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Given Ntot applications of a unitary operation, parametrized by an unknown phase, a phase-estimation
protocol on a large-scale fault-tolerant quantum system can reduce the standard deviation of an estimate of
the phase from scaling as O[1/

√
Ntot] to scaling as O[1/Ntot]. Owing to the limited resources available to

near-term quantum devices, protocols that do not entangle probes have been developed. Their mean absolute
error scales as O[log(Ntot )/Ntot]. Here, we propose a two-step protocol for near-term phase estimation, with an
improved error scaling. Our protocol’s first step produces several low-standard-deviation estimates of θ , within
θ ’s parameter range. The second step iteratively homes in on one of these estimates. Our protocol achieves a
mean-absolute-error scaling of O[

√
log(log Ntot )/Ntot] and a root-mean-square-error scaling of O[

√
log Ntot/Ntot].

Furthermore, we demonstrate a reduction in the constant scaling factor and the required circuit depths. This
allows our protocol to outperform the asymptotically optimal quantum-phase-estimation algorithm for realistic
values of Ntot.

DOI: 10.1103/PhysRevA.106.062615

I. INTRODUCTION

The task of finding an unknown parameter θ of a unitary
operation Û (θ ) requires phase estimation. Phase estimation
is one of the most prominent tasks in quantum-information
processing. Various forms of phase estimation occur in, for
example, the subroutines of quantum algorithms [1–5], pro-
tocols to find ground-state energies [6], gravitational-wave
detection [7], fixed-reference-frame sharing [8], synchroniza-
tion of clocks [9], and, famously, the measurement of time
[10]. To measure an unknown quantity of interest, θ , a quan-
tum probe ψ0 is subjected to the unitary operation Û (θ ), such
that the output probe ψθ carries useful information [11]. This
information is then accessed via measurements. As quantum
measurements are probabilistic in nature, statistics lead to a
bound on the error of any estimate of θ , θ̃ . (Throughout this
paper, estimates of the quantity X are distinguished using
X̃ .) By utilizing quantum phenomena, these bounds can be
improved. In particular, if Û (θ ) is queried Ntot times, each
time using a separate probe, the error, �θ̃ , scales asymptoti-
cally with the shot-noise limit �θ̃ ∝ 1/

√
Ntot. Using quantum

coherence or entanglement, the scaling can be improved to
the Heisenberg limit: �θ̃ ∝ 1/Ntot [12–14]. The ability to
decrease the error in this way constitutes one of the most
tractable technological applications for quantum advantage.

An example of an algorithm that achieves the Heisenberg
limit is the quantum-phase-estimation algorithm (QPEA).
This algorithm uses the inverse Fourier transform on a set of
entangled probes to provide an estimate of a phase [15,16].
However, the circuit depths, coherence times, and gate fi-
delities needed for practical use of this algorithm are far
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beyond the realistic regime of noisy intermediate-scale quan-
tum devices [17]. Instead, one can use maximum likelihood
estimators (MLEs) to analyze the measurement outcomes
of a single, shallower circuit [18]. These quantum-classical
strategies involve quantum-probe preparation followed by
“classical” measurements, which sample individual probes
separately [19]. A significant, but often overlooked, drawback
of MLE strategies that sample only one circuit is that their
error minimization leads to an estimate which is not point
identified (see below). That is, the MLE cannot distinguish
between several possible values of θ [20–22]. To combat this,
MLE-based protocols have been introduced that iteratively
measure multiple circuits to allow point identification [23].

In this paper, we consider quantum phase estimation with
shallow circuits. We construct a two-step protocol that splits
the phase-estimation problem into a quantum-classical strat-
egy and a point-identification strategy. Compared with previ-
ous phase-estimation protocols, our protocol achieves better
mean-error bounds with shallower circuits. When the point
identification is conducted iteratively, our protocol achieves
a mean-absolute-error scaling of O(

√
log(log Ntot )/Ntot ) and

a root-mean-square-error scaling of O(
√

log Ntot/Ntot ). These
scalings are better than those of previous iterative proto-
cols [8,9]. Additionally, we show that our protocol, which
requires no entanglement between probes or programmable
phase shifts [23], achieves estimates with lower mean errors
than those acquired by the QPEA, for experimentally realistic
circuit depths and values of Ntot.

