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Vibrational excitation in the e + CO2 system: Analysis of the two-dimensional energy-loss spectrum
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We present a detailed analysis of the two-dimensional electron energy-loss spectrum of CO2, which ex-
tends our recent Letter [Phys. Rev. Lett. 129, 013401 (2022)]. We show that our vibronic coupling model
[Phys. Rev. A 105, 062821 (2022)] captures primary features of the multidimensional dynamics of the temporary
molecular anion, and the calculations qualitatively reproduce the spectrum. The shape of the spectrum is given by
two overlapping contributions that originate in excitation of vibrational states within �+

g and �u Fermi polyads.
Propensity rules in terms of scattered and vibrational wave functions are also discussed to clarify the selectivity
of states from the vibrational pseudocontinuum that is responsible for the observed fine structure.
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I. INTRODUCTION

The low-energy (<5 eV) inelastic electron scattering from
the CO2 molecule

e + CO2 → CO −
2 → e + CO∗

2 (1)

is full of interesting phenomena. The experimental effort to
probe this system goes back as far as the 1920s by Ramsauer
[1]. In the 1960s and 1970s, Boness and Schulz [2–4] and
Čadež et al. [5,6] thoroughly studied the 3–5 eV region domi-
nated by a 2�u resonance. Observed peaks in the energy-loss
spectra were attributed to the (n, 00, 0) and (n, 11, 0) vibra-
tional progressions. The energy dependence of the vibrational
cross sections revealed an oscillatory structure, which they
correctly recognized as the boomerang oscillations and even
reproduced [6] by one-dimensional (1D) calculations for the
symmetric stretching using the local complex potential (LCP)
model developed by Herzenberg [7]. They also studied the
shift of the boomerang peaks towards higher incident ener-
gies with energy loss, which explains the diagonal rays later
observed in the two-dimensional (2D) energy-loss spectrum,
see below. The LCP nuclear dynamics was further studied by
Kazansky and Sergeeva [8,9], who also included the bending
motion.

By improving the signal-to-noise ratio, Allan [10] divided
the energy-loss spectra into three regions. Region I was dom-
inated by the (n, 00, 0) progression (for a small scattering
angle). Region II showed a complex structure. Well dis-
tinguishable broad peaks reappeared at high energy losses
(region III) with positions that did not correspond to the
(n, 00, 0) progression. Using the 2D scanning technique de-
veloped by Reddish et al. [11], Currell and Comer [12–14]
recorded the first 2D energy-loss spectrum of CO2. They
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fully realized the importance of the Fermi resonance effect
on neutral vibrational states [15,16] and argued that the exci-
tation of fairly linear states and highly bent states within �+

g
polyads was responsible for the two newly observed structures
(labeled by A and B).

Itikawa et al. [17] and Kochem et al. [18] probed the
increase of the cross sections near the threshold, see also
references therein for earlier works. They showed that the di-
rect dipole scattering explains well the threshold peaks of the
(0, 11, 0) bending and (0, 00, 1) asymmetric stretching modes
whereas the s-wave scattering effected by a 2�+

g virtual state
is largely responsible for the (1, 00, 0) symmetric stretching
excitation. The effect of the virtual state was studied by many
theoretical methods, such as coupled-channel calculations of
Morrison et al. [19,20], two-state model by Whitten and
Lane [21], discrete-state-in-continuum model by Estrada and
Domcke [22] or the energy-modified adiabatic phase matrix
method by Mazevet et al. [23].

From a plethora of ab initio fixed-nuclei calculations, we
emphasize the work of Morgan [24], who located the S-matrix
poles in the complex plane corresponding to the 2�+

g virtual
state and both Renner-Teller components of the 2�u shape
resonance. Other works include Morrison et al. [19], Lee et al.
[25], and Rescigno et al. [26]. The angular dependence of the
differential cross sections was also studied by many groups:
Register et al. [27], Kochem et al. [18], Antoni et al. [28],
Cartwright et al. [29], and Kitajima et al. [30,31].

Thanks to the improvement of the energy resolution down
to 7 meV, Allan [32,33] revealed a strong selectivity in ex-
citation of individual members of the Fermi polyads. Such a
behavior in the 2�u region was reproduced by McCurdy et al.
[34,35], who performed time-dependent 2D LCP calculations
[36] with both Renner-Teller states. Shortly after, Vanroose
et al. [37] explained the selectivity at the threshold using a
2D effective-range potential model [38,39]. Recently, Laporta
et al. [40] reported 1D LCP calculations considering each
vibrational mode independently.
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Despite the theoretical effort that the e + CO2 system have
received, the shape of the spectrum for moderate and high
energy losses is still not explained. Furthermore, we are not
aware of any dynamical calculations of this system that pre-
dict the excitation of nontotally symmetric vibrational states
such as states with odd quanta of bending or asymmetric
stretching. Such states can be excited due to the vibronic
coupling in the resonant electron-molecule scattering, as was
investigated by Gallup [41]. He showed that the first-order
terms in the electron-molecule potential give the selection
rules formulated by Wong and Schulz [42] to explain the
spectrum of benzene. The symmetries of expected excited
vibrational states are those that belong (i) to the symmetrized
square of the irreducible representation of the resonance, or
(ii) to the irreducible representation of the resonance, which
leads to the outgoing s-wave electron.

The two-state discrete momentum representation method
developed by Čurík and Čársky [43] have been used to study
the inelastic electron scattering from polyatomic molecules,
such as methane [44], diacetylene [45], and cyclopropane
[46]. In the case of cyclopropane, Čurík et al. [46] showed that
excitation of the ν4 twist mode does not follow the selection
rules because the incoming f wave is transformed to a p wave.
Gallup [41] concluded that higher orders cause excitation of
additional symmetries but the relations become too compli-
cated to be useful.

The present paper concludes our study of vibrational ex-
citation of the CO2 molecule by slow electrons. Our joint
experimental and theoretical work is summarized in a recent
letter [47], which will be referred to as the Letter throughout
this paper. The detailed description of our work is then divided
in two parts. Reference [48] (referred to as Paper I in the fol-
lowing text) discusses the derivation of the theoretical model
dictated by the symmetry of the system, together with the
determination of the model parameters by fitting the results of
our fixed-nuclei electron-molecule scattering calculations for
a large set of geometries. Paper I also describes the computa-
tional procedure based on Krylov subspace iteration methods
to find the wave function of the anion and the formulas for
calculation of the vibrational excitation cross sections. Here,
we focus on a detailed presentation of the results of our
calculations including the comparison with our and previous
experimental data.

The paper is organized as follows: Section II describes the
experimental setup used to measure the energy-loss spectra,
which are also shown there. Section III discusses the group-
ing of neutral vibrational states into polyads. In Sec. IV,
we summarize and emphasize the key theoretical points that
are important for the subsequent discussion. The calculated
spectra are presented in a similar way as the experimental
data in Sec. V. Then, we analyze the energy-loss spectra
based on various aspects (symmetry of final states, electron
partial waves, angular dependence, etc.) and examine the un-
derlying mechanisms in terms of wave functions in Sec. VI,
where the cross sections for low-lying states are also shown.
In Sec. VII, we study the sensitivity of the calculations to
parameters of the model and finally our work is concluded in
Sec. VIII by summarizing the results and discussing possible
improvements and applications of the approach to another
systems.

II. EXPERIMENTAL SPECTRA

The electron energy-loss spectra were recorded on
the electrostatic spectrometer [49,50]. The electrons were
emitted from a heated iridium filament and energy-selected
by a double-hemispherical electron monochromator. The in-
cident electron energy εi was controlled by floating the
monochromator with respect to the potential of the collision
region. The electrons were scattered on the effusive beam of
the CO2 gas and their residual energy ε f was analyzed with a
double-hemispherical electron analyzer. The analyzer can be
rotated in order to probe various scattering angles. The energy
of the incident beam was calibrated on the 22S resonance in
helium at 19.365 eV. Electron-energy resolution was 18 meV,
as determined from the width of the elastic peak.

