
PHYSICAL REVIEW A 106, 062801 (2022)

Testing standard-model extensions with isotope shifts in few-electron ions
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When collecting spectroscopic data on at least four isotopes, nonlinearities in the King plot are a possible
sign of physics beyond the standard model. In this work, an improved approach to the search for hypothetical
new interactions with isotope-shift spectroscopy of few-electron ions is presented. Careful account is taken
of the small nuclear corrections to the energy levels and the gyromagnetic factors, which cause deviations
from King linearity within the standard model and are hence a possible source of confusion. In this approach,
the experimental King nonlinearity is not compared to the vanishing prediction of the standard model at the
leading order, but to the calculated full standard model contribution to King nonlinearity. This makes searching
for beyond-the-standard-model physics with King linearity analysis possible in a high-precision experimental
regime, avoiding confusion. The bounds which can be set on beyond-the-standard-model parameters remain
limited by the uncertainties on the small standard model nuclear corrections which cause King nonlinearity.
Direct comparison between theory and experiment on a single pair of isotopes is advocated as a more suitable
approach for few-electron ions.
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I. INTRODUCTION

Recent years have seen the accelerating development of
tests of standard model (SM) extensions at the low-energy
precision frontier [1–11]. In a context where the SM of
fundamental physics is known to be incomplete, but where
direct signals of new particles or interactions have so far not
been reported, the low-energy precision frontier constitutes
an interesting complement to the search for physics beyond
the SM [also known as new physics (NP)] at particle collid-
ers, which probe the so-called energy and intensity frontiers.
At the low-energy precision frontier, rigorous searches for
NP signatures can be carried out with relatively-small-size
experiments. Standard methods for testing quantum electrody-
namics (QED), e.g., for Lamb shift [1,2], can be also extended
for the search of hypothetical new physics. In particular,
in atomic physics, precise experiments are often supported
by calculations. Such high-precision calculations are possi-
ble in particular for few electron ions, and the development
of bound-state QED has allowed predictions of fundamen-
tal spectroscopic quantities with relative precisions as good
as 3 × 10−15 in the case of an optical transition [12] and
2.8 × 10−11 in the case of the bound-electron g (gyromag-
netic) factor [13,14].
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Comparisons between experimental and theoretical results
on fundamental atomic spectroscopic quantities, such as tran-
sition frequencies and g factors, constitute stringent tests for
QED in strong external fields (here the electrostatic field of the
nucleus). Such comparisons have also been used to determine
fundamental constants, such as the electron rest mass [14] or
the proton charge radius [15], with unprecedented precision.
There also have been proposals for an improved determination
of the fine-structure constant α of electrodynamics [16–20].

As has been shown in recent works, precision atomic
spectroscopy can be used to set bounds on proposed SM
extensions (conversely, it could be used to find signals of
such beyond-SM phenomena). In particular, studies of the
isotope shift of transition frequencies in singly charged ions
(and neutral atoms) have been shown [4–6,8,9] to allow for the
setting of stringent bounds on NP, with minimal theory inputs.
Isotope-shift data can be checked for deviations from King
linearity which, with some care, could be interpreted as signa-
tures of NP. Care is important, because departures from King
linearity are also caused by small nuclear corrections to spec-
troscopic quantities within the SM [6–8,21,22]. A recent study
on the transition frequencies of argon ions has shown that
such effects had been underestimated in the past [7,21,22].
For a more systematically reliable interpretation of future
experimental data on isotope shifts, it is important to estimate
these small nuclear corrections accurately.

In the case of few-electron ions, calculations are gen-
erally more tractable than in the many-electron case and
hence can reach higher precisions. As such, these systems,
and in particular their g factor, could become prime testing
grounds for proposed SM extensions, with joint efforts from
the theory and experiments [7,23]. In Ref. [7], the bound-
electron g factor was put forward to constrain new physics.
In Refs. [19,23], a combination of the g factor and binding
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energy was considered for further suppression of subleading
nuclear corrections. On the theory side, more accurate calcu-
lations of the energy levels, the g factors, and their respective
isotope shifts are made possible by the progress of bound-state
QED. Both radiative QED contributions (two-loop radia-
tive corrections) [24–29] and nuclear contributions [30–35]
(we will discuss them in more detail throughout this work)
are under active consideration and are being determined with
increasing precision. On the experiment side, Arapoglou et al.
reported the measurement of the g factor of B-like Ar13+ [36],
with a precision of 1.4 ppb, which represents an improve-
ment on the previous value by seven orders of magnitude.
It is projected [36] that the precision of future such mea-
surements in Penning traps will outmatch the currently most
precise reported results, which concern carbon and silicon
(electron mass). Moreover, not only g factors but differences
of g factors between two trapped ions can be measured with a
precision of one part in 1011 and better [11]. This includes iso-
tope shifts, which makes the present investigation especially
timely. High-precision measurements of the g factor are also
planned within the HITRAP project [37–39].

In this work we study the setting of bounds on NP with
few-electron ions and show a simple approach based on direct
comparison between theory and experiment to be best suited.
This is in contrast to the case of many-electron ions, where a
data-driven approach based on King representations and their
generalizations is favored [40]. Following up [7], we present
in detail an advanced King-type formalism to set bounds on
NP through isotope-shift spectroscopy of few-electron ions
by taking careful account of the aforementioned small nu-
clear corrections and their contribution to King nonlinearity
and show that this complex formalism is suboptimal for few-
electron ions compared to a simpler approach.

The rest of this paper is organized as follows. In Sec. II we
briefly present proposed extensions of the SM which can be
addressed through atomic spectroscopy and through isotope
shifts in particular. Radiative and interelectronic-interaction
QED corrections to the NP contributions to the g factor are
discussed in Sec. III. In Sec. IV, the central part of this work,
we study in detail the isotope shift of bound-electron energy
levels and g factors and build a modified King formalism to
search for NP with spectroscopic data on three isotope pairs.
It is shown that this indirect approach, while well suited for
many-electron systems, is unnecessary and even suboptimal
for few-electron systems. In Sec. V we argue that direct
comparisons between experimental and theoretical results on
few-electron ions can be used to set more competitive bounds
on NP with a single isotope pair. Section VI is reserved for
concluding remarks.