II. BACKGROUND

Throughout this paper, we focus on Stone’s encoded uni-
taries with a fixed θ [24]: Û (θ ) = eiθ Â, where Â is a known
Hermitian generator independent of θ [25]. After ignoring
a global phase factor and conducting a suitable parameter
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FIG. 1. Quantum circuits used to estimate θ with (a) one appli-
cation of Û (θ ) and (b) N coherent applications of Û (θ ) in series.
(c) Phase estimation via entanglement of N probes. The gate Q is
used to entangle the probes into the GHZ state from an initial state
|ψ0〉.

rescaling, the action of Û (θ ) on the eigenstates corresponding
to the minimum and maximum eigenvalues of Â is

Û (θ ) |amin〉 = |amin〉 ,

Û (θ ) |amax〉 = eiθ |amax〉 . (1)

We focus on optimal phase estimation, by setting the
input-probe states to |ψ0〉 = 1√

2
(|amin〉 + |amax〉), such that

Û (θ ) |ψ0〉 = 1√
2
(|amin〉 + eiθ |amax〉). This state maximizes

the acquired phase difference from Û (θ ) [19]. For example,
consider the measurement of the strength of a magnetic field,
B, aligned in the z direction. Then, Â is the Pauli z matrix,
θ ∝ |B|, and |ψ0〉 is prepared by polarizing, e.g., electron
spins in the x direction.

We note that applying Û (θ ) sequentially N times to |ψ0〉
is equivalent to applying Û (Nθ ) to |ψ0〉 once. The probability
that the probe remains in the state |ψ0〉 after N applications of
Û (θ ) is

p0(N, θ ) = |〈ψ0|Û N (θ )|ψ0〉|2 = 1
2 [1 + cos(Nθ )]. (2)

In this scenario, there is no entanglement generated between
different probes. However, the probes themselves can be in
internally entangled states. Alternatively, one could prepare
N probes in a Greenberger-Horne-Zeilinger (GHZ) state and
apply Û (θ ) once to each probe in parallel [11] [see Figs. 1(b)
vs 1(c)].

It is possible to estimate θ through an estimate of p0(N, θ ):

θ = ± 1

N
arccos [2p0(N, θ ) − 1] + 2π l

N
, (3)

for integer l . The estimate of p0(N, θ ) can be achieved by
first preparing ν probes in state |ψ0〉, then applying a Û (θ )
operation N times to each probe, and finally measuring the
probes in the {|ψ0〉 , |ψ⊥

0 〉} basis. If x of these ν measurements
correspond to the |ψ0〉 outcome, MLEs [26] can be used to
estimate p0(N, θ ): p̃0(N, θ ) = x

ν
. The associated standard de-

viation is σp̃0(N,θ ) �
√

p0(N,θ )(1−p0(N,θ ))
ν

[27]. [We distinguish

the mean absolute error (MAE) of an estimate of X , �X̃MAE,
from the root-mean-square error (RMSE), �X̃RMS, and from
the standard deviation σX̃ .] From Eq. (3), we see that an
estimate of θ has a lower bound on the standard deviation:
σθ̃ � 1

N
√

ν
. This inequality saturates for large ν. The reduc-

tion in standard deviation by a factor N arises directly from
quantum coherence [in Fig. 1(b)] or entanglement between
probes [in Fig. 1(c)] [28]. Methods that do not use quantum
phenomena [Fig. 1(a)] have N = 1 and achieve a standard
deviation bounded by the standard quantum limit: σθ̃ � 1√

ν
.