All the spectra presented here were recorded in a constant-
εi mode where the incident energy was fixed, the residual
energy was scanned, and the signal was plotted as a func-
tion of the energy loss �ε = εi − ε f . Figure 1 shows a
two-dimensional (2D) energy-loss spectrum recorded at the
135◦ scattering angle. It is constructed from individual 1D
energy-loss spectra recorded at 220 incident electron energies
with 10 meV increments. Such color-coded map can reveal
complex dynamics of nuclear motion induced by the electron
scattering [51–54]. The individual features of our 2D spec-
trum for CO2 are outlined in the Letter and further discussed
in the following sections.

To better understand the detailed structure of the spectrum,
Fig. 2 shows the individual electron energy-loss spectra at four
selected incident energies (horizontal sections of 2D spec-
trum) but separately recorded for a better signal-to-noise ratio.
The spectra in both figures were recorded at high scattering
angle to enhance the resonance processes with respect to
direct-dipole excitations. It is well known that direct excita-
tion processes related to direct-dipole excitation have cross
sections peaking at small scattering angles [10,55], the reso-
nant processes are thus most pronounced in the backscattering
direction. The 135◦ angle is the highest mechanical angle
achievable with the present setup.

Before proceeding to the calculated spectra, we discuss
the vibrational states of the neutral CO2 molecule and their
energies since they are directly related to the energy-loss axis
of the spectra.

III. VIBRATIONAL STATES OF NEUTRAL CO2

The vibrational states of the CO2 molecule within the har-
monic approximation are identified by four numbers [16]:

ν ≡ (
νg, ν

�b
b , νu

)
, (2)

where νg, νb, and νu denote numbers of quanta in symmetric
stretching, bending, and asymmetric stretching, respectively,
and �b is the angular momentum of the bending motion
with respect to the molecular axis. The corresponding ex-
perimental vibrational frequencies are ωg = 167.5 meV, ωu =
297.1 meV, and ωb = 83.3 meV [56].

Although the anharmonic corrections are important for the
understanding of the spectrum of the neutral CO2, we start
with the harmonic basis because it is used in our numerical
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FIG. 1. Experimental 2D electron energy-loss spectrum of CO2 for a scattering angle of 135◦. A detail of the spectrum is shown in a linear
scale from 0 to 1 and the fine structure is indicated (average spacing ∼29 meV). Structures A and B observed by Currell and Comer [12–14]
are labeled in the main plot.

treatment of the dynamics as discussed in Paper I and here
below.

For the later discussion it is important to remind the
classification of the states according to the irreducible rep-
resentations of the molecular symmetry group D∞h [16]. The
angular momentum is determined by �b and the parity is given
by the product νuνb. Thus, the states |ν〉 correspond to the �+

g

and �+
u representations for �b = 0 with νu even and νu odd,

respectively, to �u or �g for �b = 1 with νu even or odd, to
�g or �u for �b = 2 with νu even or odd, and so on.

A. Harmonic polyads

The energies of one quantum of symmetric stretching
and two bending quanta are almost degenerate (ωg − 2ωb =
0.9 meV). Therefore, the harmonic states are naturally orga-
nized into groups (polyads) with nearly the same energy. The
harmonic energy of the state |ν〉 reads

Eν = E0 + νgωg + νbωb + νuωu, (3)

where E0 is the ground-state energy, νg and νu attain values
0, 1, 2, . . . and νb = �b, �b + 2, �b + 4, . . .. As a result, all
harmonic states |ν〉 for

ν = (
νg, ν

�b
b , νu

) = [n, (2m + �b)�b, νu], (4)

where n + m = N = const., have the energy close to the value

Eν 	 E0 + Nωg + �bωb + νuωu, (5)

with a spread of 0.9N meV. For example, the �+
g dyad (N =

1) with νu = 0 contains two harmonic states (1, 00, 0) and

(0, 20, 0) while the harmonic �u polyad with N = 10 consists
of eleven states (10, 11, 0), (9, 31, 0), ..., (0, 211, 0).

Considering the energy-loss range of the experimental data
(Fig. 1), the maximum N that we need to take into account
is N = 30. The energy spread of the states within individual
harmonic polyads is thus less then 0.9N 	 30 meV. The 2D
spectrum in Fig. 1 below energy loss �ε < 1 eV is clearly
organized into polyads but the quasicontinuous character of
the spectrum at higher electron energy losses is inconsistent
with this estimate for the energy spread.

B. Fermi-coupled states

The inconsistency is not surprising since it is well known
that the vibrational states of neutral CO2 are significantly
influenced by the Fermi resonance effect [15,16]. Anharmonic
corrections to the potential-energy surface split the nearly
degenerate harmonic states of the same symmetry and also
correlate the vibrational motion in the symmetric stretching
and bending directions mixing the different states within the
polyads.

To calculate these proper final vibrational states, we em-
ploy the Hamiltonian of Chedin [57], which includes the
anharmonic corrections. The Fermi-coupled states |νFR〉, for
the symmetry given by fixed values of �b and νu, are expanded
into linear combinations of harmonic states:

|νFR〉 =
∑

ν

cν |ν〉, (6)

where the coefficients cν are obtained by diagonalizing the
anharmonic vibrational Hamiltonian [57]. In principle, the

062807-3
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FIG. 2. Experimental 1D energy-loss spectra for a scattering angle of 135◦ and incident electron energies 3.2, 3.5, 3.8, and 4.1 eV. The
spectra are shown on the logarithmic scale but lines for different incident energies are arbitrarily shifted with respect to each other. Calculated
energies of Fermi-coupled vibrational states that belong to �+

g (n, 2m0, 0) and �u [n, (2m + 1)1, 0] polyads (n + m = 0, 1, . . .) are shown.
Regions of order, chaos, and order observed by Allan [10] are labeled by I, II, and III for the 3.8 eV spectrum. Positions of A and B structures
observed by Currell and Comer [12–14] are indicated for the 3.2 eV spectrum.

sum runs over all allowed νg, νb but the results show that
the coupling among polyads with different values of N is
negligible for the range of vibrational energies considered in
this study. We can thus identify the Fermi-coupled states by
specifying numbers �b, νu, and N to determine the specific
polyad [n, (2m + �b)�b, νu] of harmonic states. After the di-
agonalization, the Fermi-coupled states are sorted by their
energy. The individual state can be referred to by a symbol
N (i), which denotes the ith state in the polyad N = n + m.
Note that the ground state νi = (0, 00, 0), i.e., the initial vi-
brational state νi, is subject to no anharmonic corrections and
thus belongs to both the harmonic- and the Fermi-coupled sets
of states.

The anharmonic energies εFR emerging from the
�+

g (n, 2m0, 0) and �u [n, (2m + 1)1, 0] polyads are shown
in Fig. 2 by a grid of small vertical lines displayed in the
upper part of the figure. The positions of the low energy-loss
peaks correspond approximately to the middle of the polyads,
but above �ε ≈ 0.9 eV the energy ranges of the individual
polyads start to overlap. At high energy losses, the spectrum
of the Fermi-coupled states is dense and rather erratic
and so there is no obvious connection between individual
experimental peaks and the vibrational energies. We conclude
that either polyads with nonzero νu have to be involved or
there is some selective mechanism that allows excitation of
only certain states from the pseudocontinuum.

To gain more insight into the Fermi coupling and the
correlation of the bending and stretching motion within the
polyads, we plot the wave functions of selected states in Fig. 3.
The first column shows the shape of the lowest (i = 1) and
highest (i = 14) states together with some states from the
middle (i = 5, 6, 11) for the �+

g polyad with N = 13, and
similarly, other two columns contain the wave functions from

�u polyads with N = 13 and 19. The wave functions are
plotted with respect to the normal coordinates used in the
dynamics, see Sec. IV and Note 1.

Small bending correlates to positive symmetric stretching
(prolongation of the C-O bonds) for the lowest states within
each polyad (first row in Fig. 3) while the highest states
are more spread in the bending direction (highly bent states)
with negative stretching values at small bending. The middle
states have rather intriguing shapes but overall the probability
density is localized in the vicinity of the stretching axis (linear
states). Note that the harmonic states would have nodal planes
parallel with the coordinate axes since there is no correlation
between stretching and bending, in contrast to the behavior
seen here for the coupled states.

To somehow quantify the shape of the wave functions, we
characterize each Fermi-coupled state by a simple quantity,
the mean value of the number of symmetric stretching quanta

〈νg〉 =
∑

ν

νg|cν |2, (7)

where the sum runs over all harmonic states within the partic-
ular polyad, cν are the expansion coefficients in the harmonic
basis [Eq. (6)], and νg is the symmetric stretching coordinate
of the ν vector [Eq. (2)]. The mean value 〈νg〉 therefore de-
scribes the amount of symmetric stretching.

