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Critical quantum sensing based on the Jaynes-Cummings model with a squeezing drive
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Quantum sensing improves the accuracy of measurements of relevant parameters by exploiting the unique
properties of quantum systems. The divergent susceptibility of physical systems near a critical point for quantum
phase transition enables criticality-enhanced quantum sensing. The quantum Rabi model (QRM), composed of a
single qubit coupled to a single bosonic field, represents a good candidate for realizing such critical enhancement
for its simplicity, but it is experimentally challenging to achieve the ultrastrong qubit-field coupling required to
realize the critical phenomena. In this work, we explore an alternative to construct the analog of the QRM
for the sensing, exploiting the criticality appearing in the Jaynes-Cummings (JC) model whose bosonic field
is parametrically driven, not necessitating the ultrastrong coupling condition, thus to some extent relaxing the
requirement for practical implementation.
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I. INTRODUCTION

Quantum sensing makes use of the unique properties, such
as quantum coherence or entanglement, in quantum physics
to improve the sensitivity of measurement [1–5]. Recently,
it was realized that high-precision quantum metrology could
be realized by encoding the signal in a quantum system
near its critical point, where it exhibits an ultrasensitive re-
sponse to a tiny change in the relevant parameter [6–16]. So
far, two complementary approaches have been proposed for
criticality-enhanced quantum sensing based on equilibrium
or steady-state response to the signal change. One approach
is to exploit the equilibrium properties of critical systems,
whose Hamiltonians are slowly varied to ensure the system
to remain in the ground states [12,17–19]. For an open system
under the interplay between the Hamiltonian dynamics and
the dissipative process, its nonequilibrium behavior in a steady
state near a dissipative-driven phase transition can also be
utilized for critical sensing [19–23]. Both methods suffer from
the relatively long-time evolution required for satisfying the
adiabaticity [24], restricting their practical implementations.
To overcome this problem, a dynamical method was recently
proposed [13] where the signal is encoded in a dynamically
evolved feature, without requirement of adiabatic or slow
quench condition. Furthermore, this method is quite general,
working even for a mixed state.

The quantum Rabi model (QRM) [25–28] is an ideal
system for realizing these approaches. The QRM, which
describes the interaction between a two-level atom and a
single-mode bosonic field, has been widely investigated in
quantum information and technology. Under the condition
that the ratio between the atomic transition frequency and the
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field frequency tends to infinity, such a model can undergo
a quantum phase transition of the normal phase to the su-
perradiant phase, featuring a sudden increase of the photon
number at a critical point of the coupling-to-frequency ratio
[29–38]. However, the criticality accompanied by the quan-
tum phase transition realized in the QRM requires ultrastrong
coupling between the two-level system and the single-mode
bosonic field [39,40], so that the counter-rotating-wave terms
play a significant role, which represents an experimental chal-
lenge. Another restriction originates from the so-called no-go
theorem [41–43], which states the neglected A2 term would
prohibit the superradiant phase transition. The dynamics of
the QRM has been simulated on a variety of platforms, such
as superconducting circuit systems [39,44] and trapped ions
[40]. Very recently, the superradiant phase transition was
observed in an effective QRM, composed of a superconduct-
ing qubit and with a microwave photonic field stored in a
resonator [45], whose interaction was engineered with two de-
liberately tailored longitudinal modulations and a transverse
drive. However, experimental demonstration of criticality-
enhanced quantum sensing in such a system remains elusive.

We here explore the criticality-enhanced sensing with a
squeezed Jaynes-Cummings (JC) model (SJCM), where the
bosonic field is subjected to a parametric squeezing drive.
This parametric driving transforms the rotating-wave coupling
of the JC model (JCM) into a combination of the rotating
and counterrotating couplings, realizing an isomorphism of
the QRM, where the system frequencies are replaced by their
detunings from the driving [46]. Such an isomorphism offers
the possibility to explore light-matter interactions in the ultra-
strong coupling regime based on the JCM, to bypass the no-go
theorem to access the superradiant phase transition predicted
in the QRM [47], and to harness the associated critical phe-
nomena for quantum technology.