An obvious problem with the aforementioned quantum
methods is that for any given p0(N, θ ), 2N different values
of θ ∈ [0, 2π ) satisfy Eq. (3). Point identification [20–22] is
needed to determine the correct l and yield an unambigu-
ous estimate of θ . Even the classical method, where N = 1,
cannot distinguish between a true underlying parameter of θ

or 2π − θ . In this case, one can achieve point identification
by carrying out also a second circuit in which Û (θ ) is fol-
lowed by Û (π/2), a known, fixed unitary. For example, this
may be a magnetic pulse of a known and fixed duration and
strength. In the second circuit, p0(1, θ ) becomes p0(1, θ +
π/2) = 1

2 [1 − sin(θ )]. If p0(1, θ + π/2) < 1/2, θ ∈ [0, π ),
else θ ∈ [π, 2π ) [29]. Thus the second circuit allows us to
point-identify in which subspace of the parameter range the
unknown parameter lies. In the general case, N > 1, point
identification is not achieved by applying Û (π/2) alone.
One must iteratively increase N and conduct correspond-
ing quantum-classical point-identification techniques until the
target N is reached [8]. The point-identification procedures
require measurements that do not necessarily decrease the
error of the final estimate. Consequently, point identification
leads to difficulties in reaching the Heisenberg limit.

Throughout this paper, we take the total number of ap-
plications of Û (θ ), Ntot, as the resource of phase-estimation
protocols. That is, we compare the mean errors of protocols
with Ntot applications of the unknown unitary. To investigate
the viability of protocols on noisy intermediate-scale quantum
hardware, we also consider the protocols’ maximum circuit
depth Nmax.

III. TWO-STEP PROTOCOLS

We now introduce our two-step protocols, which split
the phase estimation into two steps: First, a fine-tuning
step that executes a circuit with N applications of Û (θ ) to
achieve several low-standard-deviation estimates of θ . Sec-
ond, a point-identification step that disambiguates the estimate
through either an iterative method or an application of the
QPEA (see below). Given a point-identification method and
a value of Ntot, N is chosen to minimize �θ̃ .

Consider a measurement of the circuit in Fig. 1(b) with
N = 2m, where m ∈ N. This corresponds to the fine-tuning
step of our protocol. By defining θ ≡ 2πT , T ∈ [0, 1), and
binary-expanding T = ∑∞

j=1 t j2− j , where t j is the jth binary
bit of T , the probability of measuring a |ψ0〉 state, Eq. (2),
becomes

p0(2m, θ ) = 1
2 [1 ± cos (θFT)]. (4)
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Here, θFT ≡ 2π
∑∞

j=m+2 t j2m− j ∈ [0, π ], and addition (sub-
traction) occurs if tm+1 = 0 (tm+1 = 1). We note that only
the bits t j with j > m + 1 affect p0(2m, θ ) in this fine-tuning
step. The circuit with N = 2m is executed νFT times and,
upon counting xFT probes in the state |ψ0〉, we estimate
p̃0(2m, θ ) = xFT

νFT
. We then invert Eq. (4) to estimate θFT. Fine-

tuning involves Û (θ ) being applied νFT2m times and returns
an estimate with σθ̃FT

= 1√
νFT

for large νFT.
The next step is point identification, which involves finding

the bits t j with j � m + 1. These bits define the quantity θPI ≡
2π

∑m+1
j=1 t j2− j . An estimate of θPI can be found by a number

of methods. We give two examples below. In general, this step
applies Û (θ ) a total of NPI times. A final estimate of θ is then
given by

θ̃ = θ̃PI + 2−mθ̃FT, (5)

with standard deviation σθ̃ = 2−mσθ̃FT
if the point identifica-

tion was successful.
If Û (θ ) is applied Ntot times over the two steps, νFT can

take a maximum value of 
2−m(Ntot − NPI)�, giving a standard
deviation of

σθ̃ = 1

2m
√
2−m(Ntot − NPI)�

. (6)

σθ̃ can then be combined with the other errors to form the
MAE or RMSE of the estimate: If the protocol produces mul-
tiple errors, �θ̃i, with probabilities εi, the MAE and RMSE
are given by