II. SOME EXTENSIONS OF THE STANDARD MODEL

Several proposed extensions of the SM can be probed with
atomic physics experiments. We briefly discuss these exten-
sions in the present section.

A. Higgs portal relaxion

The long-standing electroweak hierarchy problem [41],
which is connected to the lack of an explanation of the weak-

FIG. 1. Feynman diagram corresponding to the leading contribu-
tion to the hypothetical fifth force correction to the energy level (E )
and the g factor (g) of a bound electron. The double line represents
the bound electron, the dashed line terminated by a square denotes
the new physics potential, and the wavy line terminated by a triangle
denotes a photon from the external magnetic field. Diagram (g) has
an equivalent diagram and as such its contributions should be counted
twice.

ness of gravity with respect to the other forces, concerns the
mass of the Higgs boson, which could be expected to be much
larger than it is due to coupling of the Higgs boson with
any beyond-SM phenomena. Indeed, radiative corrections to
the Higgs mass vary as the square of the energy scale at
which beyond-SM phenomena might arise. The Higgs portal
provides a solution to this problem. It involves the mixing of a
new massive scalar boson, the relaxion, with the Higgs boson.
These massive scalar bosons would mediate a new fundamen-
tal force, resulting, as far as atomic physics is concerned,
in an interaction between nucleons and electrons [5,6,42].
The spin-independent potential exerted on electrons by this
hypothetical force is of the Yukawa type [4]

VHR(r) = −h̄cαHRA
e−(mφc/h̄)|r|

|r| , (1)

where mφ is the mass of the relaxion, αHR = yeyn/4π is the
Higgs portal coupling constant, with ye and yn the coupling
of the massive scalar boson to the electrons and the nucleons,
respectively, h̄ and c are Planck’s reduced constant and the
vacuum velocity of light, respectively, and A is the nuclear
mass number of the considered ion.

The first-order correction to the energy level of a bound
electron in the quantum state a due to this potential corre-
sponds to the diagram in Fig. 1(E). The contribution is

EHR(a) = 〈a|VHR|a〉

= −αHRAh̄c
∫ +∞

0
dr r e−(mφc/h̄)r

[
g2

a(r) + f 2
a (r)

]
.

(2)

Here ga and fa are the radial wave functions (large and
small components, respectively) of the bound electron in state
a [43]. For the H-like ground state a = 1s, we obtain

EHR(1s) = −αHRAmec2 Zα

γ

(
1 + mφ

2Zαme

)−2γ

, (3)

where γ 2 = 1 − (Zα)2. Here and below we use the pointlike-
nucleus approximation for wave functions and energies to
deliver analytical formulas. The first-order correction to the
g factor of a bound electron in the quantum state a due to
this potential corresponds to the diagram in Fig. 1(g), together
with the one in which the order of the two interactions is
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swapped. The contribution is

gHR(a) = 2αHRA
h̄c

μBBma

∫ +∞

0
dr r e−(mφc/h̄)r

× [ga(r)Xa(r) + fa(r)Ya(r)], (4)

where μB = eh̄/2me is the Bohr magneton, ma is the magnetic
projection quantum number of state a, B is the magnitude of

the external, static, homogeneous magnetic field, and Xa and
Ya are the corrections to the large and small components of
the bound-electron radial wave function, due to the interac-
tion with the magnetic field, given in Ref. [44]. With these
wave-function corrections and after performing the angular
integration, Eq. (4) can be rewritten as

gHR(a) = 2αHRAλ̄e
κ2

a

ja( ja + 1)

∫ +∞

0
dr r e−(mφc/h̄)r

[(
1

2
− κa

)
g2

a(r) +
(

1

2
+ κa

)
f 2
a (r) + 2

r

λ̄e
fa(r)ga(r)

]
, (5)

with ja and κa the total and Dirac angular momentum
numbers, respectively, and λ̄e = h̄/2πmec the Compton wave-
length of the electron. For the H-like ground state a = 1s, we
obtain [11]

gHR(1s) = − 4

3
αHRA

Zα

γ

(
1 + mφ

2Zαme

)−1−2γ

×
(

1 + mφ

2Zαme
(1 + 2γ )

)
. (6)

It can be checked that the correction to the energy level and
the g factor obey the relation

gHR(1s) = κ2

j( j + 1)c2

∂EHR(1s)

∂me
, (7)

which is derived in Ref. [45] for arbitrary central potentials
(see also [46]). The full exact results for the a = 2s ground
state of Li-like ions and for the a = 2p1/2 ground state of B-
like ions are given in the Supplemental Material to Ref. [7].

B. Gauged B − L symmetry

The difference B − L between the baryon and lepton num-
bers is conserved in the SM and one proposed extension
of the SM is built around the introduction of the U(1)B−L

gauge symmetry. Unlike most group symmetries proposed
to supplement the SM, this symmetry would be unbroken
in the SM extension, giving rise to a new vector boson Z ′,
a massive hidden photon. Quantum anomalies in this model
are canceled by the introduction of a right-handed neutrino
for each lepton family, which introduces neutrino masses. In
this SM extension, the boson Z ′ couples electrons to nucleons
with a Yukawa potential [4,47], meaning that the results of
Ref. [7], recapitulated in Sec. II A, are directly applicable,
by replacing the Higgs portal coupling yeyn with the B − L
symmetry coupling g2

B−L . In this case, the couplings of the
boson to the neutron and electrons are identical; therefore,
atomic physics is sufficient to resolve the individual couplings
of massive hidden photons to SM particles, which was not the
case for the relaxions studied in Sec. II A.