With this quantum critical dynamics, a divergent behav-
ior emerges in the quantum Fisher information (QFI) under
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certain conditions when it approaches the critical point, al-
lowing for an ultrasensitive measurement of the relevant
observable. The results of our study show that such a scheme
can achieve precision close to the quantum Cramér-Rao
bound [48–50], which is given by the Cramér-Rao inequality
〈�2θ̂〉 � 1

νF , where 〈�2θ̂〉 is the variance of observable θ̂ , ν is
the amount of data, and F represents the QFI. The QFI gives
an absolute lower bound on the measurement of an input state,
independent of the measurement method, and is equivalent to
the inverse variance of the measurement, which provides great
convenience to reflect the achievable measurement precision.
We also give the analytical result of the QFI for the correlated
quantum dynamics and propose a scheme for experimental
implementation of the model.

II. THE QFI IN CRITICAL QUANTUM SYSTEMS

The QFI about the parameter α can be expressed
as Fα = 4Var[hα]|�〉, where hα = −i(∂αU †

α )Uα = iU †
α (∂αUα )

and Var[hα]|�〉 is the variance of hα with respect to the initial
state |�〉 [51]. We consider the Hamiltonian Ĥα = Ĥ0 + αĤ1,
which satisfies the relation [52]

[Ĥα, ϒ̂] =
√

�ϒ̂, (1)

where ϒ̂ = i
√

�M̂ − N̂ , with M̂ = −i[Ĥ0, Ĥ1], N̂ =
−[Ĥα, [Ĥ0, Ĥ1]]. � depends on the parameter α. This
kind of Hamiltonian contributes to the equally spaced gap
ε ∼ √

� for � > 0 and becomes imaginary if � < 0 [13],
which shows that the quantum phase transition behaviors
occur at the critical point α = αc defined by � = 0. Besides,
hα can be expanded as

hα = −i
∞∑

n=0

(it )n+1

(n + 1)!
[Ĥα, Ĥ1]n, (2)

where [Ĥα, Ĥ1]n = [Ĥα, [Ĥα, Ĥ1]n−1] and [Ĥα, Ĥ1]0 = Ĥ1. As
shown above, we can express the commutation relations in
terms of M̂ and N̂ and could get the following expression:

hα = Ĥ1t + cos (
√

�t ) − 1

�
M̂ − sin (

√
�t ) − √

�t

�
3
2

N̂ . (3)

It shows that as � → 0, hα exhibits a divergent behavior.
Close to this point, the term proportional to �−3/2 is domi-
nant. And, the QFI can be expressed as

Fα (t ) � 4
[sin (

√
�t ) − √

�t]2

�3
Var[N̂]|�〉. (4)

If
√

�t � O(1), Fα (t ) is divergent at � = 0 and scales with
�−3. As was pointed out in Ref. [13], such a scaling of the QFI
holds for general initial states |�〉 provided Var[N̂]|�〉 � O(1)
or even more general mixed states.

III. QUANTUM SENSING WITH THE SJCM

We here consider the system composed of a JC model with
a squeezing drive to the bosonic field. The Hamiltonian can
be written as (h̄ = 1)

Ĥ = ωâ†â + �

2
σ̂z + λ(â†σ̂− + âσ̂+) − G(â2 + â†2), (5)

where � is the frequency of the two-level system, σ̂x,y,z are the
Pauli operators, and σ̂± = (σ̂x ± iσ̂y)/2, â†(â) is the creation
(annihilation) operator of the bosonic field with the frequency
ω. G is the driving strength [53–55] and λ is the coupling
strength between the two-level system and the bosonic field.

