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While measurement-device-independent (MDI) quantum key distribution (QKD) allows two trusted parties
to establish a shared secret key from a distance without needing to trust a central detection node, their quantum
sources must be well characterized, with side channels at the source posing the greatest loophole to the protocol’s
security. In this paper, we identify a time-dependent side channel in a common polarization-based QKD source
that employs a Faraday mirror for phase stabilization. We apply a recently developed numerical proof technique
[Phys. Rev. A 99, 062332 (2019)] to quantify the sensitivity of the secret key rate to the quantum optical model
for the side channel, and to develop strategies to mitigate the information leakage. In particular, we find that the
MDI three-state and BB84 protocols, while yielding the same key rate under ideal conditions, have diverging
results in the presence of a side channel, with BB84 proving more advantageous. While we consider only a
representative case example, we expect the strategies developed and key rate analysis method to be broadly
applicable to other leaky sources.
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I. INTRODUCTION

Quantum key distribution (QKD) allows two separated
parties to have information-theoretic secure communication
by leveraging the principles of quantum mechanics [1]. In
practice, QKD systems suffer from imperfections and open
up side-channel attacks. In particular, detectors are the weak-
est link in QKD. Luckily, measurement-device-independent
(MDI) QKD removes all side channels in detectors [2].
Nonetheless, imperfections of the quantum state source con-
tinue to threaten the security of MDI protocols. To partly
address this challenge, the loss tolerant protocol [3] provides
a proof technique for dealing with state preparation flaws,
with extensions of the proof available to account for the decoy
state method [4], and mixed states [5]. The method from [6]
can also treat flawed sources, under the condition the encoded
signals remain confined to a qubit space. Unfortunately, these
methods to deal with state preparation flaws only account
for systematic errors in the two-dimensional (qubit) degree
of freedom that Alice and Bob intentionally encode, mean-
ing these techniques are not sufficient to account for source
side channels. In an effort to generalize to sources that do
not output idealized qubits, recent security proof techniques
have been developed to deal with sources leaking decoy state
parameters [7,8], and encoding information, with analytic ap-
proaches given in [9,10] and numerical techniques in [11,12].
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With such security proof techniques now available, it is
time they be applied to develop practical strategies for MDI
QKD protocols employing realistic sources, bringing closer
together the gap between idealized security proofs and exper-
imental realities. In this paper, we study a common optical
source for polarization-based MDI QKD which relies on a
Faraday mirror for polarization stabilization [4,13–18]. We
determine that this experimental setup introduces a passive
side channel (i.e., not introduced by Eve) due to leakage
light between optical pulses being unintentionally modulated
in a time-dependent manner, a loophole that has not been
identified in the literature to the best of our knowledge. While
some work has been done on computing secure key rates in
the presence of passive side channels—the authors of [19]
establish a lower bound on the key rate in the presence of
passive side channels using signal indistinguishability—most
previous works focus on active side channels (side channels
introduced by Eve), such as Trojan horse attacks [20–22],
despite passive side channels being harder to avoid. Note
that the passive-active dichotomy here refers to whether Eve
introduces the side channel, as opposed to the passive-active
distinction made for optical elements [23]. For an exhaustive
review of hacking strategies for various QKD systems, includ-
ing via side channels, see Table I of [24].

In this particular passive side-channel case, we are faced
with the seemingly daunting task of incorporating optical
states distributed over a continuum of temporal modes into
a security proof. However, we find that the versatile proof
technique from [12] can be employed even in this scenario,
a modest extension of its already wide applicability. As a
numerical approach, the technique from [12] is particularly

2469-9926/2022/106(6)/062618(17) 062618-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4333-5006
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.062618&domain=pdf&date_stamp=2022-12-20
https://doi.org/10.1103/PhysRevA.99.062332
https://doi.org/10.1103/PhysRevA.106.062618


BOURASSA, GNANAPANDITHAN, QIAN, AND LO PHYSICAL REVIEW A 106, 062618 (2022)

well suited to our task, as it allows one to integrate detailed
information about the initial states sent by Alice and Bob
(including the time-dependent side channels) and all the ob-
served detection statistics in the protocol as constraints in the
security proof.

Using the Faraday mirror source as a representative case
example of sources with time-varying side channels, we cal-
culate the secret key rate under various assumptions and
scenarios to better determine strategies for mitigating the
information leaked via the side channel. In particular, we
investigate how the model for the state of the side channel can
have a significant impact on the amount of key generated, rein-
forcing the importance of carefully characterizing the optical
output of the source. We present a few practical strategies for
increasing the key rate, such as using all available detection
statistics, sending more states than what would be required
in the ideal protocol, and optimizing the choice of which test
state to send from the Bloch sphere. As part of this analysis,
we determine that while the MDI three-state protocol [3,25]
yields the same key rates as the MDI BB84 protocol [2,26] in
the ideal case of no side channel, in the presence of leakage
light these two protocols diverge, with BB84 being the more
advantageous choice.

We briefly summarize why we will employ the numer-
ical approach of [12] based on semi-definite programming
to address the side-channel problem. Note that some other
approaches such as the loss-tolerant protocol approach [3] and
uncharacterized qubit approach [6] cannot be applied to the
side-channel problem because those approaches assume the
optical source sends out a qubit and such a qubit assumption
is violated by side channels.

On the other hand, approaches such as [11] and the ref-
erence state approach [9,10] do work for side channels and
nonqubit sources. Nonetheless, we find that technique from
[11] relaxes the task of bounding the phase error to a linear
program, and, therefore, it gives a less strict result than using
the approach in [12]. As for the reference state technique
[9,10], we find that it gives a worse key rate for the MDI
version of BB84 protocol in the presence of side channels
than the approach in [12]. For these reasons, we find that
the approach in [12] is highly suitable for addressing the
side-channel problem.

The structure of this paper is as follows: in Sec. II we
review the security proof technique from [12] and compare it
to competing proof techniques [3,6,9–11] to justify our choice
of approach. Then in Sec. III we study the case example of
a polarization-based MDI QKD setup that employs a Faraday
mirror in the transmitter for polarization stabilization; here we
identify a side channel arising from the time-varying polariza-
tion modulation of the leakage light between optical pulses.
This polarization modulation is correlated with the polariza-
tion encoding of Alice and Bob’s signals. We determine that
the proof technique from [12] can be applied to treat practical
sources with time-varying optical signals.

Finally, in Sec. IV we provide key rate results for various
protocol scenarios. We determine the impact of the source
model, finding that accounting for the time-dependent na-
ture of the side channel provides a benefit to the key rate
over more pessimistic, rudimentary models, thus demonstrat-
ing the importance of careful side-channel characterization.

Additionally, we find a divergence between the three-state
and BB84 protocols in the presence of a side channel, and
determine that the extra state sent in BB84, while redundant
under ideal conditions, is able to better mitigate the source
information leakage.

II. BACKGROUND

To understand the dependence of the secret key rate on
the side channel, we first provide some background on the
components that are required for the key rate calculation.
In Sec. II A we review the proof technique from [12], and
in Sec. II B, we compare our choice of proof technique to
other potential options we could have chosen. As our key rate
calculations rely on the decoy state protocol, we provide a
review of its use in MDI QKD in Appendix A.

A. Security proof technique based on semidefinite programming

Semidefinite programs (SDPs) are a class of convex opti-
mization problems that can be written in the form

maximize f0(G) = Tr(A0G)

s.t. fi(G) = Tr(AiG) � bi, i = 1, . . . , m

G � 0,

where G is a positive semidefinite (PSD) matrix (i.e., has
nonnegative eigenvalues) whose elements form the optimiza-
tion variables of the problem. f0 : Rn → R is the objective
function we seek to maximize. fi : Rn → R are the constraint
functions, and bi are the constraint bounds. Importantly, the
objective and the constraint functions are all linear functions
of the elements of G, with the coefficients of the linear func-
tions contained in the matrices Ai. SDPs are increasingly
being used for QKD security proofs [12,22,27–33], due in part
to the availability of fast and mature numerical implementa-
tions of solvers [34,35].

In [12] the authors present a versatile numerical proof tech-
nique based on semidefinite programs (SDPs) for MDI QKD
protocols. The objective function of the SDP is the phase
error of the key rate formula—either Shor-Preskill [36] or
the Gottesman, Lo, Lutkenhaus, and Preskill (GLLP) version
for decoy states [37] [see Eq. (A6)]—meaning an optimal
solution provides a secure lower bound. The constraints are
provided by the detection statistics of the protocol, as well
as initial state information, which is especially useful since it
allows more experimental information to be used to quantify
security. Here we review the proof technique from [12] so that
later we can apply it to the case of an MDI QKD protocol with
a source side channel.

To begin, we distinguish between the full optical states that
Alice and Bob send to Charlie from the components of those
states from which we will derive security. We will refer to
the components of the optical states used to derive security
as the signal states. As an example, in an ideal decoy state
protocol, the full optical states are phase-randomized weak
coherent pulses (WCPs) with different intensities, while the
signal states used to derive security are the single-photon com-
ponents. We review the decoy state protocol in Appendix A.
Alternatively, in an ideal phase-encoding protocol that does

062618-2



MEASUREMENT-DEVICE-INDEPENDENT QUANTUM KEY … PHYSICAL REVIEW A 106, 062618 (2022)

not use decoy states, the optical state and the signal state are
one and the same.

Let the signal states that Alice prepares be denoted by
|ψ i

x〉A, where (i, x) indicate her choice of basis and bit value.
Analogously, we can write Bob’s states as |ϕ j

y 〉B, with his
basis and bit choice given by ( j, y). Like in [12], we will
assume that the signal states are pure states; however, a path
to treating mixed states is available via the technique from
[5]. Note that, even though phase-randomized WCPs in an
ideal decoy state protocol are mixed states, the signal states
(single-photon components) are pure states. At a high level, in
an MDI QKD protocol, Alice and Bob send their signal states
to Eve, who in turn makes an announcement z conditioned on
a measurement she may or may not execute faithfully. For the
sake of simplicity, we assume z = P, F , corresponding to a
binary pass or fail outcome, but this can be generalized to
account for more announcements.