C. Chameleon models

Chameleon particles have been proposed as dark energy
candidates [48,49]. The most remarkable property of these
scalar particles is that, due to their nonlinear self-interaction,
their mass is an increasing function of the energy density

of the local environment. As such, in dense environments,
these hypothetical particles would mediate a new force with
a very limited range. Such models can be tested from atomic
data. For practical purposes, the influence of this hypothetical
particle on atomic spectra is described [3,50] by the potential

Vχ (r) = − 1

4π

h̄c

|r|
me

Mm

(
MA

Mm
+ 1

2
Z2α

h̄

Mγ c|r|
)

. (8)

Here MA is the mass of the nucleus of the considered ion,
while Mm and Mγ are mass scales which are inversely pro-
portional to the coupling strengths of the chameleon to matter
and to electromagnetic energy density, respectively. Indeed,
denoting by φ the chameleon field, ρ the matter energy
density, and Fμν the Maxwell-Faraday tensor, an effective
field theory treatment yields the potential V = φρ/Mm for the
chameleon-matter coupling potential and V = φFμνFμν/2Mm

for the chameleon-photon coupling potential.
In the following, we will use the case of Higgs relaxion

portal for the explicit expressions and refer to it as NP; how-
ever, our conclusions are also valid for the cases of gauged
B − L symmetry and chameleon models and can be analo-
gously extended there.

Existing constraints coming from various areas of physics
such as Casimir force measurements [51], globular cluster
data [52], g-factor measurements [5,11], and isotope-shift
nonlinearities [9,53] together with the bounds discussed in the
present work are shown in Fig. 2. In the rest of the paper we
will discuss how much further the limits can be pushed, based
on our current knowledge of QED and atomic and nuclear
physics.

III. QED CORRECTIONS TO THE NP CORRECTIONS

New physics contributions to spectroscopic quantities can
be expected to be very small and QED corrections thereto
should be even smaller (typically by a factor of α for ra-
diative corrections at the one-loop level). However, as was
shown in Refs. [54,55], the magnitude of such radiative QED
corrections to a contribution from a potential can be com-
parable to or even larger than the leading contribution from
that potential, when the latter is generated by a highly lo-
calized potential. In our case, the leading contribution is the
one-electron hypothetical NP correction, shown in Fig. 1. For
the ground-state energy of H-like, Li-like, and B-like ions,
we have shown that radiative corrections to the NP contribu-
tion are much smaller than the leading NP contribution [56].
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FIG. 2. Bounds on the new physics coupling constant yeyn =
4παNP as a function of the scalar boson mass mφ . The regions above
and to the left of the solid blue curves are excluded by Casimir force
(CF) measurements [51] and globular cluster (GC) data [52] and a
combination of neutron-scattering data with the free-electron g factor
(g − 2)en [5]. The thick orange line refers to the small-mass limit of
the bound obtained in Ref. [9] from isotope-shift measurements in
transition frequencies in Ca+ and the purple one to the isotope-shift
measurements in H-D [53]. The green dashed line shows a projected
bound from isotope-shift measurements of the g factor of hydrogen-
like and lithiumlike argon and the green solid line shows the limits
derived in [11]. The gray lines correspond to the bounds discussed in
the present work.

However, for heavy new bosons, photon-exchange corrections
to the NP contribution to the energy levels of Li-like and
B-like ions can be comparable to or even much larger than
the one-electron NP contribution [56]. We anticipate that the
same could happen for the g factor of Li-like and B-like ions.

IV. INDIRECT TESTS WITH THE KING APPROACH

We now turn to the detailed study of isotope shifts of
the energy levels and g factors of highly charged ions. In
Sec. IV A we first present the standard simple formulation of
the isotope shift in spectroscopic data and introduce the King
representation of isotope shifts. In Sec. IV B we present in
detail the various subleading nuclear corrections to the energy
levels and to the g factor, which contribute to the isotope shift
and complicate the analysis of data. Methods to distinguish
SM and NP contributions to the isotope shift are discussed in
Sec. IV C. Projected bounds are derived in Sec. IV D.

A. Isotope shifts and the King representation

Isotope-shift data are a promising avenue [4–7] to obtain
strong bounds on NP parameters. This is easily under-
stood when recalling that several proposed SM extensions
would result in new forces between nucleons and electrons.
Isotope-shift data can thus carry information on potential
neutron-electron interactions due to NP. Isotope-shift data can
conveniently be handled through the King representation [57].
The bulk of the following explanation will be given for the
explicit case of the g factor but, as will be further clarified, the
same construction can be elaborated for energy levels. Let us
consider two levels 1 and 2 of a bound electron in an ion. For

both levels, considering two isotopes A and A′ of the same ion,
we write the isotope shift in the g factor as

gAA′
i = gA

i − gA′
i , i ∈ {1, 2}. (9)

Within the SM, the leading-order (LO) contributions to the
isotope shift are

gAA′
i(LO) = KiμAA′ + FiδR2

AA′ . (10)

The first summand on the right-hand side (rhs) of (10) is
the leading-order contribution to the mass shift, featuring
μAA′ = 1/MA − 1/MA′ . The second summand is the leading-
order contribution to the field shift, featuring the difference
δR2

AA′ = R2
A − R2

A′ (with R ≡
√

〈r2〉) in the nuclear squared
charge radii between the two isotopes. The reader should
note that both summands are expressed as the product of an
electronic and a nuclear factor. Indeed, the coefficients Ki and
Fi only depend on the electronic level considered, while the
quantities μAA′ and δR2

AA′ are purely nuclear properties.
As was done in Ref. [7], we introduce, for any pair of

isotopes, the notation GAA′
i ≡ gAA′

i /μAA′ . For the pair of elec-
tronic levels i and j, the King representation indicates the
dependence of GAA′

j as a function of GAA′
i . A King plot is a

collection of points, with coordinates (GAA′
i , GAA′

j ). To each
pair AA′ of isotopes corresponds a point. From Eq. (10) it can
easily be seen that

GAA′
j(LO) = Fj

Fi
GAA′

i(LO) +
(

Kj − Fj

Fi
Ki

)
. (11)

This relation between isotope shifts for two different levels is
hence linear within the LO treatment and the offset does not
depend on the specific isotope pair considered. Hence, King
plots will always be linear at the LO: Points corresponding
to any pair of isotopes will fall on the same line. Hence,
deviations from King linearity in experimental data can be ex-
plained either by smaller subleading nuclear contributions to
the g factor or by possible NP contributions. We will explore
this in detail in the following. However, first we note that, in
some cases, the relativistic correction to the field shift can be
absorbed within this leading-order linear framework. Indeed,
in a relativistic treatment, the second summand on the rhs of
Eq. (10) can be rewritten as

gAA′
i(RLO) = KiμAA′ + HiδR2γi

AA′ . (12)

Here γi =
√

κ2
i − (Zα)2, with κi the relativistic angular

quantum number, δR2γi

AA′ = R2γi
A − R2γi

A′ , and RLO stands for
relativistic leading order. Obviously, the second summand on
the rhs of Eq. (12) is no longer the product of an electronic
factor with a nuclear one. Nevertheless, if one considers only
electronic levels that share the same |κi|, as we will do in this
work, then γi is in effect fixed and substituting Hi/ j for Fi/ j ,
the linear relation (11) still holds between GAA′

i(RLO) and GAA′
j(RLO).