Similarly, we can define the mean value for bending quanta

〈νb〉 =
∑

ν

νb|cν |2, (8)

but the two values are not independent due to the relation
n + m = N . Larger values of 〈νb〉 thus corresponds to smaller
〈νg〉 and vice versa. The quantity 〈νg〉 is also shown in Fig. 3
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FIG. 3. Fermi-coupled vibrational wave functions upon symmetric stretching and bending (asymmetric stretching coordinate is set to
zero). The first two columns show states N (i) for i = 1, 5, 6, 11, 14 (from top), belonging to the �+

g (n, 2m0, 0) and �u [n, (2m + 1)1, 0]
Fermi polyads with N = n + m = 13, respectively. The third column shows states N (i) for i = 1, 7, 8, 11, 20 (from top), within the �u polyad
with N = n + m = 19. The energy loss �ε and the mean value of number of symmetric stretching quanta 〈νg〉 are also shown for each state.
The wave functions are independently normalized.

together with the energy loss �εFR for each state (when ex-
cited by an electron from the ground vibrational state).

IV. THEORY

Our theoretical model is discussed in detail in Paper I. For
convenience, we summarize the basic aspects of the theory
used in the discussion of the results in this paper.

A. Nonlocal model of vibronic dynamics

The model is designed to treat the vibronic dynamics of
vibrational excitation of the CO2 molecule in its ground elec-
tronic 1�+

g state by low-energy electrons, see Eq. (1). The
process is mediated by three states of the temporary molecular

anion CO −
2 : the 2�+

g virtual state and the double-degenerate
2�u shape resonance.

These anionic states are assumed to be diabatic with
respect to the vibrational motion described by normal coor-
dinates Qg, Qu, and Q± = Qx ± iQy. We refer to these states
as discrete electronic states |d〉, d ∈ {�+, �,�−}.

The vibronic dynamics of the CO −
2 is described by a three-

component wave function

|	〉 =

⎛
⎜⎝

|ψ�+〉
|ψ�〉
|ψ�−〉

⎞
⎟⎠ =

∑
d

|ψd〉|d〉, (9)

where the components |ψd〉 are functions of the vibra-
tional coordinates expanded in the basis of neutral harmonic
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FIG. 4. Vibrational components 〈Q|ψd 〉 of the scattering wave function |	〉 that belongs to the discrete states |d〉, d = �+, �, and �−
upon symmetric stretching and bending (asymmetric stretching coordinate is set to zero). The shown wave function |	〉 is the solution of
Eq. (10) for incident electron energy of 3.8 eV and for incoming electron partial waves p+ (first row) and s (second row). The components are
all normalized with respect to the global maximum. The contours in the top-left panel represent the lowest adiabatic potential-energy surface
of CO −

2 for geometries where it is bound and the energies are given with respect to the minimum of the neutral potential.

vibrational states defined in Appendix A of Paper I. The
wave function |	〉 is found by solving the inhomogeneous
Schrödinger equation

[(E − H0)1 − U − F (E − H0)]|	〉 = |�〉, (10)

where E is the total energy conserved during the collision, H0

is the vibrational Hamiltonian of the neutral molecule in the
harmonic approximation, U = {Udd ′ } is the 3 × 3 matrix de-
scribing the diabatic potential-energy surfaces and the direct
vibronic coupling of the discrete states, and F (E − H0) is the
nonlocal operator matrix giving the indirect vibronic coupling
through the electron continuum.

The right-hand side of the Schrödinger equation,

|�〉 =

⎛
⎜⎝

V μi
�+εi

|νi〉
V μi

�εi
|νi〉

V μi
�−εi

|νi〉

⎞
⎟⎠, (11)

describes the vertical attachment of the incoming electron
with energy εi to CO2 in its ground vibrational state |νi〉,
where the energy-dependent amplitudes V μi

dε
control the cou-

pling between the discrete states |d〉 and the partial-wave
components μi ≡ (l, m) of the incoming electron.

To obtain the energy-loss spectra discussed below we
solved the Schrödinger equation Eq. (10) for 1500 incident
energies εi ∈ [0.001, 5.0] eV and for each included incoming
electron partial wave μi. An example of these wave functions
for εi = 3.8 eV and μi = s and p+ is shown in Fig. 4, where
the absolute value of |ψd〉 is plotted as a function of symmetric
stretching and bending coordinates.1

1The two-dimensional bending can be described by the Cartesian
normal coordinates Qx and Qy, their complex combinations Q± =

The electron autodetachment from CO −
2 into neutral CO2

in the vibrational state |ν f 〉 is controlled by the amplitude (an
element of the T matrix)

Tν f μ f ←νiμi =
∑

d

〈ν f |V μ f ∗
dε f

|ψd〉. (12)

We calculated the T matrix for all 1500 values of the incident
energy εi, all partial waves and all accessible harmonic final
states |ν f 〉 (about 8000 states). These values are stored and
both integral and differential cross sections for all final states
and angles, as well as 2D electron energy-loss spectra for any
scattering angle can be obtained from these matrices in a fast
postprocessing procedure, see below.

B. Symmetry considerations for the dynamics and final states

Before proceeding to the actual discussion of the calculated
spectra, we would like to comment on the symmetry in the
process of vibrational excitation of CO2, which is closely re-
lated to conservation of angular momentum and parity. These
principles have already been discussed in Paper I since they
are important in the construction of the model, but we need
to add a few remarks that are important for the following
discussion of the results.

Qx ± iQy, or by polar coordinates (ρ, ϕ) where ρ represents the
magnitude of the bending and ϕ the orientation of the molecular
plane, see Sec. II B 1 in Paper I. We plot the wave functions (anionic
or vibrational shown above) with respect to the magnitude of the
bending measured in bohrs and we set ϕ = 0. The dependence on
ϕ gives only an overall phase factor exp(i�bϕ) because �b is fixed for
any given vibrational state of CO2 or one vibrational component |ψd 〉
of the anionic wave function.
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TABLE I. Correlation of the symmetry of the electronic and
vibrational parts of the wave function resulting from the conservation
of angular momentum and parity. Rows correspond to partial waves
of the incident electron. The first block (columns 2–4) gives the sym-
metry of the vibrational parts |ψd 〉 for the three discrete states |d〉.
The second block shows the vibrational symmetry of the resulting
CO2 when the electron leaves as partial wave μ f .

|ψd 〉 for d |ν f 〉 for μ f

μi �+ � �− s pz p+ p−

s �u �+
g �u �+

g �u �u �u

pz �g �+
u �g �+

u �+
g �g �g

p+ �+
g �u �g �u �g �+

g �g

p− �g �u �+
g �u �g �g �+

g

The total electron and nuclear symmetry of the e + CO2

system is conserved during the collision. Since the neutral
molecule is initially in the ground electronic and ground vi-
brational states, which are both totally symmetric, the total
symmetry is exclusively given by the incoming electron. Its
wave function can be decomposed into partial waves μ ≡
(l, m). As explained in Paper I, there are four electron par-
tial waves, μ = s, pz, and p± = px ± ipy considered in our
model, which are coupled to the discrete states |d〉 through the
energy-dependent amplitudes V μ

dε
organized into the following

3 × 4 matrix [Eq. (18) in Paper I]:

Vε =

⎛
⎜⎜⎝

s pz p+ p−

�+ v�sQ− v�zQ−Qu v�p w�pQ2
−

� v�s v�zQu v�pQ+ v�pQ−
�− v�sQ+ v�zQ+Qu w�pQ2

+ v�p

⎞
⎟⎟⎠,

(13)

with row index d and column index μ. In this matrix we
explicitly show the dependence on the vibrational coordinates
Qi that are not totally symmetric. Symmetric combinations of
coordinates are still hidden in the coefficients vdμ and wdμ

(Sec. IV B of Paper I).
For example, the first column of the matrix Vε describes the

attachment of an s-wave electron to the molecule given by the
right-hand side |�〉 Eq. (11) of the Schrödinger equation. Its
vibrational parts |φd〉 have the same symmetry as the coordi-
nates in the first column of the matrix Vε , i.e., �u, �+

g , and �u,
in order for the product of |φd〉 and electronic part |d〉 to have
the same symmetry as the incoming electron s wave, i.e., �+

g .
Since the symmetry is respected by the model quantities H0,
U , and F (E ), the same discussion applies for the components
of the solution |	〉 (9). The resulting symmetries of |ψd〉, |φd〉
are listed in the first block of Table I. These symmetries can
be observed in Fig. 4. The wave functions in the top row of
the figure have symmetries �+

g , �u, and �g as apparent from
their shape since the probability close to the zero axis of the
bending coordinate is being pushed to higher bending values
for a larger angular-momentum projection.