Since quantum mechanics obeys unitary evolution, we can
write the evolution of the joint state as∣∣ψ i

xϕ
j
y

〉
AB

→
∑

z=P,F

∣∣ei, j
x,y,z

〉
E

|z〉Z , (1)

where |ei, j
x,y,z〉E are subnormalized vectors that can be used

to completely characterize Eve’s state. Were we to know the
states |ei, j

x,y,z〉E , we would have full knowledge of Eve’s in-
formation about the key, and in turn could calculate the key
rate exactly. Alas, the exact state of Eve’s system is generally
unknown; however, we can impose constraints on the state
vectors |ei, j

x,y,z〉E . As we will review now, one can frame the
secret key rate calculation as a semidefinite program, where
the PSD matrix used as an optimization variable is the Gram
matrix of Eve’s vectors which we denote GE . We recall that
the elements of a Gram matrix for a set of vectors are all
the pairwise inner products of the vectors, meaning GE has
elements 〈ei′, j′

x′,y′,z′ |ei, j
x,y,z〉E

. Gram matrices are always PSD.
The first type of constraint comes from the unitary evolu-

tion of states in quantum mechanics; namely, the inner product
structure of the initial states must be preserved in the final
states [12]. If Alice and Bob each have nA and nB basis choice
settings, each basis choice associated with two bit choices,
then the inner product constraint yields (nA×nB×2×2)2 con-
straints of the form〈

ψ i′
x′ϕ

j′
y′
∣∣ψ i

xϕ
j
y

〉
AB

=
∑

z

〈
ei′, j′

x′,y′,z

∣∣ei, j
x,y,z

〉
E

, (2)

where the fact that the announcements are classical means
〈z|z′〉Z = δz,z′ . Note that these constraints are linear in the
elements of GE

The next type of constraint on GE comes from the observed
detection statistics [12]. Let the probability of Eve announcing
a successful detection event, conditioned on Alice and Bob
having chosen basis and bit choices (i, j, x, y) be denoted by
pi, j,x,y
pass . In an ideal decoy state protocol, pi, j,x,y

pass ≡ pi, j,x,y
pass,1,1,

since the single-photon components are the signal states. This
can be related to the elements of GE as follows:

pi, j,x,y
pass = 〈

ei, j
x,y,P

∣∣ei, j
x,y,P

〉
E

. (3)

We recall the states are subnormalized so we do not expect
the above equation to be equal to 1. If the signal states are the

same as the full optical states, then pi, j,x,y
pass would be directly

observable in practice. Alternatively, if one is performing
a decoy state MDI QKD protocol, then, as reviewed in
Appendix A, one first uses the statistics of the full optical
states in a linear program to establish upper and lower bounds
on pi, j,x,y

pass :

pi, j,x,y
pass,L � pi, j,x,y

pass � pi, j,x,y
pass,U . (4)

Thus, depending on the protocol, one either obtains 4nAnB

equality constraints, or 8nAnB inequality constraints on GE .
Like the previous set of constraints, these are also linear in
elements of GE .

So far, we have identified the Gram for Eve’s system GE

as a PSD matrix, as well as various linear constraints on its
elements. We now review how to write the phase error as the
objective function of an SDP. To start, we will assume that the
basis choice (i, j) = (0, 0) corresponds to the key generation
basis. Moving to a virtual picture, we can think of Alice and
Bob’s signal states being entangled with virtual qubits Ā and
B̄ that they keep in their laboratory:

|�virt〉ĀB̄AB =
1∑

x,y=0

|x〉Ā |y〉B̄

∣∣ψ0
x ϕ0

y

〉
AB

, (5)

where measurement of ĀB̄ in the computational basis yields
the bit values of the secret key. Let the virtual state evolve to
|�virt〉ĀB̄AB → |�〉ĀB̄EZ with

|�〉ĀB̄EZ =
1∑

x,y=0

|x, y〉ĀB̄

∑
z=P,F

∣∣e0,0
x,y,z

〉
E

|z〉Z , (6)

since we used Eq. (1).
Through the process of sending their key generation sig-

nal states to Eve (who conducts a measurement), as well as
postselecting on z = P, Alice and Bob end up with a mixture
of Bell states in the ĀB̄ virtual qubits. The virtual picture
therefore allows us to formally define the phase error rate that
characterizes security in the key rate in Eq. (A6). Assuming,
without loss of generality, that the target Bell state of the pro-
tocol is |�+〉ĀB̄ = 1√

2
(|00〉ĀB̄ + |11〉ĀB̄), then the phase error

rate is defined to be the probability that the ĀB̄ virtual qubits
held by Alice and Bob end up in Bell states with the incorrect
phase (see derivation in Appendix B):

eph = 〈�| (M−
ĀB̄

⊗ |P〉 〈P|Z ) |�〉ĀB̄EZ

〈�| (|P〉 〈P|Z ) |�〉ĀB̄EZ

= 1

2
− Re

( 〈
e0,0

0,0,P

∣∣e0,0
1,1,P

〉
E

+ 〈
e0,0

0,1,P

∣∣e0,0
1,0,P

〉
E

)
∑

x,y p0,0,x,y
pass

, (7)

with

M−
ĀB̄

= (|�−〉 〈�−| + |�−〉 〈�−|)ĀB̄ (8)

representing the measurement operator associated with Bell
states of the wrong phase to the target |�+〉ĀB̄. Note that
eph is a linear function of the elements of GE as required
for an SDP. With the additional constraint that 0 � eph � 1/2,
such that we are within the region where the binary entropy
function increases monotonically, then we can maximize eph

via an SDP and determine a secure lower bound on the key
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rate using the Shor-Preskill formula [36] or the key rate from
(A6). Note that in a decoy state protocol without leakage
light, eph = eph,1,1, since the signal states correspond to the
single-photon components.

In summary, [12] provides a method for obtaining a secure
lower bound on the key rate using an SDP of the form

maximize eph

s.t.
〈
ψ i′

x′ϕ
j′
y′
∣∣ψ i

xϕ
j
y
〉
AB

= ∑
z

〈
ei′, j′

x′,y′,z

∣∣ei, j
x,y,z

〉
E

pi, j,x,y
pass,L �

〈
ei, j

x,y,P

∣∣ei, j
x,y,P

〉
E

� pi, j,x,y
pass,U

0 � eph � 1/2

GE � 0.

With this technique in hand, we apply it to the case example
of an MDI QKD source with a side channel, which we will
describe in the next section. First, however, we justify our
choice of proof technique by comparing it with competing
methods.

B. Comparison to competing proof techniques

Given our review of the numerical approach from [12], it
is worth comparing with competing proof techniques for MDI
QKD to see why the approach we have chosen is well-suited
to the problem we wish to study. The loss-tolerant protocol [3]
and the proof technique from [6] are both leading techniques
for quantifying security in the presence of state-preparation
flaws, the former requiring knowledge of the initial states,
while the latter can simply use the detection statistics. How-
ever, in both techniques, one needs to assume that the optical
source is outputting a qubit state, meaning they are insuffi-
cient to treat scenarios involving source side channels, since
the extra state sent with the encoded qubit, e.g., an optical
coherent state, can easily break the assumption that the source
only outputs states from a two-dimensional Hilbert space.

The numerical proof technique developed in [27,28] also
uses SDPs to compute the secret key rate; however, they work
directly with the Devetak-Winter key rate formula [38], as
opposed to the Shor-Preskill key rate [36]. Working with the
Devetak-Winter key rate requires solving a series of SDPs,
which is more cumbersome and numerically slower than a
direct calculation of the phase error.

Two generalizations of the loss tolerant protocol have been
developed to deal with nonqubit sources, in part for the pur-
pose of studying source side channels: the technique from [11]
and the reference state technique [9,10]. These techniques are
directly comparable to [12] as they all use the Shor-Preskill
key rate, with the core task of the proof being to find an
upper bound on the phase error rate. While shown to per-
form more poorly than the reference state technique [9], the
technique from [11] may be the most directly comparable to
[12]. Both methods allow one to consider an arbitrary number
of initial states that are not confined to a qubit space, and
involve using all observed detection statistics. As we show
in Appendix C, however, the approach from [11] relaxes the
task of bounding the phase error to a linear program. The
constraints of the linear program are provided by the detection
probabilities and the initial states; however, fewer constraints

are provided by the initial states than the approach from [12],
since the overlaps between states with different (i, j, x, y) are
not considered. Moreover, linear programs are a class of con-
vex optimization problems contained within SDPs, meaning
the constraints on the optimization variables used to compute
the phase error are less strict than solving the full SDP as done
in [12]. Thus, we expect the key rates provided by the SDP
numerical approach to be greater or equal to those calculated
using the technique from [11] in general. In Appendix C we
provide the illustrative example of the three-state protocol
with a side channel to explicitly demonstrate the key rates
provided by the SDP method outperform those from [11].

Finally, while the reference state technique is a purely
analytic approach, a disadvantage is that it can currently only
treat the case when Alice and Bob each sends three states.
The crux of the technique is to consider hypothetical detection
statistics and phase error stemming from a fictitious set of
reference states, and then bound the actual phase error of the
protocol using the real detection statistics and the deviation
between the reference and real states [9,10]. In particular, in
[9] the strategy for treating protocols involving four states,
such as BB84, is to consider random alternation between two
three-state protocols, where each of the X-basis BB84 states
act as the third state. While the three-state protocol and BB84
yield the same key rates when the initial states are qubits
[3], one of the observations that this work will provide is
that information from the seemingly redundant fourth state of
BB84 can provide extra constraints to boost the key rate in
the presence of a source side channel (i.e., when the qubit as-
sumption is broken). Thus, a downside of using the reference
state technique for protocols involving more than three states
is that the key rate calculation will only ever be constrained
by the statistics and initial states of three out of the four states,
which leaves valuable information on the table, at the cost of
higher key rate.

III. SOURCE SIDE CHANNELS: A CASE EXAMPLE

Having reviewed the necessary components for the security
proof, we now study a case example of an MDI QKD source
with a side channel. In Sec. III A we identify a time-dependent
passive source side channel which occurs when using a Fara-
day mirror for stable electro-optic bit modulation [4,13–18].
We provide quantum optical modeling of the side channel in
Sec. III B, and in Sec. III C, we link the model to the security
proof technique described in Sec. II to assess its impact on
security while taking its time-dependent nature into account.