As we will see in the upcoming Sec. IV B, however, King
linearity is broken by various subleading contributions to the
isotope shift. Before we turn to these subleading corrections,
we give, for reference, the expressions for the coefficients Ki

and Hi for the levels 1s, 2s, and 2p1/2 which we consider in
this work.
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The mass shift coefficients are

K1s = (Zα)2me

(
1 − (Zα)2

3
[1 +

√
1 − (Zα)2]−2 + (Zα)3P(1s)(Zα)

)
, (13a)

K2s = −2

3

1

mec4

[
2κ2E2

2s + κmec2E2s − (mec2)2
] + 1

8
me(Zα)5P(2s)(Zα), (13b)

K2p1/2 = meF (Zα). (13c)

These three results are derived, respectively, in Refs. [58–60]. Here E2s refers to the Dirac bound energy of the 2s level. The
functions P(1s) and P(2s) are tabulated in Refs. [58,59] and the function F is tabulated in Ref. [60] for Z > 20.

The field shift coefficients are

H1s = 4

3
(1 + 2γ )

(Zα)2

10
[1 + (Zα)2 f1s(Zα)]

(
2

√
5

3

Zα

λ̄e

)2γ

, (14a)

H2s = 4

3
(1 + 2γ )

(Zα)2

20
[1 + (Zα)2 f2s(Zα)]

(√
5

3

Zα

λ̄e

)2γ

, (14b)

H2p1/2 = 1

2
(1 + 2γ )

(Zα)2

40
[1 + (Zα)2 f2p1/2 (Zα)]

(√
5

3

Zα

λ̄e

)2γ

, (14c)

where λ̄e ≡ h̄/mec is the Compton wavelength of the electron.
The expressions for the functions f1s, f2s, and f2p1/2 are given
in Ref. [61].

As was mentioned earlier, the foregoing considerations are
also valid for the (dimensionless) energy levels Ei/mec2 of
bound electrons and their isotope shifts. In particular, for the
ground-state energy of H-like ions, the coefficients are

K (E )
1s = (Zα)2me

[
1

2
+ (Zα)3

π
P0(Zα)

]
, (15)

with P0 tabulated in Ref. [62], and

H (E )
1s = (Zα)2

10
[1 + (Zα)2 f1s(Zα)]

(
2

√
5

3

Zα

λ̄e

)2γ

. (16)

Again, in this case, the relativistic correction to the field shift
can be included directly, without breaking King linearity, as
long as all the levels considered share the same γi. Note that
(also see Ref. [45])

H1s = 4
3 (1 + 2γ )H (E )

1s , (17)

which inspired the introduction in Ref. [19] of the reduced
g factor

g1s − x
E1s

mec2
, x ≡ 4

3
(1 + 2γ ), (18)

of H-like ions, in which the leading finite-nuclear-size cor-
rection cancels to a great degree. As we will see, for several
subleading nuclear corrections, the same relation is ob-
tained at least approximately, with the same proportionality
factor x. This motivates the introduction of a King represen-
tation where the isotope shifts of the energy level and g factor
of the ground state of H-like ions are expressed as a function
of each other.

B. Subleading nuclear corrections and standard-model
King nonplanarities

Let us introduce an extra term in the isotope shift. As was
done in Sec. IV A, we write the general abstract expressions
for the g factor, but an identical construction can be, and
indeed is, made for the energy levels. The isotope shift now
reads

gAA′
i(SM) = KiμAA′ + HiδR2γi

AA′ + siAA′ . (19)

Here SM stands for standard model, as siAA′ encompasses all
the SM other contributions to the isotope shift, besides the
leading-order mass shift and the relativistic leading-order field
shift. The third summand siAA′ on the rhs is thus generated
by subleading nuclear corrections to the g factor. We will
examine these various corrections in detail in the following.
For now, we can handle this term in a more abstract way and
start by noting that it is not the product of an electronic and a
nuclear factor. Hence, the relation between isotope shifts for
two electronic levels is

GAA′
j(SM) = Hj

Hi
GAA′

i(SM) +
(

Kj − Hj

Hi
Ki

)

+ 1

μAA′

(
s jAA′ − Hj

Hi
siAA′

)
. (20)

There is now an extra offset in the relation between the isotope
shifts of two electronic levels. This offset depends on the
specific isotope pair considered, which means that the King
plot will no longer be linear. Typically, though, the subleading
terms siAA′ are much smaller than the other two summands on
the rhs of (19), so the deviations from King linearity due to
these terms are only detected on isotope-shift data if that data
are sufficiently precise.

In Ref. [7], the potential of King nonlinearity searches with
the g factor of H-like, Li-like, and B-like ions was explored
in detail. Although this approach is experimentally realis-
tic and involves safe interpretation of data through careful
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FIG. 3. Contributions to the 40–42Ca19+ ground-state isotope shifts in (a) the g factor and (b) the dimensionless energy level E . The large
pink circles are the contributions and the small red circles are their uncertainties. The graph is in logarithmic scale; digits indicate negative
powers of 10. The following denotations are used: HORC, higher-order recoil; RDRC, radiative recoil; HOSZ, higher-order finite nuclear size;
NPOL, nuclear polarization; NDEF, nuclear deformation; RDSZ, radiative finite nuclear size; and RCSZ, finite-nuclear-size recoil.

calculation of subleading nuclear effects, the bounds which
can be obtained through that approach are not competitive at
the time due to the hindering influence of theoretical uncer-
tainties on subleading nuclear corrections. We will therefore
focus on H-like systems in the rest of this work.