�θ̃MAE �
∑

i

εi�θ̃i,

�θ̃RMS �
√∑

i

εi(�θ̃i )2. (7)

A. Iterative method

Here, we outline how to estimate θPI through iteration
of many circuits. These circuits have varying depth, N =
2i, for integers i ∈ [0, 1, . . . , m − 1], such that the deepest
circuit has depth Nmax = 2m−1. The circuits are executed to
estimate whether p0(2i, θ ) > 1/2, using the MLE method de-
fined above. We set m → i in Eq. (4) and note that if ti+2 =
1, then cos(2π

∑∞
j=i+2 t j2i− j ) � 0, and p0(2i, θ ) � 1/2 or

p0(2i, θ ) � 1/2 if ti+1 = 0 or ti+1 = 1, respectively. If instead
ti+2 = 0, the relationship between p0(2i, θ ) and ti+1 is the
opposite. Therefore knowing the value of the bit ti+1 and
estimating whether p0(2i, θ ) < 1/2 allows us to estimate the
bit ti+2. We then iterate by increasing i from 0 up to m − 1 to
estimate all of the first m + 1 bits of T , bar the first bit, t1. t1 is
estimated differently, by using an evolution of Û (θ + π/2) as
described above. The whole iteration process is summarized
in Fig. 2. The advantage of estimating θ from most- to least-
significant bit, as opposed to from least- to most-significant bit
[23], is twofold: First, there is no reliance on the programma-
bility of a phase shift, only a fixed one of π/2. Second, the
number of bits needed to describe θ need not be capped. In
addition, because our phase-estimation problem is split into
many circuits, it is suitable for parallel execution.

FIG. 2. Circuits that are executed to estimate the first m + 1
bits of T , θPI. The ith bit is estimated by a circuit with N = 2i−2

applications of Û (θ ) for i > 1, and N = 1, with an additional phase
shift, for i = 1.

To cap the probability, ε, that the entire point-identification
step fails, we need to limit the probability, εi, that the ith bit of
T is incorrectly assigned. Thus the circuit used to estimate the
ith bit must be executed a minimum number of times, νi. A
suitable νi can be calculated using the binomial distribution’s
Chernoff bound [8,16]:

Pr[| p̃0(N, θ ) − p0(N, θ )| � δ] ≡ εi � 2e−νiδ
2/2, (8)

where δ is the maximum allowed absolute difference be-
tween the estimated p̃0(N, θ ) and true p0(N, θ ). Failure occurs
if p̃0(N, θ ) > 1/2 when p0(N, θ ) < 1/2 (and vice versa):
| p̃0(N, θ ) − p0(N, θ )| � | 1

2 − p0(N, θ )|. Hence we choose
δ = | 1

2 − p0(N, θ )| when solving Eq. (8):

νi �
2 ln(2/εi )

(1/2 − p0(N, θ ))2 = 8 ln(2/εi)

cos2(Nθ )
. (9)

Problematically, one needs knowledge of θ to find νi.
Furthermore, when cos Nθ ≈ 0, we require νi → ∞: An im-
possibly large number of samples is required to correctly
identify the ith bit. Previous works [30,31] on iterative phase-
estimation schemes have not considered this issue, which we
now address.

If N = 2k−2, then cos(Nθ ) = 0 when Nθ = π l
2 for integer

l . Also, cos(Nθ ) = 0 when T is represented exactly in binary
with k bits. In this case, p0(N, θ ) = 1

2 , and there is an equal
probability of estimating p0(N, θ ) < 1

2 as there is of estimat-
ing p0(N, θ ) > 1

2 . If T is estimated up to the (m + 1)th bit
with m + 1 > k, the bits after the kth bit also have a 50%
probability of being incorrect [due to the ± sign in Eq. (4)
being flipped], and θPI − θ̃PI = π

2m . However, if ± → ∓ in
Eq. (4), then also the fine-tuning step is affected, resulting
in θ̃FT = π − θFT = π instead of θ̃FT = 0. These two issues
cancel out and lead to a correct estimate of θ . For values
of θ where cos(Nθ ) ≈ 0, θFT is small, and the final estimate
θ̃ = θ − 2θFT

2m . Furthermore, this mislabeling of the bit will oc-
cur with probability less than 50% provided the denominator,
α ≡ 8 sec2 Nθ , is large enough. In simulations, α = 32 was
seen as sufficient for Ntot � 106 (see below).