Under the condition �/ω → ∞ and �/G → ∞, we can
use the Schrieffer-Wolff transformation ĤS = e−ŜĤeŜ with an
anti-Hermitian and block-off diagonal operator Ŝ = λ(â†σ̂− −
âσ̂+)/� to remove the interaction term related to λ [29].
The low-energy Hamiltonian for the effective normal phase
can be obtained as Ĥ↓

np = (ω − λ2/�)â†â − G(â†2 + â2) −
�/2. We diagonalize this effective Hamiltonian and introduce
a squeezed transformation Ĥ ′

np = er(â†2−â2 )/2Ĥ↓
npe−r(â†2−â2 )/2.

This implies that if r = 1
4 ln ω−λ2/�−2G

ω−λ2/�+2G , the phase transition

occurs at the critical point g = 1 with g = λ/
√

�(ω − 2G)
[56]. Additionally, the Hamiltonian Ĥ ′

np satisfies the relation
in Eq. (1) with � = 16α(α + 2G) and α = (ω − 2G)(1 −
g2)/2, which indicates that the nonanalytic behaviors would
take place at the critical point g = 1 for � = 0. Now we show
the ultimate precision of the quantum parameter estimation
defined by the Cramér-Rao bound. The measurement preci-
sion of the parameter g can be given by QFI in Eq. (4) as

Fg(t ) � 1024(ω − 2G)2G2g2(α + 2G)2

× [sin(
√

�t ) − √
�t]2

�3
Var[P̂2]|ϕ〉, (6)

where P̂ = i(â† − â)/
√

2 is the momentum operator and |ϕ〉 is
the initial state of the bosonic field. It is obvious that Fg(t ) →
∞ when g → 1, indicating we can rely on the critical dy-
namics to estimate the precision of the relevant parameter
associated with g. The quantum sensing can be realized by
encoding the physical quantity of interest either in the qubit
or in the field. We will analyze the performances of the two
different encoding schemes in detail.

IV. ENCODING SCHEMES

We first investigate the performance of the quantum sensor
that works by encoding the signal in one of the quadratures
of the field. For convenience, here we set the bosonic field
to be initially in the state |ϕ〉 = (|0〉 + i|1〉)/

√
2 and the two-

level system in its ground state. After an interaction time t ,
the expectation value and variance of the field quadrature X̂ =
(â + â†)/

√
2 evolve as

〈X̂ 〉t = 2
√

2(α + 2G)�− 1
2 sin(

√
�t/2) (7)

and

(�X̂ )2 = cos2(
√

�t/2) + 8(α + 2G)2�−1 sin2(
√

�t/2), (8)

respectively (see Appendix A for detailed derivation). The
inverted variance is defined by Ig(t ) = χ2

g (t )/(�X̂ )2, where
χg(t ) = ∂g〈X̂ 〉t is the susceptibility of the observable 〈X̂ 〉t

associated with g, and exhibits a divergent feature when g is
close to the critical point, as shown in Fig. 1(a). To quantify
the precision of the relevant parameter estimation, we should
compare Ig(t ) to Fg(t ), where Fg(t ) represents the absolute
lower bound of the measurement defined by quantum Cramér-
Rao bound [49]. Apparently, the inverted variance reaches its

062616-2



CRITICAL QUANTUM SENSING BASED ON THE … PHYSICAL REVIEW A 106, 062616 (2022)

(a)

(b)

FIG. 1. Quantum sensing by homodyne detection of the bosonic
field. (a) QFI Fg(t ) as a function of g for an evolution time τ =
2π/

√
�. When g is close to the critical point, Fg(t ) exhibits a

divergent behavior. Inset: After an evolution time τ = 2π/
√

�, the
susceptibility χg(t ) as a function of g, which exhibits a divergent
behavior. (b) QFI Fg(t ) as a function of the evolution time t . Inset:
For τ = 2π/

√
�, the local maximum of the inverted variance Ig(t )

is of the same order as Fg(t ).

maximum at τn = 2nπ/
√

� (n ∈ N+):

Ig(τn) = 2048n2π2(ω − 2G)2g2(α + G)2(α + 2G)2�−3. (9)

It can be derived from Eq. (6) to get the QFI Fg(τn) �
8n2π2G2g2(ω − 2G)−1(α + 2G)−1(1 − g2)−3Var[P̂2]|ϕ〉.
Figure 1(b) shows that Ig(t ) is close to the QFI, which
confirms the feasibility of this protocol. Note that this result
does not rely on any particular initial states of the bosonic
field.