We now turn to the specific determination of the term siAA′ .
Our analysis includes the seven largest subleading nuclear
corrections to the energy level and the g factor: (1) the higher-
order nuclear recoil and (2) nuclear-size corrections, (3) the
mixed finite-size recoil correction, (4) the radiative recoil
and (5) radiative nuclear-size corrections, and (6) the nuclear
deformation and (7) nuclear polarization corrections. For rea-
sons that will become clear, we will devote specific attention
to the theoretical uncertainties on these various contributions.
We will focus, from this point onward, on the g factor and the
(dimensionless) ground-state energy level of H-like ions. A
representation of the contributions from all seven considered
nuclear corrections, to a specific isotope shift in H-like cal-
cium, is given in Fig. 3. In the case of ions with more than one
electron, nuclear recoil and finite-nuclear-size corrections to
the interelectronic interaction would also contribute to King
nonlinearities, but we do not consider this case in further
detail here.

1. Higher-order nuclear recoil correction

The leading-order nuclear recoil correction expressed by
Eqs. (13) and (15) gives a contribution to the bound-electron
g factor proportional to me/MA, where me is the electron
mass and MA the nuclear mass (for a specific isotope). A
result valid to all orders in the electron-nucleus mass ratio
can be obtained, which does not take account of radiative or
electron-electron interaction contributions. The result is given
by Eqs. (29) and (30) of Ref. [63] (also see Refs. [64,65]);
one should, to obtain the higher-order nuclear recoil

correction, subtract from it the leading-order nuclear recoil
term (me/MA)(Zα)2/n2. The result of Ref. [63] is valid, as
we said, at all orders in me/MA, but is given as an expansion
in (Zα). Inspection indicates that the next, unaccounted-for
terms should feature an extra (Zα)2, which is how we estimate
the uncertainty on this correction.

For the energy level, the higher-order nuclear recoil cor-
rection is obtained from Eqs. (48) and (49) of Ref. [66].
The unaccounted-for term should be of order (Zα)6(me/MA)2,
which yields the estimate of the uncertainty on this correction.

2. Higher-order finite-nuclear-size correction

The leading-order finite-nuclear-size correction expressed
by Eqs. (14) and (16) should be supplemented by smaller sub-
leading contributions. Calculation of these contributions can
be achieved by numerically calculating the full finite-nuclear-
size correction to the g factor and energy level, e.g., following
the method of Ref. [35], and subtracting the already-included
leading-order contribution. The uncertainty on these contribu-
tions is dominated by that on the nuclear radius.

3. Finite-size recoil correction

As mentioned in Ref. [21], the nonrelativistic approxima-
tion of the finite-size recoil correction to the energy levels can
be obtained through the substitution H (E )

i → H (E )
i (1 − 3 me

MA
).

Hence, following Ref. [45], we have, in the nonrelativistic
approximation, Hi → Hi(1 − 4 me

MA
) for the finite-size recoil

correction to the g factors of the levels under study here. The
uncertainties in this estimate are given by multiplying this
nonrelativistic estimate by (Zα)2; however, finite-size recoil
corrections to the H-like energy level were computed with
three significant digits in Ref. [62], so we can retain this latter
level of uncertainty as fully realistic.
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4. Radiative corrections to the nuclear recoil correction

Radiative (QED) corrections to the nuclear recoil contribu-
tion are mixed QED plus nuclear corrections. For the g factor
of H-like ions, they are given by [67]

grad rec
1s =

(α

π

)
(Zα)2

[
−1

3

me

MA
+ 3 − 2Z

6

( me

MA

)2
]
. (21)

Similarly, the radiative recoil correction to the energy level is
given by [66]

E rad rec
1s

mec2
=

(α

π

) (Zα)5

π

[ me

MA
− 3

( me

MA

)2]

×
{

6ζ (3) − 2π2 ln(2) + 35

26
π2

− 448

27
− 2

3
π (Zα) ln2[(Zα)2]

}
. (22)

Clearly, when considering the isotope shift, the first summand
on the rhs of Eqs. (21) and (22), linear in me/MA, will in-
troduce a small correction to the coefficient Ki and hence
no King nonlinearity. The terms quadratic in (me/MA)2 are
extremely small, but taken into account in our treatment. Their
uncertainties are estimated by multiplying the quadratic mass
ratio term by (Zα)2 in the case of the g factor [with Eq. (13)
in mind] and by (Zα) in the case of the energy level [with
Eq. (15) in mind].

5. Radiative corrections to the finite size

The most detailed study of radiative nuclear-size correc-
tions to the g factor and energy of H-like ions are found in
Refs. [31,68], respectively. The correction to the g factor is
cast as

grad FNS
1s = 8

3

(α

π

)
(Zα)4GNS × GNSQED

( R

λ̄e

)2γ

. (23)

The correction to the energy level can be recast as

E rad FNS
1s

mec2
= 2

3

(α

π

)
(Zα)4DNS × DNSQED

( R

λ̄e

)2γ

. (24)

The coefficients GNS and GNSQED, as well as DNS and DNSQED,
are functions of Z and of the nuclear radius R and are numer-
ically calculated coefficients, with GNS 
 1 (within 20%) and
−2 < GNSQED < −0.4 for Z � 92. The weighted difference
only cancels the radiative nuclear-size correction quite weakly
(less than one-digit cancellation). When considering the iso-
tope shift, it should be kept in mind that all of R, GNS, and
GNSQED are isotope specific. In principle, the uncertainties on
these radiative nuclear-size corrections are only limited by the
knowledge of the nuclear radii. This indicates that the relative
uncertainties on the radiative nuclear-size corrections can be
as small as roughly one part per thousand.

Finally, the two-loop radiative corrections to the finite nu-
clear size and to the nuclear recoil contributions are extremely
small, of course, and can be ignored altogether.