A. Origin of the side channel

Several polarization and phase encoding implementations
of MDI, prepare-and-measure, and plug-and-play QKD make
use of an electro-optic phase modulator and Faraday mirror
for optical bit modulation [14,39]. The Faraday mirror is
added, as shown in Fig. 1, to remove the temperature depen-
dence of the phase modulator [4,13–17]. Optical pulses first
travel forward through the PM, copropagating with a voltage
pulse. During this first trip, they experience both voltage and
unintentional temperature induced phase modulation. After
reflection from the Faraday mirror, the pulses travel back
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FIG. 1. Experimental setup for polarization encoding MDI-QKD
transmitter. An intensity modulator is used to create pulsed light
(including decoy states) from a continuous wave light source. Then
the pulses go through a phase randomization unit, followed by a
polarization modulation (encoding) unit. PC, polarization controller;
IM, intensity modulator; AMP, voltage amplifier; AWG, arbitrary
waveform generator; PM, phase modulator; CIRC, optical circulator;
FM, Faraday mirror; Attn, optical attenuator.

through the PM, such that they do not collide with any coun-
terpropagating voltage pulses. Hence, during this second trip,
they experience only temperature-induced phase modulation.
Although the usage of a Faraday mirror drastically reduces
state preparation flaws, we found that it creates a source side
channel.

This side channel occurs due to the presence of weak
light leakage between the optical pulses into which bits are
encoded. These optical pulses are carved out from continuous
wave light using an electro-optic intensity modulator (IM).
Due to the finite extinction ratio of pulses that can be created
with an IM, the presence of weak light leakage is inevitable.
Of course, the phase of this leakage light is not intentionally
modulated. In other words, no voltage is applied to the phase
modulator as this light travels through it the first time. How-
ever, after reflection from the Faraday mirror, some of this
leakage light would inevitably collide with a counterpropagat-
ing voltage pulse within the phase modulator. Therefore, this
leakage light would experience unintentional voltage-induced
phase modulation, forming a source side channel whose im-
pact on security must be quantified.

We find the modulation of the leakage light to be time-
dependent, as it travels in the opposite direction of the voltage
pulse. It is also dependent on the voltage pulse shape used for
phase modulation and the phase modulator electrode length.
For our particular setup, the time dependence is shown in
Fig. 2. Refer to Appendix D for further details on how Fig. 2
was derived.

Several simplifying assumptions regarding the optical and
leakage signals are made when performing the security anal-
ysis.

(1) In our particular setup (see Fig. 1), polarization en-
coding occurs after setting the decoy state intensity and
performing phase randomization. Hence, we assume that the
decoy state intensity and phase randomization of optical
pulses (encoded signals) are independent of their polarization
encoding.

(2) We assume that the voltage pulses delivered to the
polarization modulation PM are square pulses, such that the
polarization of encoded pulses are time-independent.

FIG. 2. Time-dependent fractional phase change applied to the
leakage light. Fraction is with respect to the phase change applied to
the corresponding encoded light.

(3) In our experimental setup, there is a minimal corre-
lation between the decoy state intensity and leakage light
intensity. This correlation stems from the tails of the pulse
shaping voltage pulses, which are small compared to the
full duration of leakage light between pulses. Therefore, we
assume that leakage signals carry no information about the
decoy state intensity setting of encoded signals.

(4) We assume that the voltage pulses strictly overlap with
the optical pulses within the phase randomizing PM. Hence,
the leakage signals carry no information about the phase ran-
domization of encoded signals.

(5) We assume that the leakage intensity is uniform in
time, but the method could also easily treat time-varying in-
tensity.

Note that these assumptions could be broken and could be
incorporated into the security analysis using techniques from
[8]. However, in our particular experimental setup, they are
not the leading-order source of information leakage, which
we take to be the unintentional polarization modulation of the
leakage light after reflection in the Faraday mirror. We can
now proceed to model the quantum state of the source’s output
light.

B. Quantum optical modeling

To proceed with the security proof technique from
Sec. II A, we must first model the states transmitted by the
source so that we can compute the inner products of the signal
states. The full optical state can be written as a separable state
of Alice’s and Bob’s transmitted states: ρk,i,x

A ⊗ σ
l, j,y
B . The

parameters (k, l ) refer to their decoy state intensity settings,
(i, j) refer to their basis choice, and (x, y) refer to their bit
choices. The basis and bit choices impact the polarization set
with the polarization phase modulator and are independent
from the choice of intensity setting.

Alice’s state can be further broken down into the side-
channel state which represents the leakage light, and the
encoding state which represents the optical pulses into which
the basis and bit information are intentionally encoded:

ρk,i,x
A = ρk,i,x

enc ⊗ ρ i,x
leak. (9)

We assume that the intensity modulation and phase ran-
domization are timed with the optical pulses, and that in
between pulses when the leakage light is passing through

062618-5



BOURASSA, GNANAPANDITHAN, QIAN, AND LO PHYSICAL REVIEW A 106, 062618 (2022)

these modules, no phase randomization is applied, and the
intensity modulation attenuates the light as much as possible
to constant minimum but nonzero intensity. This has sev-
eral consequences: first, this means that only ρk,i,x

enc carries
information about the intensity setting, and that ρ i,x

leak carries
information about neither the random phase nor the intensity.
This means we can treat ρk,i,x

enc as a perfectly phase-randomized
WCP just as in an ideal MDI decoy state protocol without
leakage light. Second, our assumptions mean that we can treat
ρ i,x

leak as a pure state:

ρ i,x
leak = ∣∣χ i

x

〉 〈
χ i

x

∣∣
leak . (10)

We now move to model the polarization module of the
source and the time-dependent nature of the side-channel
state. When ρk,i,x

enc passes through the phase modulator, the
controlling voltage pulse is timed with the optical signal such
that the resulting polarization, determined by settings (i, x),
is time-independent across the length of the optical pulse. By
contrast, because ρ i,x

leak is traveling in the opposite direction,
it acquires a time-dependent polarization. Let the creation
operator for a photon at time t with polarization angles θ i

x(t )
and φi

x(t ) be given by

a†
t,i,x = cos

[
θ i

x(t )
]
a†

t,H + sin
[
θ i

x(t )
]
eiφi

x (t )a†
t,V , (11)

where H and V denote the horizontal and vertical po-
larization modes, with the raising and lowering operators
satisfying [at,m, a†

t ′,m′ ] = δ(t − t ′)δm,m′ , m = H,V . As non-
phase-randomized laser light, the leakage light at a given
instant in time t can be treated as a coherent state with am-
plitude αi

x(t ), meaning over multiple times, the state can be
written in general as

∣∣αi
x

〉 = exp

{∫
dt

[
αi

x(t )a†
t,i,x − αi

x
∗
(t )at,i,x

]} |vac〉 . (12)

The above equation can be understood as a tensor product
of kets defining the state of each temporal mode associated
with a†

t,i,x. The state defined by each ket is a coherent state,
and by varying the amplitude αi

x(t ), the resulting state is a
coherent state with varying intensity and polarization defined
over a continuum of temporal modes, i.e., a time-dependent
state. In the source we are studying, we assume the leakage
light has an effectively constant intensity |α0|2 and polar angle
θ , while the azimuthal angle φ changes with time based on
the interaction with the phase modulator, as shown in Fig. 2;
however, the technique we will apply could easily be used
to study time-dependent intensity and polar angles as this
would just modify the integral over time used to calculate the
inner product between two side-channel states. The state of
the leakage light associated with a given pulse is spread over
multiple temporal modes, and is given by

∣∣χ i
x

〉
leak = exp

[∫ �/2

−�/2
dt α0a†

t,i,x − α∗
0at,i,x

]
|vac〉 , (13)

where a†
t,i,x here denotes the creation operator for a po-

larized photon with time-independent polar angle θ i
x and

time-dependent azimuthal angle φi
x(t ) as in Fig. 2, where

the angles depend on Alice’s basis and bit choices (i, x). �

is the duration of the leakage light that contains encoding
information, which from Fig. 2 is 500 ps.

In summary, we have that the output state of Alice’s
source can be treated as a tensor product of a perfectly
phase-randomized WCP in the encoded mode with a time-
varying pure coherent state in the side-channel mode. The
time-varying polarization of the side-channel state depends on
the basis and bit values chosen, but not the intensity setting
or random phase used for the decoy state method. We can
model Bob’s source in the same way, denoting his encoded
and leakage states by σ

l, j,y
enc and |ζ j

y 〉leak, respectively. In the
next section, we use these assumptions about the source, in
connection with the decoy state method and proof technique
reviewed in Sec. II, to build up the security proof for this MDI
QKD source.

C. Applying the proof technique

Given the model of the optical source, we can now connect
it with the decoy state method reviewed in Appendix A and
security proof technique from Sec. II A. To start, since the
intentionally encoded states ρk,i,x

enc ⊗ σ
l, j,y
enc can still be treated

as phase-randomized WCPs, and since the side-channel states
|χ i

x〉leak ⊗ |ζ j
y 〉leak carry no information about the decoy state

intensity or random phase, we are able to use the decoy state
method with only modifications to how we interpret the de-
tection probabilities obtained by solving the linear programs.

The photon number distribution of the states ρk,i,x
enc ⊗ σ

l, j,y
enc

follows the form from Eq. (A1); however, when considering
the linear equations provided by the detection probabilities
in Eq. (A2), pi, j,x,y

pass,m,n now refers to the probability a round
passes given that Alice sent the m-photon component of the
state ρk,i,x

enc , that Bob sent the n-photon component of the
state σ

l, j,y
enc , and that they together sent the leakage states

|χ i
x〉leak ⊗ |ζ j

y 〉leak. Note that the state of the leakage light does
not depend on the number of photons Alice and Bob sent,
just on the polarization encoding choice, so we can still use
m, n to label the variable, even though it does not strictly refer
to Fock states anymore. Moreover, since the leakage states
are independent of the intensity choice settings, pi, j,x,y

pass,m,n re-
mains independent of (k, l ). Solving the linear program in
Appendix A, Alice and Bob retrieve, for each basis and bit
setting (i, j, x, y), bounds on the probabilities pi, j,x,y

pass,1,1 that
Eve will announce a successful detection event given that they
each sent a single photon in the encoded mode along with the
associated side-channel state.