Criticality-enhanced quantum sensing can also be realized
by encoding the signal in the observables of the qubit. To il-
lustrate the idea, we suppose that the qubit is initially prepared
in |q〉 = c1| ↑〉 + c2| ↓〉 and the bosonic field in |ϕ〉 = |0〉.
With this initial state, the Bloch vector σ̂x evolves as 〈σ̂x〉 =
2Re[c∗

1c2〈ϕ|u†
↑u↓|ϕ〉], where uσ = e−iĤσ t is the evolution op-

erator of the bosonic field when the two-level system is in the
state |σ 〉 with σ = ↑(or ↓). Now if 2c∗

1c2 = 1 is chosen, the
inverted variance can be simplified as

Ig = (∂g〈σ̂x〉)2

(�σ̂x )2
= Re[∂g〈ϕ|u†

↑u↓|ϕ〉]2

1 − Re[〈ϕ|u†
↑u↓|ϕ〉]2

. (10)

In Fig. 2, the inverted variance Igc (τ ) = Ig(τ )|g=gc at the
working point gc for τ = 4π/

√
� is plotted. The result

estimates the precision of the parameter g based on the ob-
servable 〈σ̂x〉. But it should be pointed out that the working

FIG. 2. Quantum sensing by local measurement of the two-level
system. The circles denote the working points gc which are chosen
as R(gc ) = 0.5. The inverted variance I(gc ) based on the observable
〈σ̂x〉 fits well with ∼�−3

gc
. The inset shows R(g) as a function of g.

The initial state is |�〉 = (c1| ↑〉 + c2| ↓〉) ⊗ |ϕ〉, where 2c∗
↑c↓ = 1

and |ϕ〉 = |0〉.

point gc is chosen such that R(gc) = 0.5, where R(g) =
R(g) − �R(g)� with R(g) =

√
(ω+λ2/�)2−4G2

(ω−λ2/�)2−4G2 (see Appendix B).
Figure 2 shows that the inverted variance Igc (τ ) exhibits a
scaling as �−3

gc
. This result can be extended to other general

initial states, such as the superposition of Fock states.

V. HIGHER-ORDER CORRECTIONS

The analysis shown above is valid in the limitation of
β1 = �/ω → ∞ and β2 = �/G → ∞, which guarantees
the normal-to-superradiant quantum phase transition of the
SJCM. However, we can only get the finite values of the ratios
when referring to the practical implementations. It is of essen-
tial importance to analyze the influence of the higher-order
corrections with respect to the Schrieffer-Wolff expansion of
the SJCM.

We correct the expressions Eq. (7) and Eq. (8) to
〈X̂ 〉exp

t = 〈X̂ 〉t + 〈X̂ 〉r and (�X̂ exp)2 = (�X̂ )2 + (�X̂r )2. We
can rewrite the dynamics of the quadrature in the experimental
frame as

〈X̂ 〉exp
t = 〈�|eiĤt X̂ e−iĤt |�〉

= 〈�|e−Ŝr eiĤ↓
npt e−Ŝr X̂ eŜr e−iĤ↓

npt eŜr |�〉
= 〈�|[1 − O

(
β

− 1
2

i

)]
eiĤ↓

npt X̂
[
1 + O

(
β−1

i

)]

×e−iĤ↓
npt

[
1 + O

(
β

− 1
2

i

)]|�〉, (11)

where |�〉 = | ↓〉q ⊗ |ϕ〉 and Ŝr = Ŝ + λω
�2 (â†σ̂− − âσ̂+) +

2Gλ
�2 (â†σ̂+ − âσ̂−) + 4λ3

3�3 (ââ†âσ̂+ − â†ââ†σ̂−) + O(β−5/2
i ).