6. Nuclear deformation correction

For nonspherical nuclei, which represent most of the nu-
clei, there exists a nuclear deformation correction (also called

nuclear shape correction) to the g factor. Typically, it is con-
sidered that nuclei possess a quadrupole and a hexadecapole
deformation, although they may also exhibit an octupole de-
formation [69]. A nonperturbative calculation of the nuclear
deformation correction to the g factor has also been carried
out and presented in Ref. [34]. In this approach, the wave
functions for the bound electrons are obtained by numerically
solving the Dirac equation for the potential generated by a
deformed nucleus. It is found that taking into account nu-
clear deformation at all orders modifies the results obtained
through the perturbative method of Ref. [33] to a relatively
large extent. Nevertheless, the nuclear shape corrections to the
g factor and energy obey gNS

1s = xENS
1s /mec2 to a very good

level of approximation, leading to a cancellation of about two
digits in the reduced g factor and in the uncertainties, which is
especially favorable for our purposes.

7. Nuclear polarization correction

The bound electron and the nucleus can exchange photons,
which excite virtual nuclear transitions from and to the nuclear
ground state [32,70], giving rise to the nuclear polarization
correction. The detailed expressions for the corresponding
correction to the bound-electron g factor can be found in
Refs. [19,70]. It has been shown through explicit numerical
calculations that gNPOL

1s 
 xENPOL
1s /mec2 to a good level of

approximation [19], leading to a cancellation of at least one
digit in the reduced g factor difference.

C. Modified King representation

As we just discussed in detail, small nuclear corrections to
the g factor and the energy levels cause violations of King
linearity within the SM. This limits the range of the test
of NP by inspection of King plot data used in Ref. [5]. In
Ref. [7] we used the method of Ref. [5] to study tests of NP
with the bound-electron g factor while also making sure that
the sensitivity to NP at the projected level of precision for
potential Penning trap experiments would not be confounded
by these subleading nuclear corrections. In the present work
we propose an extension of this method, which circumvents its
fundamental limitation, namely, we propose to test the King
nonlinearity of experimental data against its predicted theoret-
ical value within the SM, instead of testing it against the zero
nonlinearity predicted by the leading-order SM contributions
to the isotope shift (see Sec. IV A). In all approaches, we
need to consider the hypothetical NP contribution to King
nonlinearity.

In the presence of NP, the isotope shift reads

gAA′
i = KiμAA′ + HiδR2γi

AA′ + siAA′ + niAA′ , (25)

where the fourth summand on the rhs corresponds to the
hypothetical NP contribution to the g factor. The same general
expression holds for the (dimensionless) energy levels. The
minimal number of isotopes to consider in studying King plots
is 4. As such, it is interesting to retain the general formalism
developed in Ref. [5], even though it is not directly applicable
to data sets with more isotopes. We note that, in any case, little
high-precision data on the isotope shift of g factors is avail-
able, with the notable exception of Ref. [71], which motivates
the use of this method, adapted to the case with the smallest
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number of isotope-shift data points that is sufficient to as-
sess King linearity. We recall the definition GAA′

i ≡ gAA′
i /μAA′ .

We also introduce δAA′ ≡ δR2γ

AA′/μAA′ ,1 SiAA′ ≡ siAA′/μAA′ , and
NiAA′ ≡ niAA′/μAA′ . We now consider four isotopes A, A′

1, A′
2,

and A′
3 and define the vectors

Gi ≡ (
G

AA′
1

i , G
AA′

2
i , G

AA′
3

i

)
, δ ≡ (δAA′

1 , δAA′
2 , δAA′

3 ),

Si ≡ (
SiAA′

1
, SiAA′

2
, SiAA′

3

)
, Ni ≡ (

NiAA′
1
, NiAA′

2
, NiAA′

3

)
,

Att ≡ (1, 1, 1). (26)

Note, for future purposes, that for the Higgs portal, Ni =
αHPXih, with

h ≡
(

A − A′
1

μAA′
1

,
A − A′

2

μAA′
2

,
A − A′

3

μAA′
3

)
. (27)

In the rest of this work we thus give expressions for the Higgs
portal, to be explicit, but these expressions are straightfor-
wardly applied to the case of the unbroken B − L symmetry
when substituting the coupling constant 4πg2

B−L for αHP and,
as can be seen from Eq. (8), by substituting memp/n/4πM2

m.
King nonlinearity is measured [5] by the parameter

N ≡ 1
2 (G1 × G2) · Att, (28)

which can be calculated to be equal to

N = 1
2 (H1δ × S2 − H2δ × S1 + H1δ × N2 − H2δ × N1

+ S1 × S2 + S1 × N2 − S2 × N1 + N1 × N2) · Att.

(29)

Note that if niAA′ is expressed as the product of A − A′ with
a purely electronic factor, as is the case for the Higgs portal
and the gauged B − L symmetry, then N1 × N2 = 0. If we
neglect the subleading nuclear contributions to the isotope
shift (Si = 0) and consider that there are no NP contributions
(Ni = 0), then it is seen from Eq. (29) that King nonlinearity
will vanish. Hence, nonlinear King data might be interpreted
as a sign of NP, provided this nonlinearity is not expected
to arise from the subleading nuclear contributions. Experi-
mentally, the presence or absence of nonlinearity can only
be assessed at a certain level of accuracy since, due to ex-
perimental uncertainties, we could not expect King data to
verify N = 0 exactly, even in a gedanken experiment in which
Si = Ni = 0. We propose here to introduce a modified King
nonlinearity that accounts for (and hence, in a way, sets aside)
the deviation from the nonlinearity expected within the SM.
This nonlinearity is obtained by a combination of experi-
mental data and theoretical calculations of subleading nuclear
corrections and reads

N ′ ≡ 1
2 (G1 × G2) · Att

− 1
2 (H1δ × S2 − H2δ × S1 + S1 × S2) · Att. (30)

The first summand can be obtained experimentally, by collect-
ing isotope-shift data. The second summand can be calculated
theoretically with the methods summarized in Sec. IV B. The
new nonlinearity test is performed as follows. The modified
nonlinearity parameter (30) is first compared to its first-order

1We recall that, in this work, all electronic levels considered have
the same γ .

propagated error σN ′ . If |N ′| < σN ′ , the data are considered
planar. Then the NP parameter which is to be constrained is
considered to be bound by its own first-order propagated error,
which can be computed from Eq. (29). Note that the error
σN ′ features not only experimental (as in Refs. [5,7,42]) but
also theoretical contributions. Indeed, the subleading nuclear
contributions Si to the isotope shift have uncertainties. The
explicit expression of the error is

σN ′ =
√√√√ 2∑

i=1

3∑
j=1

(
∂N ′

∂Gi( j)

)2

(Gi( j) )2

+
√√√√ 2∑

i=1

3∑
j=1

(
∂N ′

∂Si( j)

)2

(Si( j) )2, (31)

where Gi( j) (Si( j)) is the j component of Gi (Si), which is an
experimental (a theoretical) quantity.