Interpreting pi, j,x,y
pass,1,1 as coming from both the single-

photon components of the encoded mode and from the
leakage light, means that the definition of the signal states
in this protocol no longer refers just to the single-photon
components of the encoded mode, as is the case for an ideal
decoy state protocol. Connecting to Eq. (1), Alice and Bob’s
signal states are given by∣∣ψ i

xϕ
j
x

〉
AB = ∣∣ψ i

xϕ
j
y

〉
enc

⊗ ∣∣χ i
xζ

j
y

〉
leak

, (14)

where |ψ i
xϕ

j
x 〉enc refers to the single-photon components of

the phase-randomized WCPs ρk,i,x
enc ⊗ σ

l, j,y
enc . With these as the

signal states, the detection probability constraints from Eq. (3)
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employ the probabilities pi, j,x,y
pass,1,1 which come from the signal

states, i.e., the leakage light and the single-photon compo-
nent of the encoded mode. Additionally, the inner product
constraints from Eq. (2) now include the inner products of
the states of the leakage light; this reaffirms the versatility of
the proof technique we are employing, since the constraints
coming from the continuous-variable, time-dependent leak-
age light states can be coarse-grained down to their inner
products, which form a finite-dimensional Gram matrix. The
optimization variables (the elements of Eve’s Gram GE ) and
the objective function (the phase error rate) do not change;
however, since the constraints will be affected by the presence
of leakage light, the resulting key rate will certainly change.

With a model for the source, and how it connects to the
decoy state method and the proof technique, we can now
move to calculate the secret key rate for various scenarios and
protocols.

IV. KEY RATE RESULTS

Having reviewed the main components required for the
security proof technique in Sec. II, and having studied a
case example of an MDI QKD source with a side channel in
Sec. III, we now calculate key rates under different conditions.
In Sec. IV A we provide the details of how our simulations
were performed. Then in Sec. IV B we see how the key
rate can change depending on the model chosen for the side
channel, including the time-dependent state we derived in
the previous section, highlighting the need for careful side-
channel characterization. In Sec. IV C we explore a strategy
for extracting higher key rates by sending states that would be
redundant under ideal conditions but which help in the pres-
ence of a side channel, concluding that the three-state protocol
and BB84, which yield equivalent key rates in the ideal case of
no leakage light, have different key rates when a side channel
is present. In Appendix E we examine two more strategies
for boosting the key rate by using all mismatch statistics and
by modifying the polarization angle of the states sent. These
simulations should be used to better inform the choice of
protocol when working with realistic sources like the one we
are studying. While having considered only a specific source
with a nontrivial side channel, we expect the conclusions
drawn to be broadly applicable to any leaky source; namely,
we emphasize the importance of side-channel characterization
and determine which protocol parameters (e.g. number of
states sent) can lead to key rate improvement.

A. Simulation details

Recall we have two types of constraints to calculate the key
rate: the inner product of the initial states and the detection
probabilities. Before detailing how we simulate these, we first
comment on how different aspects of the source model affect
these constraints.

To start, we observe that the single-photon component of
the encoded mode is the only quantity that affects both the
inner product and detection probability constraints. However,
whether that single-photon state is directly sent from a single-
photon source or is a component of a phase-randomized WCP
is irrelevant to the inner product constraint; the type of source
is relevant only to the detection statistics constraint, since

single photons undergoing a lossy channel will provide a
different result at a threshold detector than phase-randomized
WCPs.

Next, we assume the usage of gated detectors that would
be timed to receive the encoded optical pulses. Hence, in our
simulations of the detection events, we assume that the state
of the leakage light has no impact on the overall observed
detection statistics, since they are in temporal modes that are
not picked up by the detectors and the already weak leakage
light would be even less bright after the lossy channel. As a
consequence, in the calculations we present, the side-channel
state affects only the inner-product constraint. We note that the
proof technique could easily accommodate the case of detec-
tion statistics being affected by the leakage light, as this would
just be simulating different values of Qi, j,x,y

k,l in Eq. (A2).
Since different aspects of the source model affect con-

straints in nontrivial ways, to better understand the key rate
resulting from the source described in Sec. III, we provide
comparisons to other optical source models. Specifically, we
consider the following:

(1) Single-photon vs phase-randomized WCP sources:
when calculating the key rate for a given single-photon com-
ponent and side-channel state, i.e., for fixed inner product
constraints in Eq. (2), how much is the key rate affected by
those signal states being used directly vs in a decoy state
method?

(2) Sensitivity to the side-channel model: we assume in
the detection simulations that the side-channel state has no
impact on the observed outcomes, so the detection probability
constraint in Eq. (3) remains fixed even if we change the
model for the leakage light. In Sec. III B, we provided a model
for the source which resulted in a time-dependent coherent
state. Were we to change this model, how much does the key
rate change?

In the sections that follow, we will consider these high-
level choices of the model, in addition to varying more
practically rooted parameters like the intensity of the leakage
light, plus the number and choice of encoded states sent.

For the choice of side-channel model, we compare three
different approaches to treating the state of the leakage light:

Model 1: full encoding information leaked. In this model,
we assume the leakage light state is of the form:∣∣χ i

x

〉
leak = √

ε |vac〉 + √
1 − ε |i, x〉 (15)

with 〈i, x|i′, x′〉 = δi,i′δx,x′ . This model has been used in previ-
ous studies of QKD source side channels [9–11]. This model
makes a relatively pessimistic assumption, since any nonva-
cuum component of leakage light provides full information,
while we know, for example, that the single-photon compo-
nent would not be able to unambiguously encode all possible
basis and bit choices (i, x).

Model 2: time-independent coherent state. In this model,
we assume the leakage light state is of the form:∣∣χ i

x

〉
leak = ∣∣β cos θ i

x

〉
H ⊗ ∣∣β sin θ i

xeiφi
x
〉
V . (16)

The angles (θ i
x, φ

i
x ) are chosen to coincide with the polariza-

tion angles of the encoded mode. This model is more realistic
in that we know the leakage light, as laser light, is in a coher-
ent state; however, it does not account for the time-dependent
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nature of the polarization encoding in the leakage light, which
has the opportunity to act to our advantage since not every
instant provides Eve with full encoding information. Time-
independent coherent state leakage light was considered in the
context of Trojan horse attacks in [12].

Model 3: time-dependent coherent state (multiple tempo-
ral modes). This model assumes the state from Eq. (13). It
is our most accurate model of the source side channel we
introduced in Sec. III. The inner product between two general,
time-dependent coherent states is given by

〈β|α〉 = e− 1
2

∫
dt[|β(t )|2+|α(t )|2−2β∗(t )α(t )], (17)

which we use to calculate the inner product of the side-
channel states in Eq. (13).

While we have three different models for the leakage light,
we can still associate each of them to a fixed leakage light
intensity, |α|2. For Model 1, we can set ε = e−|α|2 . In Model 2,
we can set β = α, and in Model 3 we can set

∫
dt |α0|2 = |α|2.

This means all the models have the same vacuum probability,
i.e., chance of sending no information to Eve, while the non-
vacuum components carry varying amounts of information
about the basis and bit values.

For the simulation of the detection statistics, in all our
simulations we assume detection of a single Bell state us-
ing the detector setup from [2], with detector efficiency of
50%, dark count rates of 10−6 per pulse, and loss in fiber of
0.2 dB/km, with symmetric channel lengths from Alice and
Bob to Charlie. To isolate the effect coming from the side
channel, we do not assume any misalignment in the source,
but this could easily be added to the detection simulations.
When simulating the decoy state method, we have Alice and
Bob employ constant intensities of 0.05, 0.1, and 0.6; how-
ever, an additional layer of optimization for the decoy state
intensities is possible, using our phase error calculation as a
subroutine. The detection outcome probabilities Qi, j,x,y

k,l for the
phase-randomized WCPs were simulated using the method
from [40]. All of our calculations are in the asymptotic limit of
infinite key length, and in the limit as the sifting rate goes to 1.

B. Benefits of side-channel characterization

Our main interest is determining how the key rate is af-
fected by the presence of the side channel. Here we investigate
how the key rate changes depending on the model for the side-
channel light, the intensity of the light, and on whether the
encoded modes are sent as a perfect single-photon source or
as phase-randomized WCPs. In these simulations, we assume
that Alice and Bob prepare BB84 states |H〉±|V 〉√

2
and |H〉±i|V 〉√

2
,

i.e., there are no encoding flaws. These simulations serve as a
test to see how robust the key rate calculation is to the model
of the leakage light; unsurprisingly, the key rate is highly
dependent on the state of the leakage light.

In Fig. 3(a) we plot the key rate as a function of Alice-
Charlie distance, assuming a decoy state protocol, for the three
models of leakage light. Additionally, we vary the intensity of
the leakage light across several orders of magnitude; using the
lowest intensity signals from [41] as an order-of-magnitude
reference for highly attenuated light, this places realistic leak-

(a) Decoy method

(b) Single-photon source

FIG. 3. Secret key rate as a function of Alice-Charlie distance for
three different models of the leakage light. Model 1 corresponds to
treating the leakage light as a superposition of vacuum (with ampli-
tude e−|α|2/2, same as a coherent state) and a state which leaks full
encoding information. Model 2 corresponds to treating the leakage
light as a coherent state |α0 cos θ i

x〉H ⊗ |α0 sin θ i
xeiφi

x 〉V with the same
polarization encoding parametrized by θ and φ as the signal state.
Model 3 corresponds to treating the leakage light as a coherent state
with total intensity |α|2, but with a time-dependent polarization, as
given in Eq. (13). Across all models, |α|2 can be interpreted as the
intensity of the leakage signal. For each model, we plot the key rate
for various values of |α|2 which we indicate with different colours.
In (a) we assume a decoy state protocol is used to characterize
the single-photon detection events, while in (b) we assume that the
encoded modes of the signal state are perfect single photons.
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FIG. 4. Secret key rate as a function of Alice-Charlie distance assuming a single-photon source for the encoded mode states. Here we see
the advantage of sending the four BB84 states instead of using the three-state protocol. This trend is true for different orders of magnitude
of |α|2 and across all leakage state models, depicted in (a)–(c). This in contrast to the ideal case of |α|2 = 0, where BB84 and the three-state
protocol yield the same key rates.

age light intensity somewhere on the order of 10−6 to 10−4.
From this plot, we see that the most significant boosts in
key rate come from a hardware solution of minimizing the
intensity of the light in the side channel; an order of mag-
nitude reduction in intensity provides a greater improvement
than refining the model of the leakage light state. However,
there will likely always be some level of leakage light present
between pulses. To mitigate this effect, it can be beneficial
to carefully characterize the state of the side channel. We see
an improvement in the key rate when moving from Models
1 through 3, in that order. This reflects the intuition that
the nonvacuum components of the states in the these models
carry diminishing levels of information about the basis and
bit choices. In MDI QKD, we require that Alice and Bob have
complete characterization of their sources but no characteri-
zation of the detectors; thus, if they know the state of the side
channel (or at the very least the pairwise inner products of
all the initial states), it is straightforward to incorporate more
information about the state by modifying the inner product
constraints (a simple software solution), rather than making
pessimistic assumptions about the leakage light, as in Model
1, resulting in lower key rates.