Due to the vibronic coupling built in the Q dependence of
the matrix Vε , the symmetry of the outgoing electron can differ
from the symmetry of the incoming electron. This change has

to be compensated by the final vibrational state of CO2, that
is, the product of the vibrational and electronic parts of the
final e + CO2 wave function has to have the same symmetry
as the incoming electron. In our model, the final states of the
�+

g , �+
u , �g, �u, and �g symmetries can be excited, see the

second block of Table I.

V. CALCULATED SPECTRA

Finally, we present the results of our calculations. We start
with the spectrum calculated directly using harmonic basis as
final states and then we describe the results of the transforma-
tion of the final states into Fermi-coupled basis, which could
be more directly compared with experiments.

A. Spectrum with harmonic final states

The differential cross section dσν f ←νi/d�(εi ) for the vibra-
tional excitation of the CO2 molecule from the initial state |νi〉
to the final state |ν f 〉 is calculated from the T -matrix elements
Eq. (12) by summing over initial μi and final μ f partial waves
including the proper angular factors for each symmetry of the
final state. The formulas are given in Appendix D of Paper I
and they also include the averaging over the orientation of the
molecule.

The final 2D spectrum intensity S(εi,�ε) is obtained by
identifying the energy loss �ε = εi − ε f = Eν f − Eνi for each
final state and adding a Gaussian profile f (x) with the full
width at half maximum of 18 meV to the electron-loss lines to
simulate the finite experimental resolution

S(εi,�ε) =
∑
ν f

dσν f ←νi

d�
(εi ) f (�ε − �εν f ). (14)

Note that we also convolve the spectra with the incident
electron energy resolution function but it does not effect sig-
nificantly the results since the cross sections are rather smooth
in εi.

Figure 5 shows the 2D energy-loss spectrum for harmonic
final vibrational states of CO2 and a scattering angle of
135◦, where the Fermi resonance effect is not included. The
harmonic spectrum is dominated by energy-loss peaks at po-
sitions of �+

g and �u harmonic states that belong to polyads
(n, 2m0, 0) and [n, (2m + 1)1, 0], respectively. Their energy
losses are given by �ε = Nωg and Nωg + ωb, N = n + m =
0, 1, . . ., respectively. In the case of asymmetric stretching
mode, only (0, 00, 1) and (0, 00, 2) states are significantly
populated, especially near the threshold. The higher �+

g and
�u polyads derived from the (0, 00, 2) state are also clearly
seen in the spectrum, although the magnitude of the signal
is about three orders of magnitude smaller. Higher values
of νu are not populated significantly but are included in the
presented data.

The harmonic spectrum of Fig. 5 reproduces qualitatively
the general shape of the spectrum seen in the current and
previous experiments [13,14]. At low energy losses the signal
starts directly at the threshold. In the 2�u resonance region
(incident energies 3–4 eV), the signal extends to the complete
energy loss. The hint of the boomerang oscillations [4,58],
which creates the diagonal rays in the spectrum, is also visible
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FIG. 5. Calculated 2D electron energy-loss spectrum of CO2 for harmonic final vibrational states and for a scattering angle of 135◦.
Positions of some harmonic vibrational levels of CO2 within our model are shown, see the legend (n + m = 0, 1, . . .).

but their positions do not correspond to the experimental po-
sitions because of the substantial difference of our potentials
along the symmetric stretching direction due to the harmonic
approximation of the neutral molecule (Sec. V A of Paper I).

The most obvious difference between the experimental
(Fig. 1) and theoretical (Fig. 5) spectra is the contrast between
continuous character of the experimental spectrum and the
discrete lines at specific energy losses dominating the the-
oretical spectrum. This is the effect of using the harmonic
polyads (and their energies) as the final states in our calcu-
lations instead of the Fermi-coupled states. Let us also remind
that the model vibrational frequencies are ωb = 110 meV,
ωg = 2ωb, and ωu = 308 meV, which originate from the
ab initio R-matrix data. The frequencies in the case of bend-
ing and symmetric stretching are about 30% larger than the
experimental values and one symmetric stretching quantum
is exactly degenerate with two quanta of bending (Sec. IV C
in Paper I). The difference of the frequencies ωs − 2ωb =
0.9 meV does not explain the continuous character of the ex-
perimental spectrum since the highest polyads N = 30 fitting
in the energy window still have energy spread comparable to
the experimental resolution (Sec. III A). The Fermi coupling
that mixes the states and splits their energies (Sec. III B) is
responsible for the quasicontinuous character of the spectra.
Note that in the energy range of interest the spectrum com-
prises of about 8000 states.

B. Spectrum with Fermi-coupled final states

To keep the calculations manageable, we restricted the
model only to harmonic vibrations of the neutral molecule.
The anharmonic terms are included in the dynamics of the

temporary molecular anion through the dependence of the
vibronic coupling matrices U and Vε on the polynomials of
the vibrational coordinates. For details, see Secs. IV and VI
of Paper I. However, the harmonic states of the neutral CO2

enter the nonlocal term F (E − H0) and the calculation of the
T matrix Eq. (12) through the projection on the final harmonic
vibrational state |v f 〉.

The first of these two approximations is important in order
for the four-dimensional nonlocal dynamics to be manage-
able but the latter one is rather easily corrected by projecting
the anionic wave function on the Fermi-coupled states |νFR〉,
which are given by the expansion into the harmonic basis with
the coefficients cν [Eq. (6)]. In practice, such a projection to
the Fermi-coupled state leads to the linear combinations of the
harmonic T matrices:

TνFRμ f ←νiμi =
∑

ν

cν Tνμ f ←νiμi . (15)

The differential cross sections dσνFR←νi/d�(εi ), given in
Appendix D of Paper I for the harmonic final states, are then
obtained by the same procedure in which the T matrices (15)
replace the harmonic T matrices (12). Note that Rescigno
et al. [35] used a similar procedure with mixing coefficients
derived by Dennison [56] to compute the excitation of the
members of the �+

g Fermi dyad from their population of
harmonic states.

The 2D spectrum with the corrected final states is cal-
culated in a straightforward manner using Eq. (14) with the
cross sections dσνFR←νi

/d�(εi ), the anharmonic energy losses
�εFR, and summed over all νFR. The remaining harmonic
approximation inside F (E − H0) should have a smaller effect
since the action of the nonlocal potential contains an average

062807-8



VIBRATIONAL EXCITATION IN THE e + CO2 SYSTEM: … PHYSICAL REVIEW A 106, 062807 (2022)

FIG. 6. Calculated 2D electron energy-loss spectrum of CO2 for Fermi-coupled final vibrational states and a scattering angle of 135◦. The
magnified section of the signal (right—shown in linear scale from 0 to 1) focuses on a detail of the high energy loss features where the fine
structure with spacing 25–33 meV is indicated. Structures A and B observed by Currell and Comer [12–14] are labeled in the main plot.

over many states in the harmonic approximation of H0. The
exception will be the threshold region, as discussed below.

Figure 6 shows the calculated 2D spectrum at 135◦ for
the Fermi-coupled final vibrational states. As expected, the
most obvious effect compared with the harmonic spectrum
(Fig. 5) is the disappearance of the vertical bands associated
with polyads in the deeply inelastic region. The spectrum
also considerably shrinks in the energy-loss direction because
of the 30% difference of the model and experimental vibra-
tional frequencies. The vibrational Hamiltonian of Chedin
[57] produces energies of the Fermi-coupled states that are in
a very good agreement with spectroscopic data. The employed
procedure corrects only the energy of the final electron. The
dependence on the incoming electron is not effected. There-
fore, the corrected 2D spectrum does not respect the threshold
diagonal line, which is approximately 30% more steep and
also broken. Also the Wigner cusps seen in some channels
[33] do not have the correct position in our calculation, see
the discussion below.