Obviously, the leading term 〈X̂ 〉t = 〈�|eiĤ↓
npt X̂ e−iĤ↓

npt |�〉
is equal to Eq. (7), and the dominant influence for the
correction is on the order of β

−1/2
i 〈X̂ 〉t ∼ β

−1/2
i �−1/2. We

then consider the effect under the transformed Hamiltonian,
where ĤSr = e−Ŝr ĤeŜr = ωâ†â + �

2 σ̂z − G(â2 + â†2) +
λ2

�
(1 + ω

�
)â†âσ̂z − λ2G

�2 (â2 + â†2)σ̂z − λ4

�3 â†ââ†âσ̂z + λ2

�
(1 +

ω
�

− λ2

�2 − 2λ2

�2 â†â)| ↑〉〈↑ | + O(β−3/2
i ), for which the major

contribution to the correction is about β−1
i �−5/2. We compare

the above two influences and find that the major part is
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(a)

(b)

FIG. 3. Influence of the finite ratios of the qubit frequency to
the field frequency and to the squeezing driving strength. (a) Ratio
Iβ

g (τ )/Ig(τ ) vs β for different values of g. In each of the simulated
curves β = β1 = 10β2 is set. (b) Ratio Iβ

g (τ )/Ig(τ ) vs β1 for differ-
ent squeezing driving strengths, with g = 0.96.

〈X̂ 〉r � β−1
i �−5/2. Similarly, the correction of (�X̂ )2 is on

the order of (�X̂r )2 � β−1
i �−3. To ensure that our analysis

above is valid, both 〈X̂ 〉r and (�X̂r )2 must be sufficiently
small at the working point t = τ . Such a requirement makes
it necessary to restrict � � β

−1/3
i to make the higher-order

corrections negligible, as verified by our numerical simulation
of the inverted variance. As shown in Fig. 3(a), when the
condition is satisfied, the performance of our solutions can
be sustained. One key point that is of great importance is
that the precision of the sensing can be enhanced in virtue of
the adjustable strength of the squeezing drive, which seems
to essentially relax the experimental requirement for the
frequency ratio between the qubit and the field mode. This
is strongly supported by the numerical outcomes illustrated
in Fig. 3(b), showing that the stringent requirement for the
large β1 to realize higher sensing precision can be relaxed by
appropriately reducing the strength of the squeezing drive.
Actually, there is a trade-off in between, as the improvement
in precision by reducing the strength of the squeezing drive
means requiring a greater coupling strength between the
two-level system and the bosonic field.

VI. CONCLUSION

In summary, we have investigated quantum sensing based
on critical phenomena of the SJCM. The two-photon drive
enables the JCM to exhibit QRM-like dynamics and asso-
ciated critical behaviors, without the requirement to reach
the ultrastrong coupling regime. The model can be readily
realized in different spin-boson systems. In an ion trap, the

JC interaction between the internal and external degrees of
freedom of a trapped ion can be mediated by a laser tuned
to the first red sideband, while the squeezing driving can be
realized with a Raman-type driving [57]. For a circuit quan-
tum electrodynamics architecture, the interaction between a
superconducting qubit and a resonator is naturally described
by the JCM, and the squeezing driving can be realized by a
nonlinear process [58,59]. These experimental advances make
it possible to engineer the SJCM and realize the critical dy-
namics for enhanced quantum sensing.
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APPENDIX A: DETAILED DERIVATION OF THE
QUADRATURE DYNAMICS OF THE SJCM

In the Heisenberg picture, the evolution of the quadrature
operator can be written as