Since the model for and intensity of the side-channel light
has no bearing on the observed detection statistics, the detec-
tion constraints used to produce all the key rate curves in the
figure are the same. As extra confirmation that the observed
improvements in the key rate due to changing the model of the
side channel and the intensity of the side-channel light are in-
dependent of the observed detection statistics, in Fig. 3(b) we
provide the same key rate calculations, but assume a single-
photon source for the encoded mode. We notice qualitatively
the exact same trends as when using the decoy method, as
expected. We plot both the single-photon case and the decoy
state case to demonstrate that the difference between the key
rates for different models is due to the effect these models
have when constraining the single-photon components, and
that these differences persist even when we move to the real-
istic case of decoy states.

C. Sending seemingly redundant states helps

It is known that the with only three out of the four BB84
states and using all the detection statistics, that one can pro-
duce the same key rate as using all the BB84 states [3]. Here
we are interested in whether the same conclusion extends to
the case of when the source has a side channel. While the
fourth BB84 state is redundant in the case that there is no
leakage light, when a side channel is present, the extra state
can help characterize Eve’s attack on the leakage light. We
certainly would not expect the key rate to decrease by sending
an extra state, as the extra state will only provide additional
inner product and detection constraints to those already pro-
vided by the other three states.

In Fig. 4 we plot the key rate for a single-photon source,
examining all three models of leakage light, and a couple
different intensities. Across all models and intensities (except
for |α|2 = 0) there is an increase in the key rate when all
four BB84 states are used as opposed to only three. In Fig. 5
we plot the key rates again, this time assuming a decoy state
protocol. In this case, the divergence between using three or
four states is even more pronounced. Even the |α|2 = 0 case
observes a boost in the key rate, since the detection statistic
constraints in Eq. (4) are inequalities when using the decoy
state method, so the extra detection statistics from the fourth
state are useful in this case. The key rate boost achieved
from switching from three to four states is so pronounced
that it can even do better than decreasing the intensity of the
leakage light: using four states with a leakage light intensity
of 10−4 provides a higher key rate than using three states with
a leakage intensity of 10−5.

The takeaway message from this analysis is that the three-
state protocol is not as practical as BB84 in the presence
of source side channels. The extra resource savings of only
having to use three states is undone by the loss of useful con-
straints that increase the key rate. We also simulated sending
five and six states in the same plane of the Bloch sphere as
the BB84 states to see if this provided even better key rates,
but the key rate appeared to saturate with sending four states.
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FIG. 5. Secret key rate as a function of Alice-Charlie distance assuming a phase-randomized WCP and decoy state method. Like in Fig. 4,
we see the advantage of sending the four BB84 states instead of using the three-state protocol. Comparing the dashed green line to the dotted
green line, we see that even in the ideal case of |α|2 = 0, BB84 outperforms the three-state protocol, since the detection probabilities only offer
inequality constraints, meaning the extra fourth state does offer extra constraint to increase the key rate. When the side channel is present, we
also see that adding an extra state in BB84 can go so far as to achieve a higher key rate than using the three-state protocol with an order of
magnitude lower leakage light intensity.

Certainly sending additional states outside of this plane would
increase the key rate, as expected from the six-state [42] or
tilted four-state protocols [3], but this would require additional
polarization modulation in the source, whereas it is easier to
only vary the angle along one great circle of the Bloch sphere.

V. CONCLUSION

In this work, we have examined the problem of source side
channels in MDI QKD. We reviewed the decoy state method
and a recent, versatile proof technique based on semidef-
inite programming which allows for information about the
state of the side channel to be incorporated into the key
rate calculation. With this in hand, we examined a case
example of a common MDI QKD source that employs a
Faraday mirror for polarization stabilization. For this source,
we identified a nontrivial, time-dependent side channel due
to leakage light between encoded optical pulses, provided a
quantum optical model of the output, and linked the compo-
nents of the source model to the security proof techniques.
We then examined multiple protocol scenarios to understand
strategies for improving the secret key rate under practical
circumstances.

We identified how the key rate calculation is affected by
the information provided as constraints to the security proof.
Most importantly, we saw how the model for the state of the
leakage light can significantly impact the key rate, reaffirming
that in MDI QKD security is derived in part from knowledge
of the initial states sent by Alice and Bob, including any
side-channel states. It is clear from our results that in practice
one must carefully characterize side channels, the reward of
this work being higher key rates that come from not needing to
take overly pessimistic assumptions of how much information
is being leaked to the eavesdropper. On top of the importance
of using the best available model for the side channel, we
found that in the presence of state-preparation flaws, Alice

and Bob benefit from using all information at their disposal
for the key rate calculation, i.e., all detection statistics, and
all initial state information, rather than discarding cases when
their basis choices do not match.

Having models for the state of the leakage light allowed
us to develop concrete hardware strategies for mitigating the
presence of the side channel. Besides the obvious hardware
improvement of simply suppressing the leakage light, two
other physically implementable strategies emerged for when
leakage light is present: first, although the three-state protocol
promises the same key rates as BB84, when leakage light is
present, Alice and Bob can get better key rates by sending
all four BB84 states, as the statistics from the normally re-
dundant fourth state actually help to better constrain Eve’s
attack on the side channel. Second, while the choice of which
test state to send from the Bloch sphere typically does not
matter, here we find that in the presence of leakage light, some
test states provide better key rates than others, indicating the
advantage of optimizing which states to send as a function
of distance. Even though we considered a representative case
example, we expect that the strategies we developed to mit-
igate the side channel to be widely applicable to other leaky
sources.

While this work examined strategies for treating source
side channels in MDI QKD, the source we considered had
the advantage of not leaking information about the intensity
setting choice and random phase value of the decoy state
protocol, meaning we were able to use the decoy state method
with only modifications to how we interpret the output of the
linear programs in the security proof. An open problem is how
to simultaneously mitigate more general source side channels
that leak information about both the encoding information,
as we investigated, and the decoy state method intensity and
phase parameters. It would be worthwhile to investigate merg-
ing the analysis presented here with the proof technique from
[8] for treating intensity and phase information leakage.
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APPENDIX A: REVIEW OF THE DECOY
STATE METHOD FOR MDI QKD

When Alice and Bob encode their secret key in a single-
photon degree of freedom, photon number splitting attacks
are a method for an eavesdropper to exploit multiphoton out-
put of the optical source to learn the secret key [37]. As a
consequence, only single-photon detection events are usable
to characterize the amount of information the eavesdropper
has about the key; however, multiphoton events can still be
used to characterize the correctness of the key. The decoy
state method allows Alice and Bob to characterize the photon
number statistics of the eavesdropper-controlled channel, and
in turn bound security based on the detection events that arose
from the single-photon components of the source’s optical
output [43].

Practically, the decoy state method for MDI QKD with po-
larization encoding consists of Alice and Bob each preparing
phase-randomized WCPs with varying intensities [40]. Each
pulse is polarized according to the protocol, e.g., BB84 [2] or
three-state [3]. In this case, we can write the photon number
distribution of Alice and Bob’s states as

p(m, n|k, l ) = e−(μk+νl )μm
k νn

l

m!n!
, (A1)

where k (l) refers to Alice’s (Bob’s) optical intensity setting
μk (νl ). This assumes that the intensity settings are completely
independent of the polarization basis and bit setting choices.
If they each use N intensity settings (typically three is suffi-
cient), then for given basis (i, j) and bit (x, y) choices, they
have N2 linear equations for the detection probabilities as a
function of photon number:

Qi, j,x,y
k,l =

∑
m,n

e−(μk+νl )μm
k νn

l

m!n!
pi, j,x,y
pass,m,n. (A2)

Here Qi, j,x,y
k,l is the observed probability of Eve announcing

that a round passed given that Alice and Bob chose intensity
settings (k, l ) along with basis and bit choices (i, j, x, y).
pi, j,x,y
pass,m,n is the probability that the round passes due Alice

(Bob) sending m (n) photons, and given basis and bit choices
(i, j, x, y). Since we assume that the intensity setting choices
are independent of the basis and bit choices, and that phase
randomization of the WCP is perfect, pi, j,x,y

pass,m,n is independent
of (k, l ). These N2 linear equations can be used in a linear
program to determine upper and lower bounds on all the de-
tection probabilities due to single-photon components of the
optical output pi, j,x,y

pass,1,1. This allows us to bound the relevant
detection statistics for computing security.

To construct a linear program to calculate upper and lower
bounds on the single-photon detection probabilities of a decoy
state MDI QKD protocol [40], we first identify the variables
of the optimization as pi, j,x,y

pass,m,n. To establish a lower (upper)
bound on pi, j,x,y

pass,1,1 given these constraints, we solve the linear
program to find the minimum (maximum) possible value of
pi, j,x,y
pass,1,1 consistent with the constraints. If Alice and Bob each

have nA and nB basis choice settings, each basis choice asso-
ciated with two bit choices, we repeat the process of finding
lower and upper bounds for all nA×nB×2×2 combinations of
(i, j, x, y).