Despite these distortions, the spectrum in Fig. 6 qualita-
tively reproduces the measured spectrum in Fig. 1. We observe
the boomerang rays although their exact positions are influ-
enced by the distorted shape of the potentials. Both structures
of type A and B discovered by Currell and Comer [13,14] are
present and the fine structure at high energy losses has the
correct shape, see below.

The qualitative agreement is even more apparent when
1D spectra are compared, see Fig. 7, where the spectra for
incident energies 3.2, 3.5, 3.8, and 4.1 eV are plotted in the
similar way as the experimental ones in Fig. 2. The spectra

clearly follow the same pattern. At small energy losses we
observe well-distinguishable peaks of the �+

g and �u sym-
metries, then a seemingly chaotic region (region II) occurs at
intermediate energy losses, which is not as pronounced in the
theory as in the experiment, and, finally, there are broad peaks
modulated by the fine structure with spacing of 25–33 meV at
the end of the spectra. The analysis that reveals the origin of
these features is deferred to the next section. The very end of
the spectra (dashed parts in Fig. 7) is an artifact caused by the
above-mentioned inconsistency of the energies in the dynam-
ics and the corrected energies of the Fermi-coupled levels. It
only affects the near threshold region, i.e., high energy losses
for incident energies in the region of the 2�u resonance.

Although the fundamental asymmetric stretching mode
(0, 00, 1) is excited in our model (Figs. 5 and 6), it is ex-
cited by about one order of magnitude less in the region of
the 2�u resonance than experimental observations show [33]
and is barely not visible in the 1D spectra. Our calculations
only include the resonant (discrete-state) contribution to the
vibrational excitation T matrix but we expect a considerable
contribution of the background scattering to the elastic peak.
It would also explain why the elastic cross section for a high
scattering angle is less excited than the (0, 11, 0) peak.

Before going to the detailed analysis of the spectra, we
also look closer to the region of small initial electron energies
(εi < 2.8 eV), which is not covered by the current experi-
mental data. The threshold region dominantly influenced by
the 2�+

g virtual state of CO −
2 is visible in both calculated

2D spectra (Figs. 5 and 6). We would also like to remind
a deficiency of our model that influences this region. The
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FIG. 7. Calculated 1D electron energy-loss spectra for Fermi-coupled final vibrational states and for a scattering angle of 135◦ and incident
electron energies 3.2, 3.5, 3.8, and 4.1 eV. The spectra are shown in the logarithmic scale but lines for different incident energies are arbitrarily
shifted with respect to each other. Calculated energies of states within �+

g (n, 2m0, 0) and �u [n, (2m + 1)1, 0] Fermi polyads (n + m =
0, 1, . . .) are shown. Regions of order, chaos, and order observed by Allan [10] are labeled by I, II, and III for the 3.8 eV spectrum. The very
end of the spectra near the threshold line (dashed parts) is an artifact of the anharmonic correction of final-state energies, see the text.

CO2 molecule acquires a dipole moment upon bending or
asymmetric stretching, which is not included in our model
because the geometry dependence of the threshold exponent
of the coupling amplitudes V μ

dε
would substantially increase

the computational cost of the dynamics. As a result, threshold
peaks are not as sharp and pronounced as in the experiments
[32,33]. The cross sections will be discussed in Sec. VI D.

The calculations reproduce the selectivity of the low-lying
Fermi-coupled states near the threshold and in the region of
the 2�u resonance observed by Allan [32,33], see Fig. 8. Allan
reached an astonishing resolution of 7 meV, therefore, we
used the same value in Eq. (14) to produce Fig. 8. To avoid
the above-mentioned artifacts near the main diagonal in the
spectrum, we chose slightly higher final energy (0.12 eV) in
Fig. 8 in comparison with 0.05 eV of Allan [32].

The top members of the polyads are dominantly excited at
the threshold because the vibrational wave function of these
members reaches the closest to the region where the anionic
and neutral potentials cross, see Vanroose et al. [37], who re-
produced such a behavior for the �+

g polyads. The �u polyads
follow the same mechanism. At small incident energies, our
(0, 11, 0) peak is suppressed in comparison to the experiment
due to the missing dipole in our model.

VI. ANALYSIS OF THE RESULTS

In Secs. II and V, we have presented the obtained exper-
imental and theoretical results. Here, we focus on a further
analysis of the calculations to understand the underlying
mechanisms. We start by decomposing the spectra based on
vibrational state symmetries and electron partial waves. Then,
we examine which states within the vibrational pseudocon-
tinua are dominantly excited and we describe propensity rules

in terms of wave functions. We use the obtained insight to
interpret the experimental data and also discuss the angle
dependence. We conclude this part by discussing the energy

FIG. 8. Calculated 1D energy-loss spectra for fixed final electron
energy of 0.12 eV (lower solid line) and 3.8 eV (upper solid line)
and for a scattering angle of 135◦. The calculations are compared
with experimental data of Allan [32] (dashed lines) measured at final
energies of 0.05 and 3.8 eV, see the text. The data are normalized to
the upper peak of the �+

g dyad at 0.172 eV. Some peaks are cut off
for clarity.
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FIG. 9. Decomposition of the calculated 1D electron energy-loss spectrum for a scattering angle of 135◦ and incident electron energy of
3.8 eV to contributions of individual symmetries of final vibrational states. (a) Contributions of �+

g , �+
u , and �g symmetries. (b) Contributions

of �u and �g symmetries.

dependence of cross sections for low-lying final vibrational
states.

A. Dominant vibrational state symmetries

We can decompose the 1D energy-loss spectrum based on
final-state symmetries included in our model (�+

g , �+
u , �g,

�u, and �g), see Fig. 9. The spectrum is almost completely
described by excitation of �+

g and �u vibrational states, from
which the Fermi polyads (n, 2m0, 0) and [n, (2m + 1)1, 0]
dominate. States within �+

g (n, 2m0, 2) and �u [n, (2m +
1)1, 2] polyads are included in the contributions shown in
Fig. 9 but they are negligible as is apparent from the harmonic
2D spectrum in Fig. 5. States of the �g symmetry are mod-
erately excited throughout most of the spectrum but they are
masked by similar energy dependence of the �+

g states. The
�+

u and �g states, containing at least one excitation of the
asymmetric stretching, do not contribute substantially.

The selection rules [41,42,59] predict strong excitation
of �+

g and �g vibrational states since they belong to the
symmetrized square of the �u representation of the 2�u res-
onance2 and the excitation of the �u symmetry because the
electron leaves as an s wave, see Sec. I. Overall, the results in
Fig. 9 are in accordance with the selection rules. The mutual
ratio of the �+

g and �g is the result of the dynamics.
The decomposition of the spectrum to symmetries of the

final states is straightforward since it is just a separation of
different symmetries in the sum over all states in Eq. (14).
The contributions of the individual electron partial waves are
more easily identified in the spectrum integrated over all scat-
tering angles, which we can calculate also from Eq. (14) by
replacing the differential cross sections dσνFR←νi

/d�(εi ) with
the integrated ones:

σνFR←νi (εi ) = 2π3

εi

∑
μi,μ f

|TνFRμ f ←νiμi |2. (16)

2Characters of the symmetrized square of a representation are given
by [χ 2](R) = [χ (R)2 + χ (R2)]/2, where R denotes the symmetry
operation [41].

Figure 10 shows the dominant contributions to the integral
energy-loss spectrum in terms of incoming and outgoing par-
tial waves. As shown in Table I, to excite the totally symmetric
�+

g states, the electron symmetry does not change during
the process and we have four contributions: s → s, pz → pz,
p+ → p+, and p− → p−. The pz → pz process is negligible
and p+ → p+ and p− → p− give the same contribution. In
the case of �u states, there has to be a change of the angular
momentum, thus, they can be excited via p± → s or s → p±
processes.

