = 191 2.72266942 −0.0490490025 −0.00993716023
n = 192 2.72266927 −0.0490490596 −0.00993719406
n = 193 2.72266911 −0.0490491159 −0.00993722737
n = 194 2.72266896 −0.0490491713 −0.00993726017
n = 195 2.72266881 −0.0490492258 −0.00993729247
n = 196 2.72266867 −0.0490492796 −0.00993732428
n = 197 2.72266852 −0.0490493325 −0.00993735562
n = 198 2.72266838 −0.0490493846 −0.00993738649
n = 199 2.72266824 −0.0490494360 −0.00993741690
n = 200 2.72266810 −0.0490494865 −0.00993744687

where L(θ̂ ) is the maximum likelihood for the set of best-fit
model parameters (θ̂), n is the sample size, and K is the num-
ber of model parameters. The “best” model has the minimum
value of AICc. AICc, as opposed to AIC, is used according
to the rule of thumb that the former should be used whenever
n/K < 40 [32].

Given the substantially lower value of the AICc,8 it is
clear that a series of even inverse powers of n is a superior
model compared to a general series of inverse powers, at least
for large values of n, and should therefore provide a more
accurate extrapolation to terms at even higher n. As an explicit
demonstration, I have repeated the � = 0 fit on only the first
six entries (n = 190 through n = 195) of Table V and made
predictions for the remaining five entries (n = 196 through
n = 200). The relative errors from the general and even-only
fits are shown in Fig. 4.

It is also noteworthy that the asymptotic even-only
fit parameters are in good agreement with the nu-
merical values ln k0(∞, 0) = 2.722654335, ln k0(∞, 1) =
−0.049054544, and ln k0(∞, 2) = −0.009940457 reported in
[27]. However, the even-only fits described here give inferior
fits for smaller values of n, for example, the set of values
for n � 20 computed and tabulated in Ref. [30]. This is not

8The relative evidence for one model compared to another depends
exponentially on the AICc value. Given two models, the rule of
thumb is that if one model has an AICc value higher by more than
10 then it has essentially no empirical support compared to the other
model [32].

TABLE VI. Numerical fits of the � = 0 Bethe logarithm using
data found in Table V.

General fit Even-only fit

ln k0(∞, 0) 2.709(21) 2.72265425(85)
β

(1)
0 10(16) –

β
(2)
0 −3.0(4.7) × 103 0.560(65)

β
(3)
0 3.9(6.1) × 105 —

β
(4)
0 −1.9(3.0) × 107 −232(1230)

AICc −373.2 −391.8

TABLE VII. Numerical fits of the � = 1 Bethe logarithm as in
Table VI.

General fit Even-only fit

ln k0(∞, 1) −0.04874(23) −0.049054521(10)
β

(1)
1 −0.24(18) —

β
(2)
1 71(52) 0.20201(78)

β
(3)
1 −9.2(6.7) × 103 —

β
(4)
1 4.5(3.3) × 105 −24(15)

AICc −472.6 −489.0

surprising because the analyses discussed here use an asymp-
totic expansion around n → ∞.

At O(α7), Eqs. (75) through (78) indicate a relationship
between the O(α5) Bethe logarithm and the higher order “rel-
ativistic” Bethe logarithm, which is discussed, e.g., in [33]
and [34]. However, this relationship has not been confirmed
because the asymptotic behavior of this higher order Bethe
logarithm is difficult to extrapolate; to my knowledge they
have thus far been computed only for excited states from
n = 2 to n = 8 [34]. Its computation to higher values of n
could confirm Eqs. (75) through (78). Alternatively, one line
of research would be to assume their validity and pursue
a more efficient method of computing the relativistic Bethe
logarithm.

VI. DISCUSSION

Here I have derived a relativistic long-distance effective
theory of hydrogenlike atoms, dubbed the relativistic Ritz
approach, and explored some of its consequences in the con-
text of bound-state quantum electrodynamics (BSQED). The
approach has been demonstrated to be superior to using the
canonical Rydberg-Ritz formula when applied to the hydro-
gen atom. This is undoubtedly also true for deuterium and
other single-electron atoms. The approach should also be
pursued for its application to the highly excited (Rydberg)
states of more complex atoms. The alkali atoms, in particular,
are used in contemporary studies of quantum information
processing [35] and it is important to have accurate values of
the (unperturbed) energy levels of these atoms [36]. Plausibly,
it may be possibly to modify this effective approach to be
applied to multielectron or molecular systems.

Consistency relations within BSQED have been discovered
that illuminate additional structure in the theory which may
aid theorists in improving its predictive accuracy. In particular,

TABLE VIII. Numerical fits of the � = 2 Bethe logarithm as in
Tables VI and VII.