Since there are in principle infinitely many pi, j,x,y
pass,m,n, for a

practical linear program, we impose a cutoff photon number
Nmax. In that case, the N2 linear equality constraints become
2N2 linear inequality constraints. The first N2 constraints are

Qi, j,x,y
k,l �

Nmax∑
m,n=0

e−(μk+νl )μm
k νn

l

m!n!
pi, j,x,y
pass,m,n, (A3)

stemming from the fact that summing up to the cutoff will
yield a value less than the total detection probability. For the
next N2 constraints, we find

1 −
Nmax∑

m,n=0

e−(μk+νl )μm
k νn

l

m!n!

�
∞∑

m,n=Nmax+1

e−(μk+νl )μm
k νn

l

m!n!
pi, j,x,y
pass,m,n, (A4)

which means we can provide the constraints:

Nmax∑
m,n=0

e−(μk+νl )μm
k νn

l

m!n!
pi, j,x,y
pass,m,n

� Qi, j,x,y
k,l +

Nmax∑
m,n=0

e−(μk+νl )μm
k νn

l

m!n!
− 1. (A5)

In practice for our calculations in the main text, we found
an Nmax of 10 photons was sufficient to provide good upper
and lower bounds on pi, j,x,y

pass,1,1 while not taking too long to
compute.

Using the decoy method, a lower bound on the secret key
rate in an MDI QKD protocol is provided by [40]

R � p0,0
pass,1,1[1 − h2(eph,1,1)] − Q0,0

N,N h2(Ebit ), (A6)

where h2(·) is the binary entropy function. Q0,0
N,N is the de-

tection probability of outcomes that generate raw key, and is
given by

Q0,0
N,N =

∑
x,y

Q0,0,x,y
N,N , (A7)

where we choose, without loss of generality, (i, j) = (0, 0) to
be the key generation basis and (k, l ) = (N, N ) to be the key
generation intensities. Ebit is the bit error rate of the raw key,
given by

Ebit =
∑

x �=y Q0,0,x,y
N,N

Q0,0
N,N

. (A8)
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p0,0
pass,1,1 is the detection probability due to the single-photon

components of Alice and Bob’s optical output:

p0,0
pass,1,1 =

∑
x,y

p0,0,x,y
pass,1,1. (A9)

Finally, eph,1,1 is the phase error rate of the protocol which we
will more precisely define in the next Appendix. Briefly, were
we to consider a virtual picture of the protocol in which the
single-photon components of the optical output are entangled
with qubits kept in Alice and Bob’s labs, the phase error is
the probability those qubits end up in a target Bell state up to
a phase error. Like the single-photon detection probabilities,
it is not a directly observable quantity of the protocol and
must be bounded. Were Alice and Bob to be able to perfectly
prepare eigenstates of the conjugate basis to the key gener-
ation basis, then eph,1,1 can also be bounded with a simple
linear program [40]. When the sources have preparation flaws
amounting to constant polarization offsets, a series of linear
programs are required (see Appendix A of [4]). In the case that
the sources have preparation flaws and have a side channel, we
can employ the more recent technique [12] for bounding the
phase error rate that employs semidefinite programming; that
technique is reviewed in Sec. II A.

APPENDIX B: DERIVATION OF EQ. (7)

Here we go through the derivation of the expression for
the phase error rate in terms of the elements of the Gramian
matrix. We wish to show

eph = 〈�| (M−
ĀB̄

⊗ |P〉 〈P|Z ) |�〉ĀB̄EZ

〈�| (|P〉 〈P|Z ) |�〉ĀB̄EZ

= 1

2
− Re

( 〈
e0,0

0,0,P

∣∣e0,0
1,1,P

〉
E

+ 〈
e0,0

0,1,P|e0,0
1,0,P

〉
E

)
∑

x,y p0,0,x,y
pass

. (B1)

We start with the denominator:

(〈P|Z ) |�〉ĀB̄EZ =
1∑

x,y=0

|x, y〉ĀB̄

∣∣e0,0
x,y,P

〉
E

⇒ 〈�| (|P〉 〈P|Z ) |�〉ĀB̄EZ

=
1∑

x,y,x′,y′=0

〈x, y|x′, y′〉ĀB̄

〈
e0,0

x,y,P

∣∣e0,0
x′,y′,P

〉
E

=
1∑

x,y=0

〈
e0,0

x,y,P

∣∣e0,0
x,y,P

〉
E

=
∑
x,y

p0,0,x,y
pass , (B2)

where the last equality follows from Eq. (3).
Next we look at

M−
ĀB̄

= (|�−〉 〈�−| + |�−〉 〈�−|)ĀB̄

= 1
2 [1 − (|0, 0〉 〈1, 1| + H.c. + |0, 1〉 〈1, 0| + H.c.)]ĀB̄.

(B3)

The identity term will simply yield the same expression as the
denominator we have already calculated, leading to the 1

2 term

in Eq. (7). The other terms can be calculated as follows:

〈�| (|0, 0〉 〈1, 1|ĀB̄ + H.c.) ⊗ (|P〉 〈P|Z ) |�〉ĀB̄EZ

=
1∑

x,y,x′,y′=0

〈x, y|0, 0〉 〈1, 1|x′, y′〉ĀB̄

〈
e0,0

x,y,P

∣∣e0,0
x′,y′,P

〉
E

+ c.c.

= 〈
e0,0

0,0,P

∣∣e0,0
1,1,P

〉
E

+ c.c.

= 2Re
( 〈

e0,0
0,0,P

∣∣e0,0
1,1,P

〉
E

)
. (B4)

Similarly,

〈�| (|0, 1〉 〈1, 0|ĀB̄ + H.c.) ⊗ (|P〉 〈P|Z ) |�〉ĀB̄EZ

= 2Re
( 〈

e0,0
0,1,P

∣∣e0,0
1,0,P

〉
E

)
. (B5)

These two terms yield the numerator of the second term in
Eq. (7).

APPENDIX C: COMPARISON TO THE PROOF
TECHNIQUE FROM [11]

Here we will compare the proof technique we are using
to the technique from [11]. We will show that [11] relaxes the
SDP inherent to optimizing the phase error rate to a linear pro-
gram, which we would expect to give equal or lower bounds
on the key rate than computing the full SDP. For simplicity,
we will consider a protocol where when Alice and Bob choose
the Z basis, they perfectly prepare qubit states |0〉 , |1〉, but we
allow for their test states to have leakage components outside
of the qubit subspace spanned by {|0〉 , |1〉}. The following
comparison can be generalized in a straightforward manner
to arbitrary initial states.

Let U be the unitary that takes |ψ i
xφ

j
y 〉A,B → ∑

z |ei, j
x,y,z〉.

Thus, for this case of initial states, the phase error rate would
be given by

eph =
Tr

[ |P〉 〈P|Z U
(
1+σX ⊗σX

2

)
A,BU †

]
∑

x,y p0,0,x,y
pass

, (C1)

where σm, m = I, X,Y, Z refer to Pauli operators in the qubit
space spanned by {|0〉 , |1〉}. Following [3,11], eph can be
decomposed in terms of the transmission rates of the Pauli
operators qpass|i, j = Tr(|P〉 〈P|Z Uσi ⊗ σ jU †), since the Pauli
operators form a basis for any operator. Were ε = 1, then we
could use the states Alice and Bob send to exactly solve for
qpass|i, j (assuming their test states are some superposition of
{|0〉 , |1〉}). However, when their signal states have a leakage
component, we cannot exactly constrain these quantities; in
[11] qpass|i, j form the variables of a linear program that are
optimized to determine a lower bound on eph.

First, we write Alice and Bob’s signal states as linear
combinations of states in a two-qubit space, and a space or-
thogonal to it (the leakage space), just as in Eq. (1) of [11]:

∣∣ψ i
xφ

j
y

〉
A,B

= ai, j
x,y

∣∣ψ̃ i
xφ̃

j
y

〉
A,B

+ bi, j
x,y

∣∣ψ̃ i
xφ̃

j
y
⊥〉

A,B
, (C2)

where the orthogonality of the two-qubit and leakage space
means 〈·|·⊥〉A,B = 0.

Next, the detection probabilities provide the constraint

pi, j,x,y
pass = Tr

( |P〉 〈P|Z U
∣∣ψ i

xφ
j
y

〉 〈
ψ i

xφ
j
y

∣∣
A,B

U †
)
. (C3)
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Using the decomposition from Eq. (C2), we find this is also
equal to

pi, j,x,y
pass = ∣∣ai, j

x,y

∣∣2
Tr

[ |P〉 〈P|Z U
∣∣ψ̃ i

xφ̃
j
y

〉 〈
ψ̃ i

xφ̃
j
y

∣∣
A,B

U †
]

+ Tr
[ |P〉 〈P|Z U

(
ai, j

x,ybi, j
x,y

∗ ∣∣ψ̃ i
xφ̃

j
y

〉 〈
ψ̃ i

xφ̃
j
y
⊥∣∣

+ ai, j
x,y

∗
bi, j

x,y

∣∣ψ̃ i
xφ̃

j
y
⊥〉 〈

ψ̃ i
xφ̃

j
y

∣∣
+ ∣∣bi, j

x,y

∣∣2 ∣∣ψ̃ i
xφ̃

j
y
⊥〉 〈

ψ̃ i
xφ̃

j
y
⊥∣∣ )

A,BU †
]
, (C4)

which coincides with the MDI QKD version of Eq. (19) from
[11]. Since the operator |ψ̃ i

xφ̃
j
y 〉 〈ψ̃ i

xφ̃
j
y | lives in the two-qubit

subspace, it too can be written in terms of the Pauli operators
σm ⊗ σn, meaning the first trace term in Eq. (C4) can be
written in terms of qpass|i, j . Because of the second trace term,
we cannot solve for them exactly as is done in the loss-tolerant
proof technique [3].

Rather than solving the semidefinite program for eph us-
ing the linear equality constraints provided by the detection
probabilities, [11] considers a relaxation to a linear program.
Specifically, the second trace term in Eq. (C4) can be bounded
above and below by the maximum and minimum eigenvalues
of the matrix:

Mi, j
x,y =

(
0 ai, j

x,ybi, j
x,y

∗

ai, j
x,y

∗
bi, j

x,y

∣∣bi, j
x,y

∣∣2

)
. (C5)

Thus, (C4) leads to inequalities linear in qpass|i, j , which can
be used as constraints in a linear program to find an upper
bound for eph. However, because the exact equality constraints
coming from the detection probabilities have been relaxed
using the maximum and minimum eigenvalues of Mi, j

x,y, we
would expect that this would lead to a greater upper bound on
eph (and hence a weaker lower bound on the key rate) than
if the exact constraints were kept, as they would be in the
numerical approach from [12] that we reviewed in Sec. II A.