The attaching s wave contributes almost equally to the
elastic peak and the (0, 11, 0) peak as the p± waves. The
p± attachment is expected to be dominant since p± are the
principal partial waves of the 2�u shape resonance. As we will
see below, the �+

g virtual state does not significantly affect
the dynamics at incident energies around 3.8 eV, therefore,
the s wave also substantially populates the 2�u resonance.
The s wave cannot populate the resonance at the equilibrium
linear geometry but due to the delocalized nature of the ini-
tial vibrational state |νi〉, it attaches through the exponential
tails to the �± discrete states. Such a weaker attachment is
compensated by the prefactor function v�s [Eq. (13)], which
is also responsible for the rapid broadening of the resonance
width of the lower Renner-Teller component upon bending.
For details see potentials in Fig. 4(b) and Sec. V B in Paper I.

In Fig. 10, we also observe a selectivity of the outgoing
electron. Independently of the incoming partial wave, the out-
going s electron dominates over p± electrons at high energy
losses, which is the consequence of Wigner threshold law
[60]. The partial resonance widths 2π |V μ

dε
|2 behave near the

threshold as ε (2l+1)/2 with l = 0, 1 for s, p electrons. Thus,
the electron preferentially detaches from the molecular anion
as the s wave at small final energies.

B. Excitation of individual states and fine structure

We have seen that the �+
g (n, 2m0, 0) and �u [n, (2m +

1)1, 0] Fermi polyads dominate the spectrum. Now, we
pinpoint the states responsible for the observed structures
emerging from the vibrational pseudocontinua.

We can analyze the contribution of individual final states
to the theoretical spectrum in terms of the quantity 〈νg〉,
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FIG. 10. Decomposition of the calculated integral 1D electron energy-loss spectrum for incident electron energy of 3.8 eV to contributions
of individual incoming and outgoing partial waves. Processes p± → p± and s → s leads to excitation of �+

g vibrational states while �u states
are excited when p± → s and s → p±.

see Eq. (7). Figure 11 shows the calculated cross sections
dσνFR←νi

/d�(εi ) entering the sum in Eq. (14) for the spectrum
with the Fermi-coupled states |νFR〉 grouped into the polyads
(full symbols) in combination with the 〈νg〉 values (open sym-
bols). In the case of the �+

g (n, 2m0, 0) polyads [Fig. 11(a)],
the states from the end of the polyads are dominantly excited
for the lowest polyads but as the energy loss increases we
observe a shift to excitation of the most linear states (largest
〈νg〉). Typically, only two to three states from one polyad are
excited enough to visibly affect the spectrum. The trend is
similar but to some degree different for the �u symmetry
[Fig. 11(b)]. The significance of peaks shifts from the end of
the polyads to states at fixed positions (fifth and sixth states)
somewhat in front of the maximum of 〈νg〉.

The individual polyads within one symmetry dominate at
different energy-loss ranges and the excitation of the several
consecutive fairly linear states gives rise to the fine structure,
whose energy spacing is not constant but varies around 25–
33 meV. A detail of the fine structure is also shown in Fig. 4
in Letter.

To understand why only fairly linear states are significantly
excited, we have to look at the wave functions. In Fig. 4,
we have presented the scattered wave function |	〉, which
illustrates the dynamics even though we work in the time-
independent picture. The initial vibrational state of CO −

2 is

given by the wave function |�〉 [Eq. (11)], that is, we have
Gaussian packets modified by the coupling amplitude V μi

dεi

on each potential-energy surface. Then, the wave packets
move predominantly along the symmetric stretching coordi-
nate since only in this direction there is a nonzero gradient
at the equilibrium geometry. As the anion symmetrically
stretches, the wave packets probe bent geometries too but the
anion decays with a high probability by the electron autode-
tachment because of the large resonance width of the lower
Renner-Teller component of the 2�u resonance. This results
in the significant suppression of the scattered wave functions
at highly bent configurations in comparison to the vicinity of
the symmetric stretching axis (Fig. 4). But note that the wave
function still fills the energy-allowed region, see the contours
of the lowest adiabatic potential in the top left panel of Fig. 4.

The dynamics is also confined in the asymmetric stretching
because the potentials are repulsive in addition to the miss-
ing gradient at the equilibrium geometry. The excitation of
vibrational states is controlled by the T -matrix element (12)
and, thus, the states that have the probability density localized
along positive symmetric stretches are dominantly populated,
see the vibrational wave functions in Fig. 3. Moreover, the
2�+

g virtual state has a negligible effect on the spectra for
incident energies above ∼3 eV since the magnitude of the �

component |ψ�〉 of the anionic wave function is substantially

FIG. 11. Analysis of calculated 1D electron energy-loss spectrum for a scattering angle of 135◦ and incident electron energy of 3.8 eV.
Full symbols represent the calculated cross sections (scaled down with respect to the spectrum for clarity) for exciting individual Fermi final
vibrational states grouped into polyads. For each final state, the value of number of symmetric stretching quanta 〈νg〉 (arbitrarily scaled) is
shown by the open symbol above the spectra to indicate the character of the state, see the text. (a) Final states that belong to �+

g (n, 2m0, 0)
Fermi polyads. (b) �u [n, (2m + 1)1, 0] Fermi polyads (n + m = 1, 2, . . .).
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FIG. 12. Analysis of experimental 1D electron energy-loss spectrum for a scattering angle of 135◦ and incident electron energy of 3.8 eV.
Symbols represent the theoretical energy and the value of number of symmetric stretching quanta 〈νg〉 (arbitrarily scaled) for vibrational states
grouped into Fermi polyads. Full symbols show �+

g (n, 2m0, 0) polyads with n + m = 1, 2, . . . , 7. Open symbols show �u [n, (2m + 1)1, 0]
polyads with n + m = 1, 2, . . . , 7, 9, 10, 13, 14, 17, . . . , 21. Note that there are N + 1 states for a polyad with n + m = N = const.

smaller than the magnitude of the �± components (Fig. 4).
This was directly confirmed by calculations where the �

discrete state was absent, see also Secs. VI D and VII B.
Now, we can confront these findings with the experiment,

see Fig. 12 where the full and open symbols represent the 〈νg〉
quantity for states within the �+

g and �u polyads, respectively.
We observe the same trend of shifting the significance of
the states within the polyads. It is not as clear for the �+

g
symmetry because the shift towards the most linear states
is somewhat slower and they soon disappear in the middle
“chaotic” region, but the �u states distinctly follow the pat-
tern. This time, the high energy-loss region (around 3 eV) is
dominated by excitation of states at around the seventh and
eighth positions within the �u polyads, see the last column in
Fig. 3.

To summarize, the competition of the �+
g (n, 2m0, 0) and

�u [n, (2m + 1)1, 0] Fermi polyads explains the shape of the
energy-loss spectra. The peaks are well separated in region I
since the polyads do not overlap (Figs. 2 and 7). The complex
region II is given by the overlapping �+

g and �u contributions,
which have similar magnitudes. As the energy loss increases
the selectivity of the outgoing s-wave electrons starts to favor
the �u states, which dominate in region III and are responsible

for the broad peaks. The A and B structures of Currell and
Comer [13,14] originate from the �+

g and �u contributions,
respectively.

C. Angular dependence

We also investigated the angular dependence of the cal-
culated energy-loss spectrum for incident electron energy of
3.8 eV, see Fig. 13(a). The deeply inelastic region (above
1.8 eV) is almost independent of the angle, which is consistent
with our interpretation in terms of final �u states dominated
by the p± → s change of the electron partial waves, where
the outgoing s wave leads to the isotropic character. To further
experimentally verify this mechanism, we measured the spec-
trum for the scattering angles θ = 10◦ and 45◦, see Fig. 13(b).
First, we should explain an experimental artifact with respect
to the data in Fig. 13(b). The analyzer sensitivity for the
recording of slow electrons is very low for small scattering an-
gles. This is manifested as an artificial cutoff of the spectrum
at near complete energy losses (for θ = 10◦ the electrons with
residual energies below 300 meV are not recorded, electrons
slower than 100 meV are missing for 45◦). The most probable
reason for this cutoff is charging of the analyzer entrance slit

FIG. 13. Dependence of the electron energy-loss spectra at incident electron energy of 3.8 eV on the scattering angle θ for (a) the
calculations and (b) the experiment.
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by the primary electron beam. Also note that we normalized
the experimental spectra to coincide at the peak of the �+

g

Fermi dyad {(1, 00, 0), (0, 20, 0)}, which is assumed to be rel-
atively weakly dependent on the angle. The theoretical spectra
are calculated with the same mutual normalization.