This modified King linearity test can detect nonlinearities
caused by NP contributions to the g factor, even when these
nonlinearities are much smaller than those caused by the sub-
leading nuclear corrections to the g factor. This can be seen
as follows. Let us write Ei the (signed) difference between
the measured isotope shifts Gi and the corresponding SM
predictions, obtained through Eq. (19). In the high-precision
regime of experiments, where Ei is expected to be smaller than
the subleading nuclear corrections Si, we can approximate
σN ′ by its second summand in Eq. (31), that is, by

σN ′ 
 1

2

⎡
⎣ 2∑

i=1

3∑
j=1

(
3∑

k=1

3∑
l=1

ε jkl (Hı̄δ(l )+Sı̄(l ) )

)2

(Si( j) )
2

⎤
⎦

1/2

,

(32)
where δ(i) is the i component of δ and ı̄ = 3 − i. This first-
order propagated error is to be compared to

N ′ = − 1

2

2∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

ε(i)ε jkl

(
Hı̄δ(k)Ei(l )

+ 1

2
Ei(k)Eı̄(l ) + Sı̄(k)Ei(l )

)
, (33)

where Ei( j) is the j component of Ei and ε(i) = (−1)1+i. If
there are no NP contributions, the deviations Ei between the
experimental results and the SM predictions can be expected
to become smaller with improving experimental precision. In
this case, |N ′| decreases too and we can expect to reliably
have |N ′| < σN ′ , which allows us to set bounds on the NP
parameters. If the theory of the nuclear corrections to the
g factor improves, then the uncertainties Si( j) will decrease,
causing a similar decrease in σN ′ . Nevertheless, if there are no
NP contributions to the g factor, Ei will also decrease with im-
proving theoretical precision, as the theory will better match
the experiments. This means that, within this program, there
is in principle no limit of applicability of the King linearity
test, contrasting with the test used in Refs. [5,7].

D. Projected bounds

To derive bounds, we recast the (standard) King nonlinear-
ity as [7]
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FIG. 4. Contributions to (a) the SM King nonlinearity and (b) the bound on the NP coupling constant αHP for ground-state 40–42–44–48Ca19+

in the vanishing boson mass limit. The large cyan circles are the contributions and the small blue circles are due to the uncertainties of the
subleading SM nuclear corrections. The graph is in logarithmic scale; digits indicate negative powers of 10.

N = −Att

2
·
[
G1 ×

(H2

H1
S1 − S2

)
− (1 ↔ 2)

]
+ αHP

2
(Att × h) ·

[(H2

H1
X1 − X2

)
G1 − (1 ↔ 2)

]
. (34)

In the following, quantities with index i = 1 will refer to the
H-like g factor and those with index i = 2 will refer to the
dimensionless H-like ground-state energy. Our King represen-
tation will be explicitly constructed to compare the isotope
shifts of these two quantities. This expression can be inverted
to obtain

αHP = 2
N + Att

2 · [
G1 × (H2

H1
S1 − S2

) − (1 ↔ 2)
]

(Att × h) · [(H2
H1

X1 − X2
)
G1 − (1 ↔ 2)

] . (35)

Now note that while studying the various subleading nuclear
corrections to the g factor and the energy levels, we have
mentioned that, for several of them, the equality g1s 

xE1s/mec2 
 0 holds to a good approximation. Hence, we
can write

Si = Ti + Ui, T1 = xT2, (36)

with Ti coming from the subleading nuclear corrections for
which g1s 
 xE1s/mec2 
 0 and Ui from the other cor-
rections. Fortunately, H2/H1X1 and X2, which appear in the
denominator on the rhs of Eq. (35), do not cancel to any
appreciable degree except in the large boson mass limit [as
can be checked by Eqs. (3), (6), (14), and (16)]. The bounds
on αHP are given by the first-order propagated error

σαHP =
√√√√∑

i, j

(
∂αHP

∂Gi( j)

)2

(Gi( j) )2

+
√√√√∑

i, j

(
∂αHP

∂Si( j)

)2

(Si( j) )2, (37)

where the derivatives can be obtained from Eq. (35). We
repeat that here G1 and G2 are to be understood as purely
experimental quantities and so too is N , which is given in
terms of these two vectors by Eq. (28). The Gi( j) are hence
experimental uncertainties. On the other hand, S1 and S2 are to
be calculated and the Si( j) are theoretical uncertainties. They
are the uncertainties of the subleading nuclear corrections.

It is important to remember that H1 = xH2. As can then be
seen by inspecting the rhs of Eq. (35), this means that, for all
occurrences of Si in Eqs. (35) and (37), the corresponding con-
tribution will be dominated by Ui, the contribution from the
subleading corrections that do not cancel appreciably through
the reduced g factor. In Fig. 4 we show the contributions
to the predicted SM King nonlinearity in the vanishing bo-
son mass limit from all seven subleading nuclear corrections
considered. We also show the contributions, from these same
corrections, to the bound on the NP coupling constant. It is
seen that the largest contributors to the theoretical uncertainty
budget are the higher-order nuclear recoil and nuclear-size
contributions and, to a lesser extent, the nuclear polariza-
tion correction. The latter is currently being investigated with
unprecedentedly accurate nuclear models [35,72] and it is an-
ticipated that the calculation uncertainties will be significantly
reduced in the near future. It is more difficult to sub-
stantially improve the calculation of the higher-order recoil
correction.