In summary, the circuit that estimates the ith bit is executed
νi = α ln(2/εi ) times. Over the whole point-identification
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step, we thus apply Û (θ ) a total number

NPI = ν1 +
m+1∑
i=2

2i−2νi = α ln(2/ε1) +
m+1∑
i=2

α2i−2 ln(2/εi ),

(10)

times to estimate θPI.
We now make the assertion that the whole point-

identification protocol is incorrect with maximum proba-
bility ε, such that 1 − ε = ∏m

i=1(1 − εi ). Equivalently, ε �∑m+1
i=1 εi. We use Lagrange multipliers to minimize Eq. (10)

with this constraint. We find that ε1 = 2−mε, εi = 2i−m−2ε for
i > 1, and

NPI = α2m ln

(
8

ε

)
− 2α ln 2. (11)

To decrease ε, each circuit is sampled a larger number of
times, proportional to ln( 1

ε
). The iteration described above

succeeds with probability at least 1 − ε. In these scenarios, the
estimate has an error of �θ̃success. However, if the ith bit of T is
incorrectly identified, the subsequent bits are also incorrectly
labeled. Therefore the final estimate of θ̃PI differs from the
true θ by up to twice the value of the ith bit: �θ̃fail,i = π

2i−2 .
Each error �θ̃fail,i will occur with probability εi. Therefore

m+1∑
i=1

εĩθfail,i = (m + 2)
πε

2m
,

m+1∑
i=1

εi (̃θfail,i )
2 = 2π2ε

2m

[
3 − 1

2m

]
. (12)

It is possible to take θ̃PI as the final estimate of θ , i.e., have
no fine-tuning step. We refer to this method as iteration alone.
The error of a successful run of the iteration-alone protocol is
the value of all the bits truncated: �θ̃success �

∑∞
i=m+1

π
2m . The

mean errors follow the bounds

�θ̃MAE � (1 + (m + 1)ε)
π

2m
,

�θ̃RMS �
√

2π2

2m

[
2

2m
− 3ε

2m
+ 3ε

]
. (13)

In the asymptotic limit, where m is large, a constant ε leads
to Ntot = O(2m), �θ̃MAE = O(m2−m) = O(log NPI/NPI), and
�θ̃RMS = O(2−m) = O(1/

√
NPI). However, allowing ε to be

a function of m improves the scaling: The choice of ε =
O( 1

m ) leads to optimization of the MAE scaling of �θ̃MAE =
O( log(log NPI )

NPI
). Choosing ε = O(2−m) optimizes the RMSE

with a scaling of �θ̃RMS = O( log NPI

NPI
).

B. Iterative two-part protocol

In our protocol, we combine an iterative point-
identification step with a fine-tuning step, where an additional
circuit of depth Nmax = 2m is executed. This is outlined in
AlgorithmI: Lines 1–14 are the point-identification step, and
lines 15–17 are the fine-tuning step. If the iterative point
identification succeeds, the error comes from the fine-tuning
step: �θ̃success = σθ̃ [Eq. (6)]. Combining the errors of the

Algorithm 1. Iterative two-part protocol.