Truly, the shape of the experimental broad peaks at high
energy losses (∼3 eV) depends weakly on the scattering an-
gle. For smaller energy losses, the �u peaks are suppressed at
small angles because the s → p± transition contributes while
the �+

g peaks depend weakly on the angle, which is also
consistent with previous measurements [10,17,18,27–31]. The
analysis of the experimental spectrum for θ = 10◦ in terms
of the 〈νg〉 quantity, see the previous section, confirms that
the broader peaks at moderate energy losses are of the �+

g
symmetry centered at the most linear states.

Overall, we cannot expect a good agreement between
our calculations and the experiments for the angular depen-
dence. First, the direct scattering due to the dipole acquired
at distorted geometries, which is not included in our model,
significantly affects the elastic peak (0, 00, 0) and princi-
pal excitation (0, 11, 0) and (0, 00, 1) [17,18]. Second, our
R-matrix calculations show that d and f waves strongly con-
tribute to the 2�u resonance but we limited the model to the
lowest partial waves needed to excite all fundamental modes.
Our s- and p-wave model includes higher partial waves in an
averaged sense since we fit the scattering eigenphase sums
and so we expect that the results will be more accurate for the
integral cross sections rather then the differential ones. For
details, see Sec. V C in Paper I.

In the experimental spectrum, the fundamental asymmetric
stretching peak (0, 00, 1) is strongly peaked in the forward
direction and we also observe excitation of the �+

u Fermi dyad
given by a mixture of harmonic states (1, 00, 1) and (0, 20, 1).
Two quanta of asymmetric stretching (0, 00, 2) seems to be
visible at θ = 10◦ but for higher angles the (0, 00, 2) peak
is hidden under the �u triad. On the other hand, we do not
observe the (0, 11, 1) peak of the �g symmetry for any angle
at the incident energy of 3.8 eV.

D. Cross sections

Hitherto, we have analyzed the 2D spectrum from the point
of view of the electron energy loss. In this section, we focus
on the vibrational excitation cross sections; that is, 1D profiles
along the incident electron energy axis for fixed energy loss
corresponding to energies of individual final vibrational states
of CO2.

Figure 14 shows the differential cross sections for a
scattering angle of 135◦ for excitation of various low-lying vi-
brational states of CO2. As expected from the simplifications
used in the model, we find only a qualitative agreement with
experimental observations [33]. The resonance broad peak at
3–4 eV is modulated by the boomerang oscillations [4,58].
As was shown by Rescigno et al. [35] and we see it here
in Sec. VII, these oscillations originate from the symmetric
stretching and are dampen by the bending motion. In our cal-
culations, the oscillations are more pronounced because they
are sensitive to the shape of the potential, which substantially
differs from the ab initio potential in our model due to the
employed harmonic approximation for the neutral molecule.

FIG. 14. Differential cross sections for vibrational excitation of
CO2 from initial state (0, 00, 0) to final states: (0, 00, 0), (0, 11, 0),
(0, 00, 1), (0, 22, 0), (0, 11, 1), and (0, 00, 2).

The elastic cross section is about order of magnitude less
excited due to the missing direct background scattering in our
calculations.

The excitation and selectivity of the members of the low-
lying �+

g Fermi polyads (dyad, triad, ...) observed by Allan
[32,33] and discussed here in Sec. V is already well repro-
duced by the theory thanks to the work of McCurdy et al.
[34] and Vanroose et al. [37], who treated the threshold and
resonance regions separately. We can provide a further in-
sight, see Fig. 15, where the cross sections for the lower (I,
�ε = 0.159 eV) and upper (II, �ε = 0.172 eV) members
of the �+

g dyad are shown [Fig. 15(a)], in combination with

FIG. 15. Integral cross sections for vibrational excitation of CO2

from initial state (0, 00, 0) to members of the (a) �+
g Fermi dyad

and (b) to harmonic states (1, 00, 0) and (0, 20, 0). Solid lines, full
four-dimensional (4D) calculations; dashed lines, contribution of
incoming s wave for 4D dynamics; dotted lines, calculations without
the �+

g virtual state and without asymmetric stretching motion.
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FIG. 16. Comparison of three constructed models in terms of calculated energy-loss spectra for a scattering angle of 135◦ and incident
electron energy of 2.6 and 3.8 eV. The spectra are shown in the logarithmic scale but the two sets of data are arbitrarily shifted with respect to
each other. Model 3 is not consistent with the ab initio data, see the text.

the harmonic states (1, 00, 0) and (0, 20, 0) that these mem-
bers comprise of [Fig. 15(b)]. Except for the missing sharp
threshold peak of the upper member, the general shape is
well reproduced. The process s → s (dashed lines) overall
dominates over p± → p± (the difference between full and
dashed lines) and it contributes to the cross sections to both
harmonic states, which results in the observed cancellation of
the cross section for the lower member in the low to middle
region [32] in comparison to Refs. [34,35].

Despite the interesting topology of the 1 2A1 and 2 2A1

potentials upon bending, we do not observe any related ef-
fects in the region of the 2�u resonance, see dotted lines in
Fig. 15, which were calculated without the � discrete state
(all relevant parameters were set to zero). Without the �

state, the lower Renner-Teller component is connected with
the nonlinear minimum and the surfaces behave similarly to
the model of McCurdy et al. [34] (Figs. 6 and 8 in Paper
I). The region where the 1 2A1 potential crosses (or rather
merges with) the neutral potential is important at very low
incident energies (Fig. 15). For higher polyads n + m � 2,
oscillatory structures appear in the cross sections [33,37]. In
our calculations, we also observe such structures (visible in
the 2D spectra in Figs. 5 and 6) but again their precise position
is not reproduced due to the missing dipole and too large
vibrational frequencies in the dynamics.

VII. SENSITIVITY OF THE RESULTS
TO MODEL PARAMETERS

A. Sensitivity to values of parameters and fitting

The construction of a discrete-state-in-continuum model
is inherently ambiguous because the discrete states are not
uniquely defined. The ambiguity remains even though we
have not constructed the model directly using the projection-
operator approach [61], but we obtained the model parameters
from ab initio eigenphase sums and potential energies. To
validate the calculations, we constructed three models (Mod-
els 1, 2, 3) with the same parameter form but with different
values. All presented results were calculated using Model 1,
whose parameter values are given in Appendix C of Paper I.
Model 2 behaves in the same way as Model 1. In these two
models, the direct coupling λ of the � and �± states have
a small effect on the potential-energy surfaces. The primary
effects upon bending (broadening of the lower Renner-Teller
state, formation of the nonlinear minimum) are related to the

indirect coupling through the s-wave continuum described by
the parameter v�s.

Since we cannot distinguish between these two types of
the coupling in the fitting procedure, we managed to construct
Model 3 where the role of the parameters λ and v�s is to a
large degree interchanged; that is, the direct coupling λ has a
significant effect on the potentials. Model 3 does not repro-
duce the ab initio eigenphase sums as well as Models 1 and
2 but still it reproduces them to a satisfactory level. However,
we found that Model 3 is not consistent with the ab initio data
because the resonance broadening is caused by the p wave in-
stead of the s wave. For more details about the effect of model
parameters on fixed-nuclei quantities, we refer the reader to
Sec. V in Paper I, where the case of Model 1 is discussed.

Models 1 and 2 produce very similar spectra at the region
of the 2�u resonance, see Fig. 16. There is some quantitative
difference for smaller incident energies but qualitatively both
models behave the same. In the case of Model 3, the spectra
for all final states do not look too different but contributions
of individual final-state symmetries differ more substantially.
Because of the inconsistency with the R-matrix data, we do
not consider Model 3 to be physically relevant.