X̂ (t ) = cos (
√

�t/2)X̂ + 4(α + 2G)�− 1
2 sin (

√
�t/2)P̂,

(A1)

where α = (ω − 2G)(1 − g2)/2 and g = λ/
√

�(ω − 2G).
For convenience, we choose the initial state of the bosonic
field |ϕ〉 = (|0〉 + i|1〉)/

√
2 in the main text, and the mean

value of operator 〈ϕ|X̂ |ϕ〉 = 0 and 〈ϕ|P̂|ϕ〉 = 1/
√

2. The
mean value of X̂ (t ) can be given by

〈X̂ 〉t = 2
√

2(α + 2G)�− 1
2 sin (

√
�t/2), (A2)

from which the susceptibility with the parameter g can be
obtained as

χg(t ) = ∂g〈X̂ 〉t

= −2
√

2g(ω − 2G)�− 1
2 sin (

√
�t/2) + 32

√
2g(ω

− 2G)(α + G)(α + 2G)�− 3
2 sin (

√
�t/2)−16

√
2g(ω

− 2G)(α + G)(α + 2G)�−1t cos (
√

�t/2). (A3)

Similarly, the susceptibility of the bosonic field frequency ω

can be expressed as

χω(t ) = ∂ω〈X̂ 〉t = − 1

2g(ω − 2G)
χg(t ). (A4)

As shown above, both χg(t ) and χω(t ) exhibit the critical
behaviors as � → 0. For t = τn = 2nπ/

√
�(n ∈ N+), we get

χg(t )= (−1)n−116
√

2g(ω − 2G)(α + G)(α + 2G)�−1t

(A5)

and

χω(t ) = (−1)n8
√

2(α + G)(α + 2G)�−1t . (A6)
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FIG. 4. The inverted variance Ig(t ) as a function of the evolution
time t .

We then calculate the variance of the quadrature operator
X̂ to determine the measurement precision of the corre-
lated parameters. After a detailed calculation, we get 〈X̂ 2〉t =
cos2(

√
�t/2) + 16(α + 2G)2�−1 sin2(

√
�t/2), which leads

to the variance

(�X̂ )2 = cos2(
√

�t/2) + 8(α + 2G)2�−1 sin2(
√

�t/2),

(A7)

reaching its minimums at t = τn = 2nπ/
√

� (n ∈ N+).
This result provides strong evidence to the implementa-
tion of criticality-enhanced measurement precision of the
correlated parameter g. The corresponding inverted vari-
ance is defined as Ig(t ) = χ2

g /(�X̂ )2, which achieves
its local maximums Ig(τn) = 2048n2π2(ω − 2G)2g2(α +
G)2(α + 2G)2�−3 at t = 2nπ/

√
� (n ∈ N+) and has a cer-

tain width at a large value over a period of the evolution time,
as shown in Fig. 4. Similarly, we get Iω(τn) = 512n2π2(α +
G)2(α + 2G)2�−3.

As compared to the Rabi model [29], it should be pointed
out that the main advantage of the SJCM is reflected in the
fact that it achieves the equivalent Rabi model through the
addition of a two-photon drive to the bosonic field of the JC
interaction model, and effectively relaxes the dependence on
ultrastrong coupling by changing the boundary conditions
of the phase transition. It was embodied by the ground
state |φ↓

np〉 = er(a2−a†2 )/2|0〉|g〉 with a different compression
parameter r. Based on this, the appendices are extended
sections of Ref. [60] in terms of the encoding schemes,
achieving the sensing with the same order of precision [see
Fig. 1(b) in the main text], marking the feasibility of the
SJCM in quantum sensing.