Input: Values of Ntot, m, ε, α

Output: Estimate of θ

1: Execute Û
(
θ + π

2

)
circuit ν1 = α ln

(
2m+1

ε

)
times

2: x1 ← number of |ψ0〉 measured

3: t1 ←
{

0, 2x1 < v1

1, 2x1 � v1

4: θ̃PI ← π × t1

5: Nleft ← Ntot − ν1

6: i ← 2 � i records the bit to be measured
7: whilei � m + 1

8: Execute depth N = 2i−2 circuit νi = α ln

(
2m+3−i

ε

)
times

9: xi ← number of |ψ0〉 measured

10: ti ←
{

NOT ti−1, 2xi < vi

ti−1, 2xi � vi

11: θ̃PI ← θ̃PI + π

2i−1
× ti

12: Nleft ← Ntot − 2i−2νi

13: i ← i + 1
14: end while

15: Execute depth N = 2m circuit νFT =
⌊

Nleft

2m

⌋
times

16: xFT ← number of |ψ0〉 measured

17: θ̃FT ← (−1)tm+1 arccos

(
xFT

νFT
− 1

)
18: Return: θ̃ = θ̃PI + θ̃FT

2m

two steps of our protocol, the mean errors are bounded by

�θ̃MAE � (1 − ε)σθ̃ + (m + 2)πε

2m
,

�θ̃RMS �
√

(1 − ε)σ 2
θ̃

+ 2π2ε

2m

[
3 − 1

2m

]
. (14)

Optimization of the MAE occurs for the choice ε = O(m−3/2),
and optimization of the RMSE occurs for the choice ε =
O(2−m). Using these values of ε, the bounds above scale as

�θ̃MAE = O

(√
log(log Ntot )

Ntot

)
,

�θ̃RMS = O

(√
log Ntot

Ntot

)
, (15)

respectively. These mean-error scalings are better than what
one would achieve by using the iteration-alone protocol. Fur-
thermore, in the simulations below (see Fig. 3), we see that our
protocol benefits from a significant reduction in the constant
factor of the error scaling and in the required circuit depth.

C. Point identification using the QPEA

The QPEA employs inverse Fourier transforms instead
of MLEs to estimate θ [32]. To gain a b-bits estimate of
T = θ/2π with an expected failure probability of ε, t =
b + �log2(2 + 1

2ε
)� probes are manipulated with Ntot = 2t − 1

applications of Û (θ ). The ith probe is subject to 2i−1 coherent
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FIG. 3. Numerical simulations of the performance of each protocol discussed in the text, with α = 32. The value of ε is chosen such that
the minimum upper bound to either the RMSE [(a) and (b)] or the MAE [(c) and (d)] is achieved at different values of Ntot. (a) �θ̃RMS vs Ntot

for each protocol. (b) �θ̃RMS vs Nmax for each protocol. (This is the value of Nmax that achieves the optimal bound on �θ̃RMS for a given Ntot.)
(c) �θ̃MAE vs Ntot for each protocol. (d) �θ̃MAE vs Nmax for each protocol. QPE, quantum phase estimation.

applications of Û (θ ) [16]. In the QPEA, Nmax = 2t−1 + O(t ),
where the linear term comes from applying the quantum
Fourier transform. The algorithm succeeds with a probabil-
ity 1 − ε. In these cases, the error equals the value of the
truncated bits: �θ̃success � π

2b−1 . The algorithm fails with prob-
ability ε. In these cases, the error scales as �θ̃fail = O( 1

2b ).
The probability of success is increased by increasing Ntot and
Nmax, such that Ntot ∝ Nmax ∝ 1

ε
. Combining the individual

errors into means [Eq. (7)] gives the Heisenberg scaling:
�θ̃MAE/RMS = O( 1

Ntot
) [33]. Despite the optimal scaling of the

QPEA, the constant factor before the scaling is large. See
Fig. 3. Thus the QPEA cannot be implemented, in general,
with shallow circuits.