Note that the proof approach we have used in this paper
does away with needing to frame the calculation of eph in
terms of qpass|i, j (even though we could, in principle, do so
since they are linear functions of the elements of Eve’s Gram
matrix); after all, since the signal states are no longer qubits,
we need not make the distinction between a qubit subspace
and the leakage space, since Eve’s operation can blend these
two spaces. Instead, given that the phase error can be ex-
pressed in terms of the elements of a positive semidefinite
matrix associated with Eve’s information, and given that we
have linear equality constraints on this matrix, the phase error
can be maximized directly with a simple SDP, rather than
relaxing to a linear program.

As an example to demonstrate the superiority of the SDP
method over the method from [11], we consider a toy example
of the three-state protocol with a single-photon source, for
which Alice and Bob prepare a leaky third state,

|+〉enc (
√

ε |vac〉leak + √
1 − εenc |1〉leak ), (C6)

as opposed to the ideal |+〉enc. We assume a detection effi-
ciency of 1 and a dark count rate of 10−6. In Fig. 6 we plot
the key rates calculated using the SDP method we reviewed in
Sec. II A and using the method from [11]. We find that across
values of ε, the SDP method performs much better.

FIG. 6. Key rate vs distance for various values of ε, calculated
using the SDP method reviewed in Sec. II A and the method from
[11]. We see the advantage of the SDP approach over the relaxation
to a linear program, as done in [11].

APPENDIX D: DERIVATION OF FIG. 2

Here we derive the fractional phase change applied to the
leakage light as a function of time, as shown in Fig. 2.

Refer to the experimental setup shown in Fig. 1, specif-
ically the polarization modulation unit. First, optical pulses
travel forward through the PM for the purpose of polarization
modulation. Simultaneously, voltage pulses overlapping in
time with the optical pulses are sent into the PM, propagating
in the same direction as the optical pulses. The PM is designed
such that the optical and voltage pulses travel through the PM
at the same speed [44]. The voltage is what enables a phase
change and therefore a polarization change. Since the leakage
light is not meant to encode information, voltage is not sent
through the PM as this light travels through the first time.

However, when traveling back through the PM after reflec-
tion from the Faraday mirror, the leakage light will inevitably
collide temporally with a voltage pulse that is traveling in the
opposite direction along with an optical pulse it is intended to
modulate.

The overall phase modulation experienced by a temporal
slice of light after traveling through the PM can be expressed
as

φ = K
∫ L

0
V (z) dz. (D1)

Here L represents the length of the PM and V (z) represents
the applied voltage overlapping with the slice of light. K is
simply a proportionality constant. When light is traveling in
the same direction as the voltage wave through the phase
modulator, Eq. (D1) reduces to K×V ×L. This occurs due to
the voltage, which is moving at the same speed as the light,
being a constant along the length of the PM.

062618-13



BOURASSA, GNANAPANDITHAN, QIAN, AND LO PHYSICAL REVIEW A 106, 062618 (2022)

FIG. 7. An illustration depicting a moment in time as a voltage
pulse approaches the phase modulator (PM).

In our case, we are also dealing with leakage light that
is traveling in the opposite direction. We will use L to refer
to the PM length and w to refer to the width of the square
voltage pulses sent to the PM. Given these parameters, we can
determine the phase change experienced by the leakage light
as follows:

(1) Refer to Fig. 7. We will use this moment in time as
our starting point. First we will create a coordinate system
by defining x = 0 to be the right hand edge of the phase
modulator. We can parametrize a slice of leakage light with
t , the time it crosses the point x = 0.

(2) At the point in time shown in Fig. 7, we can define
the voltage pulse as A(x) = H (x + 2L + w) − H (x + 2L) (a
square pulse) and the leakage light as B(x) = H (x) where H
refers to the Heaviside step function.

(3) Now, notice that the movement in time of the voltage
pulse and leakage light can also be incorporated into these
functions. After τ ps, the function defining the voltage pulse
will become A(x − τ ) while the function defining the leakage
light will become B(x + τ ).

(4) Notice that A(x − τ )×B(x + τ ) represents the overlap
between the voltage and leakage light at position x and time
τ . It has a value of 1 if there is an overlap and a value of 0 if
there is no overlap.

(5) Now, suppose we want to calculate the amount of time
for which the slice t experiences an overlap within the phase
modulator. We need to integrate A(x − τ )×B(x + τ ) from
τ = t to τ = t + L. In other words, we need to integrate the
overlap function over the values of τ for which the slice at
position t is inside the phase modulator.

(6) The slice at position t has an x position of t − τ at time
τ . Substitute this into the integral for x.

(7) The resulting integral is as follows:

∫ t+L

t
A(t − 2τ ) × B(t ) dτ. (D2)

This integral represents the amount of time the slice t is
in contact with a voltage pulse within the phase modulator.
Recall that the optical pulse which is traveling along with (in
the same direction as) this voltage pulse would be in contact
along the entire length of the phase modulator (L). Therefore,
the phase change experienced by slice t is

1

L

∫ t+L

t
A(t − 2τ ) × B(t ) dτ (D3)

when written as a fraction of the phase change experi-
enced by the pulse. The solution to this integral is shown in
Fig. 8. In our particular experimental setup, L = 150 ps and
w = 200 ps. The value of the integral for these parameter
values is plotted in Fig. 2. The maximal fractional phase
change is 2

3 .

APPENDIX E: ADDITIONAL KEY RATE RESULTS

Here we present additional exploration of strategies that
can be used to increase the key rate in the presence of a source
side channel.

1. Basis mismatch constraints

We are interested in knowing whether any advantage can
be gained by using all the detection statistics and all the initial
state inner products, including when Alice and Bob’s bases
do not match, as opposed to simply using the cases when the
basis choices match (i = j). We observed that when Alice
and Bob prepare the BB84 states perfectly, using the basis
mismatch statistics and inner products did not produce an
increase in the key rate, even in the presence of a side channel.
With perfect state preparation, we know that the conjugate
basis statistics alone are strict enough constraints to provide
the phase error when there is no leakage light, and we confirm
numerically that this extends to the case when leakage light is
present.

However, we know that when Alice and Bob have a prepa-
ration flaw for their states, i.e., a constant offset angle on the
Bloch sphere, the mismatch statistics can help better charac-
terize the key rate [3]. Since the Bloch sphere angle affects
the associated side-channel state, the inner products, and the
detection statistics, it is more difficult to predict how the key
rate will respond to a preparation flaw, and whether using full
or partial detection statistics in the SDP constraints benefits

FIG. 8. The various solutions for the integral in Eq. (D3).
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(a) Single-photon source

(b) Decoy method

FIG. 9. Secret key rate as a function of Alice-Charlie distance for
Models 1–3 of the leakage light. Here we investigate whether using
all initial state inner products and detection statistics, as opposed to
just the cases when Alice and Bob choose the same basis, benefit the
key rate. We consider the case of BB84 with a preparation flaw, and
a side channel with |α|2 = 10−4, for both (a) a single-photon source,
and (b) the decoy state method. For (b), Alice and Bob each uses four
decoy intensities. We observe that for Models 2 and 3, the key rate
benefits from considering all inner products and detection statistics
available.

the key rate. For these simulations, we use the preparation
flaw model from Appendix D of [4], with the Bloch sphere
offset angle parameter δ = 0.1. In this case we fix the leakage
light intensity to |α|2 = 10−4.

FIG. 10. Key rate vs azimuthal angle of the test states, for the
case of no leakage light, and for leakage light with intensity |α|2 =
10−4 treated with Models 1–3. The top (bottom) figure provides
results for a single-photon source (a decoy state method) at a distance
of 10 km (50 km). While the choice of test state is less relevant for the
case of no leakage light, it can significantly decrease the key rate in
the presence of leakage light, prompting the need to optimize which
test states are used at a given distance.

In Fig. 9(a) we plot the key rate assuming a single-photon
source for the encoded mode. For Model 1 we barely see any
increase in the key rate when using full vs partial detection
statistics; this makes sense, since the nonvacuum component
of the side-channel state leaks full encoding information, inde-
pendent of Bloch sphere angle. For Models 2 and 3 we observe
a boost in the key rate when using full detection statistics and
inner products as constraints. This indicates that when one has
a preparation flaw, and the side-channel state depends on the
preparation flaw, it is best to use all information available from
the detection statistics and initial state inner products.

In Fig. 9(b) we consider the same situation but with a
decoy state protocol. For this scenario, we add a fourth decoy
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with vacuum intensity, and observe an increase in the key rate
when using full detection statistics and initial inner products
as constraints in Models 2 and 3. Like before, we do not
observe an increase in the key rate for Model 1. When we
only considered three decoy intensities, we did not observe a
meaningful increase in the key rate, likely because the three
decoy intensities did not allow for tight enough constraints on
the single-photon detection statistics, so adding more detec-
tion statistics as constraints did not help since the constraints
were too loose.

2. Choice of test states matters

Another example of divergence between ideal sources and
sources with side channels occurs in the choice of which test
states to send. In the ideal case, if Alice and Bob prepare two
orthogonal polarization states, they need only send one other
state to achieve the same key rate as BB84 [3]; the location of
that state on the Bloch sphere does not matter (as long as it
is not the same state as the first two). Here we are interested
to see whether this changes in the presence of a source side
channel.