APPENDIX B: DERIVATION OF LOCAL OBSERVABLE OF
THE TWO-LEVEL SYSTEM OF THE SJCM

In the main text, we show that one can obtain the infor-
mation of the parameter by measuring the two-level system
directly [60]. It obtains the observable 〈σ̂x〉 = Re[〈ϕ|u†

↑u↓|ϕ〉]
if we set 2c∗

1c2 = 1 for the initial state of the two-level system.
The inverted variance to estimate the precision of the parame-
ter g can be written as

Ig = (∂g〈σ̂x〉)2

1 − 〈σ̂x〉2
= Re[∂g〈ϕ|u†

↑u↓|ϕ〉]2

1 − Re[〈ϕ|u†
↑u↓|ϕ〉]2

. (B1)

The initial state |ϕ〉 of the bosonic field in the eigenbasis of
Ĥ↑

np = (ω + λ2

�
)â†â − G(â†2 + â2) and Ĥ↓

np = (ω − λ2

�
)â†â −

G(â†2 + â2) can be expanded as

|ϕ〉 =
∑

n

c↑
n |φ↑

n 〉 =
∑

n

c↓
n |φ↓

n 〉, (B2)

where |φσ
n 〉 = Ŝ[rσ ]|n〉, Ŝ[rσ ] = exp[−(rσ /2)(â†2 − â2)] with

r↓ = 1
4 ln

ω− λ2

�
−2G

ω− λ2
�

+2G
and r↑ = 1

4 ln
ω+ λ2

�
−2G

ω+ λ2
�

+2G
. Then, we can get

〈ϕ|u†
↑u↓|ϕ〉 = 〈ϕ|eiĤ↑

npt e−iĤ↓
npt |ϕ〉

=
∑
m,n

c↑∗
m c↓

n ei(mE↑−nE↓ )t 〈φ↑
m|φ↓

n 〉, (B3)

where E↑ =
√

(ω + λ2/�)2 − 4G2 and E↓ =√
(ω − λ2/�)2 − 4G2.
Now if we choose the evolution time τ = 4π/

√
�, we

obtain

e−iĤ↓
npτ |ϕ〉 =

∑
n

c↓
n e−in

√
(ω−λ2/�)2−4G2 )τ |φ↓

n 〉

=
∑

n

c↓
n e−i2πn|φ↓

n 〉 = |ϕ〉. (B4)

At this time point, it has

〈ϕ|u†
↑u↓|ϕ〉 = 〈ϕ|eiĤ↑

npτ |ϕ〉

=
∑
m,n

c↑∗
m c↑

n eimτ
√

(ω+λ2/�)2−4G2〈φ↑
m|φ↑

n 〉

=
∑

n

|c↑
n |2ei2mπR(g), (B5)

where R(g) =
√

(ω+λ2/�)2−4G2

(ω−λ2/�)2−4G2 and R(g) = R(g) − �R(g)�. If

R(g) = 0.5 is set, we get 〈ϕ|u†
↑u↓|ϕ〉 = ∑

n(−1)n|c↑
n |2, which

is approximately zero if the coefficient c↑
n varies very slowly

as n increases. Therefore, we set the working point as g = gc

that satisfies R(gc) = 0.5 and the associated evolution time as
τ = 4π/

√
�. It can be seen that 〈σ̂x〉 � 0 and ∂g〈ϕ|u†

↑u↓|ϕ〉
can be simplified as

∂g〈ϕ|u†
↑u↓|ϕ〉 = [〈ϕ|(∂αu†

↑)u↓|ϕ〉 + 〈ϕ|u†
↑(∂αu↓)|ϕ〉]∂α

∂g

� −i
sin(

√
�t ) − √

�t

�
3
2

16Ggc(ω − 2G)

×(α + 2G)〈ϕ|u†
↑u↓P̂2|ϕ〉. (B6)

The corresponding inverted variance is thus expressed as

I (gc) � Re[∂g〈ϕ|u†
↑u↓|ϕ〉]2 � 4096π2g2

cG2(ω − 2G)2

× (α + 2G)2�−3(Im[〈ϕ|u†
↑u↓P̂2|ϕ〉])2, (B7)

where 〈ϕ|u†
↑u↓P̂2|ϕ〉 is a constant independent of gc. It can be

seen that I (gc) is comparable to the QFI we derived before
(as shown in Fig. 2 in the main text).
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