General fit Even-only fit

ln k0(∞, 1) −0.009980(16) −0.009 940 4467(12)
β

(1)
1 0.031(13) —

β
(2)
1 −8.9(3.8) 0.121026(93)

β
(3)
1 1165(490) —

β
(4)
1 −5.7(2.4) × 104 −41.4(1.8)

AICc −530.2 −535.9
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FIG. 4. Relative errors on the � = 0 Bethe logarithm predictions
in the general and even-only fits using Eq. (84) to fit numerical data
from Table V, as described in the text.

new structure of the asymptotic form of the Bethe logarithm
has been both predicted and confirmed through analysis of
numerical results. As a consequence, a more accurate method
has been demonstrated for determining Bethe logarithms of
arbitrarily large n by extrapolating from currently known
values at lower n. The existence of this structure within
BSQED suggests that it may be possible to develop a more
efficient method for some calculations that makes this struc-
ture manifest. Conceivably, this could be achieved by use of
the unperturbed (δ → 0) relativistic solutions of Eq. (46) to
evaluate expectation values used in perturbation theory. Doing
so consistently would require careful consideration that goes
well beyond the scope of this article.

This approach will be applied to atomic hydrogen and
deuterium transition data, demonstrating its use for determin-
ing atomic ionization energies and the fine-structure constant
directly from data. A straightforward application to data is
complicated by the fact that some measured transitions oc-
cur between known hyperfine levels, while others are not
hyperfine-resolved. This is work in preparation and will be
described in a subsequent publication.

Note. Recently I also became aware of the unpublished
article by J. H. Connell [37] in which a very similar “two-body
Sommerfeld” formula appears nearly identical to (50). How-
ever, the markedly different derivation attempted in that work

and a subsequent unpublished article [38] was incomplete by
Prof. Connell’s admission. Furthermore, as in Ref. [23], in that
approach no connection is made to quantum defect theory or
long-distance effective theories, in general.
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APPENDIX A: RELATION TO EARLIER WORK
OF CRATER ET AL.

In Ref. [23], the variable

w = E + m1 + m2 (A1)

is used for the center-of-mass energy. Using their definitions

εw ≡ w2 − m2
1 − m2

2

2w
(A2)

and

b2(w) ≡ w4 − 2w2
(
m2

1 + m2
2

) + (
m2

1 − m2
2

)2

4w2
, (A3)

the “weak-potential” eigenvalues to the Schrödinger form of
the two-body Dirac equation are found in Ref. [23] to obey

−b2(w)

(εwα)2 = 1

n2
, (A4)

which, upon algebraic manipulation, yields (50) when
n� → n.

APPENDIX B: MORE DETAILS FROM QED MATCHING

Letting

f1(μ) = 3 − μ + μ2 (B1)

and

f2(μ) = −3 + 3μ − 2μ2 − 2μ3 + μ4, (B2)

it may be verified that the matching described in Sec. IV
results in the following values for the defect parameters:

δ(0) = −(Zα)2(C4,3 + (Zα)C5,3 + (Zα)2C6,3 + (Zα)3C7,3) + O(Zα)6, (B3)

δ(2) = (Zα)2

2
f1(μ)δ(0) − (Zα)3(C5,5 + (Zα)C6,5 + (Zα)2C7,5 + O(Zα)3), (B4)

δ(4) = −(Zα)3

[
C5,7 + (Zα)2

(
C7,7 + 1

2
f1(μ)C5,5

)]
+ O(Zα)6, (B5)

and

δ(6) = −(Zα)3

[
C5,9 + (Zα)2

(
C7,9 + 1

2
f1(μ)C5,7

)]
+ O(Zα)6. (B6)
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The remaining consistency relations not listed in the main text are, up to order O(Zα)10,

C9,4 = −3(C6,3C5,3 + C4,3C7,3), (B7)

C9,6 = −5

(
C6,3C5,5 + C4,3C7,5 + C6,5C5,3 + 1

2
f1(μ)C4,3C5,3

)
, (B8)

C9,8 = −7

(
C6,3C5,7 + C4,3C7,7 + C6,5C5,5 + 1

2
f1(μ)C4,3C5,5

)
, (B9)

C9,10 = −9

(
C6,3C5,9 + C4,3C7,9 + C6,5C5,7 + 1

2
f1(μ)C4,3C5,7

)
, (B10)

C10,4 = −3

(
C4,3C8,3 + C5,3C7,3 + 1

2
C2

6,3

)
, (B11)

C10,6 = −5

(
C4,3C8,5 + C5,3C7,5 + C6,3C6,5 + C7,3C5,5 − 3

2
C4

4,3 + 1

4
f1(μ)C2

5,3 + 1

2
f1(μ)C4,3C6,3

)
, (B12)

C10,8 = −7

(
C4,3C8,7 + C5,3C7,7 + 1

2
C2

6,5 + C7,3C5,7 + C5,5C7,5 + 1

2
f1(μ)(C5,3C5,5 + C4,3C6,5)

)
+ 7

16
C2

4,3 f2(μ), (B13)

C10,10 = 1

256
(−63 + 65μ − 122μ2 + 144μ3 − 154μ4 + 118μ5 − 72μ6 + 28μ7 − 7μ8)

−9

4
f1(μ)

(
C2

5,5 + 2C5,3C5,7
) − 9(C5,9C7,3 + C5,7C7,5 + C5,5C7,7 + C5,3C7,9 + C4,3C8,9). (B14)
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