B. Dimensionality and electronic states

It is interesting to investigate the effect of freezing some
of vibrational modes, which can be easily achieved in our
model by reducing the basis in the corresponding dimension

FIG. 17. Effect of the dimensionality of the dynamics on the
integral elastic cross sections of CO2. Both 3D calculations did not
include the asymmetric stretching motion and in one case the �

discrete state was excluded.
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FIG. 18. Effect of the dimensionality of the dynamics on the integral cross sections for vibrational excitation of CO2 from (0, 00, 0) to four
final harmonic states: (1, 00, 0), (0, 20, 0), (0, 11, 0), and (0, 22, 0) (in rows). First column, full 4D dynamics; second column, 1D dynamics in
pure symmetric stretching for (1, 00, 0) and 2D dynamics in pure bending for (0, 20, 0), (0, 11, 0), and (0, 22, 0); third column, 3D dynamics
without asymmetric stretching and without the � discrete state. Solid lines, contribution of all incoming electron partial waves; dashed lines,
contribution of incoming s wave; dotted lines, contribution of incoming p± waves; dot-dashed lines, contribution of incoming pz wave.

only to one state and setting appropriate parameters to zero.
Such a reduction of the dimensionality is demonstrated for the
elastic scattering in Fig. 17 and for the excitation of (1, 00, 0),
(0, 20, 0), (0, 11, 0), and (0, 22, 0) harmonic states in Fig. 18,
where also contributions of the individual incoming partial
waves are shown when nonzero. The excitation of (0, 22, 0)
can only proceed via p± → p∓. We cannot perform 1D dy-
namics for pure asymmetric stretching motion, see below.

Upon pure symmetric stretching the threshold and reso-
nance regions are well separated because the s wave cannot
interact with the resonance. The boomerang oscillations orig-
inate in the symmetric stretching motion and are dampen by
the broad resonance as the anion bends [34,35]. Moreover, the
oscillations only occur if the electron comes in as p+ or p−.
When the incoming electron is of the s-wave character, the
formation of the 2�u state forces the molecule to bend and
the wave packet traveling along the symmetric stretch axis is
a subject of the broader decay width. As a consequence, the
oscillations of the anionic wave function along this axis are
significantly suppressed (Fig. 4).

The whole dynamics is driven by the symmetric stretching
vibrations because of the nonzero gradient. The pure bending

motion leads to the cross sections with a structureless 2�u

peak, which is typically narrower and higher than the one in
the case where the symmetric stretching is present. These re-
sults are similar to results of Laporta et al. [40] who performed
1D LCP calculations in each vibrational mode separately.
In our model, we cannot perform 1D dynamics of the 2�u

doublet for pure asymmetric stretching motion because the
pz wave couples to the �± discrete states only at combined
asymmetrically stretched and bent geometries, see Eq. (13).
Such 1D calculations are possible for an incoming d-wave
electron, which is not included in our model.

Nevertheless, we do not expect 1D calculations of the
vibrational motion in nontotally symmetric modes of poly-
atomic molecules to be appropriate in general. For such
modes, potentials are even functions of the corresponding
vibrational coordinates; that is, they possess no gradients at
the equilibrium. They can play a key role as the bending does
in the case of CO2 but the dynamics in these modes alone
is probably not sufficient. Moreover, if neutral and anionic
potentials are close to being parallel and there is no sym-
metry breaking mechanism, the cross sections are strongly
influenced by the fact that the neutral and anionic vibrational
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states for different quanta are almost orthogonal to each other.
We are convinced that this is the origin (not the boomerang
effect) of structures in the cross sections upon asymmetric
stretching presented in Ref. [40].

VIII. CONCLUSION

In conclusion, we summarize our join experimental and
theoretical work on the vibrational excitation of CO2 by
slow electrons and we also discuss possible future improve-
ments. The study comprises of our Letter [47] that outlines
the primary results, the description of the theoretical model
Ref. [48], and the detailed analysis of the results presented in
this paper.

The theoretical work was motivated by three open chal-
lenges in the low-energy electron-molecule scattering. The
first of them was the unexplained shape of the energy-loss
spectra and the discovery of the fine structure with ∼30 meV
spacing in our high-resolution 2D spectrum. The second chal-
lenge was the absence of the theoretical treatment of the
interaction of the near threshold 2�+

g virtual state with the
2�u resonance pointed out by Sommerfeld et al. [62] and
hinted in experiments by Allan [32,33]. The last challenge
was posed by the lack of development in the treatment of
electron-molecule scattering by the nonlocal discrete-state-
in-continuum model for polyatomic molecules including the
vibronic coupling. The importance of the direct and indirect
(through electron continuum) vibronic coupling was analyzed
by Gallup [41]. However, only the direct vibronic coupling
was previously included in the model study of 2D nonlocal
dynamics by Estrada et al. [63] and in LCP calculations, e.g.,
by McCurdy et al. [34] for the e + CO2 system (see also the
introduction of Ref. [48]).

On the experimental side, we have presented the 2D
energy-loss spectrum measured at the scattering angle of 135◦
with the energy resolution of 18 meV and to almost complete
energy loss, in combination with additional 1D cuts for fixed
incident energies at 10◦, 45◦, and 135◦. The nuclear dynamics
of the CO −

2 anion was modeled in the full vibrational dimen-
sionality and in the presence of the 2�+

g virtual state and the
2�u shape resonance coupled upon bending. We also included
the vibronic coupling of these states to four electron partial
waves s, pz, p±, which is the minimum set needed to explain
the symmetries of all observed energy-loss peaks in the region
up to 5 eV.

The inclusion of the vibronic coupling of the 2�u reso-
nance to the s-wave electron continuum is the most important
aspect of the current model in comparison with previous
calculations. It allows excitation of 2�u vibrational states of
CO2, which have been found to dominate the highly inelastic
region of the spectrum and their competition with 2�+

g states
explains the shape of the spectrum. Only vibrational states
that are localized in the vicinity of the symmetric stretching
axis are significantly excited because the s-wave coupling
causes an effective decay of the molecular anion at highly
bent geometries. This selective mechanism gives rise to the
observed fine structure with ∼30 meV spacing.

The interpretation of the fine structure by identification of
the specific states from the quasicontinuum of energetically
available final states is one of the primary successes of our

model. Another achievement is the vibrationally complete
description of the dynamics, which allows the prediction of
all vibrational transitions experimentally observed. Moreover,
the anionic wave functions (apart from giving aesthetic pic-
tures) provide a further insight and interpretation for the
results. The calculation also gives access to splitting of the
dynamics based on irreducible representations of the molec-
ular symmetry group and electron partial waves. Moreover,
the possibilities of simplifying the dynamics were tested. This
aspect may be important for treatment of larger molecules. In
the case of CO2, we have seen that the dynamics is driven
by the symmetric stretching but the bending is important as
well since it couples the states and partial waves. On the other
side, the asymmetric stretching motion can be left out unless
we are specifically looking into excitation of the energy-loss
peaks associated with excitation of this motion. We have also
discussed energy regions where the 2�+

g state or the 2�u

doublet can be omitted.
To achieve not only a qualitative but also quantitative

agreement with the experimental data, several improvements
of the model should be considered in the future. The most
straightforward step is improving the quality of the potential-
energy surfaces. However, it is difficult to reach a better
correlation in the fixed-nuclei electron scattering to have a
consistent set of data for the construction of the model. The
harmonic approximation for the neutral vibrations should also
be lifted to include the Fermi resonance directly into the
dynamics. Furthermore, the inclusion of the dipole moment
emerging upon bending and asymmetric stretching is neces-
sary to precisely reproduce the threshold region and probably
d and f waves are needed to improve the dependence on the
scattering angle. The incorporation of the O− + CO dissocia-
tion channel that opens around 4 eV into the nuclear dynamics
is the ultimate but computationally challenging goal since the
dissociation proceeds via a conical intersection of the 2�u

resonance with another state of the 2�g symmetry that is
connected to the dissociation asymptote [64].

In the future, the present approach can also be applied to
other molecules. The application should be rather straightfor-
ward, for example, for CS2, which has the same symmetry as
CO2, or for linear molecules without inversion symmetry such
as N2O and OCS. The missing inversion symmetry would lead
to a larger coupling of the two stretching vibrational modes.
The treatment of the dynamics in the case of N2O, for which
a high-resolution measurement of Allan and Skalický [65] is
available, would also be complicated by the presence of the
dissociative attachment channel that opens below 1 eV. For
molecules with the C2v symmetry group (H2O, NO2), the con-
struction of the model and calculation of the dynamics has to
be modified but we do not expect large obstacles. A more chal-
lenging task is to apply the methods developed in this study
for models of reduced dimensionality for larger molecules.
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[46] R. Čurík, P. Čársky, and M. Allan, Electron-impact vibrational
excitation of cyclopropane, J. Chem. Phys. 142, 144312 (2015).
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