For that reason, we introduce the square-mass King repre-
sentation. Let us rewrite the isotope shift (25) as

gAA′
i = KiμAA′ + K (2)

i βAA′ + HiδR2γi

AA′ + siAA′ + niAA′ , (38)
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with βAA′ = 1/M2
A − 1/M2

A′ . Here we have written the
quadratic recoil contribution explicitly. We now introduce
the square-mass normalized quantities GAA′

iβ ≡ gAA′
i /βAA′ . We

also introduce δAA′
β ≡ δR2γ

AA′/βAA′ , SiβAA′ ≡ siβAA′/βAA′ , and

NiβAA′ ≡ niβAA′/βAA′ , as well as μAA′
β ≡ μAA′/βAA′ and hAA′

β ≡
(A − A′)/βAA′ . Now, with vectors constructed as in Eq. (26),
we can proceed to similar manipulations to obtain the square-
mass King nonlinearity

Nβ ≡ 1
2 (G1β × G2β ) · Att, (39)

Nβ = − Att

2
·
[
G1β ×

(H2

H1
S1β − S2β

)
− (1 ↔ 2)

]
+ αHP

2
(Att × hβ ) ·

[(H2

H1
X1 − X2

)
G1β − (1 ↔ 2)

]

− Att

2
·
[
G1β ×

(H2

H1
K1β − K2β

)
μβ − (1 ↔ 2)

]
. (40)

Of course, this expression is not equal to that given in Eq. (34), but if one compares the terms one by one, it is seen that the
first two summands on the rhs of Eq. (40) have an equivalent in Eq. (34), while the third one does not. That third term is the
contribution to Nβ from the leading-order mass shift. In the absence of NP and if one neglects the subleading nuclear corrections,
this third summand survives as a contribution to the square-mass King nonlinearity (39), which hence should not be expected to
vanish when NP is absent and the subleading nuclear corrections are neglected. We can then use Eq. (40) to solve for αHP and
set bounds on the NP coupling constant through

σαHP =
√√√√∑

i, j

(
∂αHP

∂Giβ( j)

)2

(Giβ( j) )2 +
√√√√∑

i, j

(
∂αHP

∂Siβ( j)

)2

(Siβ( j) )2 +
√√√√∑

i, j

(
∂αHP

∂Ki

)2

(Ki )2. (41)

The uncertainty on the NP coupling constant, due to the
leading nuclear recoil correction, is reduced by four orders
of magnitude compared to that generated by the higher-order
nuclear recoil correction. The contribution from the six other
subleading nuclear corrections remain essentially unchanged
from those shown in Fig. 4, so this new square-mass King
representation is a clear improvement.

V. DIRECT TESTS

Despite all the refinements introduced in Sec. IV, searching
for NP through King nonlinearity analysis turns out not to be
the most efficient approach for few-electron ions. The King
approach is needed for many-electron systems, in particular
because for these systems, the electron-interaction contribu-
tions to the nuclear recoil, the so-called specific mass shift,
cannot be computed accurately. The King approach, in which
the nuclear recoil is eliminated, is thus useful for such sys-
tems. With few-electron ions, on the other hand, calculations
can be carried out more comprehensively and more accurately,
which indicates the interest of a direct approach to the search
for NP.

In this approach we use the small discrepancy between
theory and experiment to derive bounds on hypothetical new
physics contributions. In some cases, theory and experiment
may agree within their respective error bars, while in other
cases the error bars may not overlap. However, which case
is irrelevant to our specific concern here, since the maxi-
mum discrepancy between theory and experiment allowed by
the error bars may be set as the maximum hypothetical NP
contribution in either case (see Fig. 5). This approach was
explored further in Ref. [7] in the case of the g factor of
few-electron ions, but implemented on a single g factor, it
necessitates challenging improvements in the calculation of

QED corrections and also interelectronic-interaction contri-
butions to spectroscopic quantities. Many such corrections are
under active consideration [25–28,73].

A better approach consists of the same direct comparison
between experiment and theory, but implemented on a sin-
gle isotope shift with further suppression of the subleading
nuclear effects [23]. Thus, radiative contributions from QED
largely drop out, reducing the amount of necessary theory
input. As is clear from the foregoing discussion, the bound
that can be set on NP is limited by the uncertainty δsAA′ on the
subleading nuclear corrections. In the Higgs portal scenario,
the NP contribution to the isotope shift of the g factor or
energy level is nAA′ = αHP(A − A′)X . The difference in the
number of neutrons will typically be of the order of unity, and
as can be seen from Eqs. (3) and (6), the electronic coefficient
is roughly Zα in the light boson limit, so that for Z > 10, a
given uncertainty on the subleading nuclear corrections will

FIG. 5. Schematic representation of the direct method of setting
bounds on new physics. The experimental gexpt and theoretical gtheor

values of the g factor are given with their uncertainties. The largest
discrepancy allowed by the error bars gives the largest possible con-
tribution g(max)

HP to the g factor from one of the new physics candidates
(Higgs portal). This directly allows the setting of bounds on the new
physics parameters.
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yield a 10 times larger contribution, roughly speaking, to the
bound on αHP. This is to be contrasted with the corresponding
contribution in the King approach, which, as can be seen
in Figs. 3 and 4, is several orders of magnitude larger than
the corresponding uncertainties on the subleading nuclear
corrections.

VI. CONCLUSION

In this work the search for new physics with few-electron
ions through King linearity analysis has been pushed to the
extent allowed by currently available theoretical results on
subleading nuclear corrections. We have modified the King
formalism to explicitly account for subleading standard model
nuclear corrections, which contribute to isotope shifts and to
King nonlinearity. This yielded a King linearity violation test

which can be carried out in the high-precision experimental
regime. Indeed, this test enables detection of new physics con-
tributions to spectroscopic quantities which would be smaller
than the subleading nuclear corrections. We also introduced
the square-mass King representation to successfully suppress
uncertainties from the higher-order recoil. Even with all these
refinements, the bounds which can be set with this approach
remain less competitive than bounds obtained with the spec-
troscopy of many-electron ions [5,8,9]. On the other hand, a
simpler approach with a single isotope pair and no King anal-
ysis can yield more stringent bounds with the same amount of
theory input [23]. Finally, our results stress the importance of
a detailed analysis of the subleading corrections to the King’s
plot and would hopefully stimulate the same investigation for
the other systems [4–6,8,9] being used for the search of new
physics.
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