To study this problem, we fix the channel distance, a leak-
age light intensity of |α|2 = 10−4, fix Alice and Bob to send
encoded single-photon components |H〉±|V 〉√

2
as two of their

states, then vary the azimuthal angle of the other two states
sent |H〉±eiφ |V 〉√

2
, and observe how the key rate changes. By

symmetry, we need only vary φ ∈ [0, π ].
In the top plot of Fig. 10, we plot the results assuming a

single-photon source and a distance of 10 km. As expected,
the key rate is independent of φ when there is no leakage light.
In the presence of leakage light, φ = π/2 still remains as the
optimum test state to send, but the key rate drops off away
from that point, most dramatically for Model 1. Interestingly,
there is even a region for which Model 2 outperforms Model
3. To explain this, we can go to the Gram matrix formed by
the initial states which form the constraints on the RHS of
Eq. (2). If we calculate the trace distance between the Gram
matrix of Model 2 and the Gram matrix created by the ideal

qubit states { |H〉±|V 〉√
2

,
|H〉±eiφ |V 〉√

2
} as a function of φ, we find that

it is symmetric about φ = π/2; however, doing the same for
the Gram matrix of Model 3, we find that the trace distance
is not symmetric about that point due to the time-dependent
nature of the underlying states and the way the inner product
is calculated in Eq. (17). As φ increases, the Gram matrix of
Model 3 eventually becomes a further distance from ideal than
the Gram matrix of Model 2 for φ � 0.8π , so it is conceivable
the key rate for Model 3 can perform worse in that region. Of
course, the key rate depends on much more than just this trace
distance, since the angle also changes the constraints provided
by the detection statistics, but this provides some intuition as
to why Model 2 can outperform Model 3 in certain regimes.

In bottom of Fig. 10, we plot the key rates assuming a
decoy state method and a distance of 50 km. Here even the
case of zero leakage light has some sensitivity to the angle of
the test state. φ = π/2 is still the optimal test state across all
models. Like before, there is a limited range of φ that provides
a positive key rate in the presence of leakage light, with the
range being narrowest for Model 1. We observed for both
types of sources that the range of φ that yields positive key rate
narrows as the channel distance is increased; this means that
source preparation flaws, especially in the test state, become
a greater problem at further distances, unlike in the case of no
leakage light where there is greater stability of the key rate
with respect to φ.

The main point of these simulations is to demonstrate that
while the choice of test state is not so important when the
source is ideal without side channels, in the presence of leak-
age light, we must be careful to choose a test state that pro-
vides both good constraints on the encoded mode and on the
leakage mode. While φ = π/2 seemed to be the best choice
for these models—coinciding with the BB84 states—we also
observed cases when other values of φ produced the maxi-
mum key rate at a given distance. In a typical protocol, Alice
and Bob simply choose the BB84 states and optimize the
decoy state intensities as a function of distance; here, we see
that in the presence of leakage light, there is additional benefit
to optimizing over the polarization of the test states sent.

[1] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta,
D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C.
Lupo, C. Ottaviani et al., Adv. Opt. Photon. 12, 1012
(2020).

[2] H.-K. Lo, M. Curty, and B. Qi, Phys. Rev. Lett. 108, 130503
(2012).

[3] K. Tamaki, M. Curty, G. Kato, H.-K. Lo, and K. Azuma,
Phys. Rev. A 90, 052314 (2014).

[4] Z. Tang, K. Wei, O. Bedroya, L. Qian, and H.-K. Lo, Phys. Rev.
A 93, 042308 (2016).

[5] J. E. Bourassa, I. W. Primaatmaja, C. C. W. Lim, and H.-K. Lo,
Phys. Rev. A 102, 062607 (2020).

[6] Z.-Q. Yin, C.-H. F. Fung, X. Ma, C.-M. Zhang, H.-W. Li, W.
Chen, S. Wang, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 88,
062322 (2013).

[7] K. Tamaki, M. Curty, and M. Lucamarini, New J. Phys. 18,
065008 (2016).

[8] W. Wang, K. Tamaki, and M. Curty, Sci. Rep. 11, 1 (2021).
[9] M. Pereira, G. Kato, A. Mizutani, M. Curty, and K. Tamaki,

Sci. Adv. 6, eaaz4487 (2020).
[10] A. Navarrete, M. Pereira, M. Curty, and K. Tamaki, Phys. Rev.

Appl. 15, 034072 (2021).
[11] M. Pereira, M. Curty, and K. Tamaki, npj Quantum Inf. 5, 62

(2019).
[12] I. W. Primaatmaja, E. Lavie, K. T. Goh, C. Wang, and C. C. W.

Lim, Phys. Rev. A 99, 062332 (2019).
[13] I. Lucio-Martinez, P. Chan, X. Mo, S. Hosier, and W. Tittel,

New J. Phys. 11, 095001 (2009).
[14] Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian, and H.-K. Lo,

Phys. Rev. Lett. 112, 190503 (2014).
[15] J. Wang, X. Qin, Y. Jiang, X. Wang, L. Chen, F. Zhao, Z. Wei,

and Z. Zhang, Opt. Express 24, 8302 (2016).
[16] C. Li, M. Curty, F. Xu, O. Bedroya, and H.-K. Lo, Phys. Rev. A

98, 042324 (2018).

062618-16

https://doi.org/10.1364/AOP.361502
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevA.90.052314
https://doi.org/10.1103/PhysRevA.93.042308
https://doi.org/10.1103/PhysRevA.102.062607
https://doi.org/10.1103/PhysRevA.88.062322
https://doi.org/10.1088/1367-2630/18/6/065008
https://doi.org/10.1038/s41598-020-79139-8
https://doi.org/10.1126/sciadv.aaz4487
https://doi.org/10.1103/PhysRevApplied.15.034072
https://doi.org/10.1038/s41534-019-0180-9
https://doi.org/10.1103/PhysRevA.99.062332
https://doi.org/10.1088/1367-2630/11/9/095001
https://doi.org/10.1103/PhysRevLett.112.190503
https://doi.org/10.1364/OE.24.008302
https://doi.org/10.1103/PhysRevA.98.042324


MEASUREMENT-DEVICE-INDEPENDENT QUANTUM KEY … PHYSICAL REVIEW A 106, 062618 (2022)

[17] E. Moschandreou, B. J. Rollick, B. Qi, and G. Siopsis,
Phys. Rev. A 103, 032614 (2021).

[18] L. C. Comandar, M. Lucamarini, B. Fröhlich, J. F. Dynes, A. W.
Sharpe, S. W.-B. Tam, Z. L. Yuan, R. V. Penty, and A. J. Shields,
Nat. Photon. 10, 312 (2016).

[19] A. Duplinskiy and D. Sych, Phys. Rev. A 104, 012601 (2021).
[20] N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy,

Phys. Rev. A 73, 022320 (2006).
[21] M. Lucamarini, I. Choi, M. B. Ward, J. F. Dynes, Z. L. Yuan,

and A. J. Shields, Phys. Rev. X 5, 031030 (2015).
[22] G. Zhang, I. W. Primaatmaja, J. Y. Haw, X. Gong, C. Wang, and

C. C. W. Lim, PRX Quantum 2, 030304 (2021).
[23] In fact, the passive side channel we study in this paper is

introduced by active optical elements controlled by Alice and
Bob.

[24] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Rev. Mod.
Phys. 92, 025002 (2020).

[25] C.-H. F. Fung, and H.-K. Lo, Phys. Rev. A 74, 042342 (2006).
[26] C. H. Bennett and G. Brassard, Proceedings of the IEEE Interna-

tional Conference on Computers, Systems and Signal Processing
(Bangalore, India, 1984), pp. 175–179.

[27] P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Nat. Commun.
7, 11712 (2016).

[28] A. Winick, N. Lütkenhaus, and P. J. Coles, Quantum 2, 77
(2018).

[29] N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier,
Phys. Rev. A 97, 042347 (2018).

[30] Y. Wang, I. W. Primaatmaja, E. Lavie, A. Varvitsiotis, and
C. C. W. Lim, npj Quantum Inf. 5, 17 (2019).

[31] N. T. Islam, C. C. W. Lim, C. Cahall, B. Qi, J. Kim, and D. J.
Gauthier, Quantum Sci. Technol. 4, 035008 (2019).

[32] E. Y.-Z. Tan, R. Schwonnek, K. T. Goh, I. W. Primaatmaja, and
C. C.-W. Lim, Quantum Inf. 7, 158 (2021).

[33] I. George, J. Lin, and N. Lütkenhaus, Phys. Rev. Res. 3, 013274
(2021).

[34] S. Diamond and S. Boyd, J. Mach. Learn. Res. 17, 1 (2016).
[35] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd,

J. Control Decis. 5, 42 (2018).
[36] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).
[37] D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill,

Quantum Inf. Comput. 4, 136 (2003).
[38] I. Devetak and A. Winter, Proc. R. Soc. Lond. A 461, 207

(2005).
[39] C. Zhou, G. Wu, X. Chen, and H. Zeng, Appl. Phys. Lett. 83,

1692 (2003).
[40] X. Ma, C.-H. F. Fung, and M. Razavi, Phys. Rev. A 86, 052305

(2012).
[41] X. Zhong, J. Hu, M. Curty, L. Qian, and H.-K. Lo, Phys. Rev.

Lett. 123, 100506 (2019).
[42] H.-K. Lo, Quantum Inf. Comput. 1, 81 (2001).
[43] H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504

(2005).
[44] C. M. Gee, G. D. Thurmond, and H. W. Yen, Appl. Opt. 22,

2034 (1983).

062618-17

https://doi.org/10.1103/PhysRevA.103.032614
https://doi.org/10.1038/nphoton.2016.50
https://doi.org/10.1103/PhysRevA.104.012601
https://doi.org/10.1103/PhysRevA.73.022320
https://doi.org/10.1103/PhysRevX.5.031030
https://doi.org/10.1103/PRXQuantum.2.030304
https://doi.org/10.1103/RevModPhys.92.025002
https://doi.org/10.1103/PhysRevA.74.042342
https://doi.org/10.1038/ncomms11712
https://doi.org/10.22331/q-2018-07-26-77
https://doi.org/10.1103/PhysRevA.97.042347
https://doi.org/10.1038/s41534-019-0133-3
https://doi.org/10.1088/2058-9565/ab21a4
https://doi.org/10.1038/s41534-021-00494-z
https://doi.org/10.1103/PhysRevResearch.3.013274
https://doi.org/10.1080/23307706.2017.1397554
https://doi.org/10.1103/PhysRevLett.85.441
https://doi.org/10.1098/rspa.2004.1372
https://doi.org/10.1063/1.1606874
https://doi.org/10.1103/PhysRevA.86.052305
https://doi.org/10.1103/PhysRevLett.123.100506
https://doi.org/10.1103/PhysRevLett.94.230504
https://doi.org/10.1364/AO.22.002034