When using the QPEA in the point-identification step of
our two-step protocol, we choose b = m + 1. Consequently,
Û (θ ) is applied NPI = 2m+1+�log2(2+1/2ε)� − 1 times in the
point-identification step. We then use Eq. (6), Eq. (7), and
�θ̃fail = O( 1

2b ) to find that Ntot = O(2m). Consequently,

�θ̃MAE = O

(
1

Ntot

)
, �θ̃RMS = O

(
1

Ntot

)
. (16)

The mean-error scaling still follows the Heisenberg limit, but
the constant before the scaling is smaller than for the QPEA
alone. See Fig. 3. The largest circuit depth exceeds Nmax =
2m+�log2(2+1/2ε)� = O(Ntot ) in the asymptotic limit. Circuits are
thus deeper than the iterative techniques described above and
require many-probe entanglement.

IV. SIMULATIONS

In order to compare the performance of our two-step
protocol with previous protocols, we provide numerical sim-
ulations. These are presented in Fig. 3. When producing the
plots in Fig. 3, we optimized m and ε to find the supremum of
�θ̃RMS and �θ̃MAE as a function of Ntot. Mean-error bounds
are calculated from the worst-case value of θ for a given m
and Ntot. We numerically study the following protocols: the
iterative point identification alone, the QPEA alone, the itera-
tive point identification with fine-tuning, and the QPEA with
fine-tuning. The standard quantum limit (SQL) and Heisen-
berg limit (HL) have also been plotted. We also provide plots
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of these suprema against their corresponding maximum circuit
depth Nmax. We have set α = 32 to facilitate comparisons with
previous work [8].

Figures 3(a) and 3(b) plot the suprema of �θ̃RMS for Ntot ∈
[101, 106]. For small Ntot, the two-part protocols overlap with
the SQL because m = 0 is optimal, i.e., no point identification
is required. The iterative two-part protocol’s RMSE diverges
from the SQL at Ntot ≈ 900, requiring Nmax = 2. The QPE-
algorithm two-part protocol RMSE diverges from the SQL
at Ntot ≈ 2200, when Nmax = 1024. Contrast this with the
QPEA alone, which has a larger RMSE than the SQL for
Ntot < 8191 and Nmax < 4096. The performance of the two
protocols that use the QPEA suffers from a higher RMSE
due to the high resource requirements to reduce the failure
probability ε.

Figures 3(c) and 3(d) plot the suprema of �θ̃MAE for Ntot ∈
[101, 106]. Again, for small Ntot, the two-part protocols over-
lap with the SQL. The QPEA two-part protocol’s MAE now
diverges from the SQL before the iterative two-part protocol’s
MAE. These divergences occur at the values Ntot ≈ 680 with
Nmax = 256 for the QPEA two-part protocol, and Ntot ≈ 900
with Nmax = 2 for the iterative two-part protocol. The QPEA
alone requires Ntot > 4095 and Nmax � 2048 to obtain an
MAE bound below the SQL.

Our simulations demonstrate that the iterative two-part
protocol, despite having worse asymptotic RMSE and MAE
scalings than the QPEA (or the two-part QPEA protocol
introduced here) achieves a lower supremum for smaller
values of Ntot. Furthermore, this iterative two-part pro-
tocol requires significantly shallower circuits (Nmax) than
the QPEA.

V. CONCLUSION

We have proposed a two-step phase-estimation protocol.
In the first step, our protocol produces several contending
precise estimates of an unknown phase. It does so by sam-
pling from a circuit with many applications of the unknown
phase. Then, the protocol point-identifies which estimate is
in the correct parameter regime by independently sampling
multiple circuits, each of which doubles in depth. For a given
total number of applications of the unitary operation, Ntot, our
protocol achieves lower upper bounds on the mean absolute
error (MAE) and the root-mean-square error (RMSE) than
previous iterative protocols. Asymptotically, our protocol’s
MAE scales as O(

√
log(log Ntot )/Ntot ), which is to be com-

pared with a previously published, best iterative scaling of
O(log Ntot/Ntot ) [8,9]. The asymptotic scaling of the RMSE
of our protocol is O(

√
log Ntot/Ntot ), which outperforms pre-

vious iterative methods. Furthermore, when compared with
the QPEA, our protocol’s circuits are shallower, independent
of the failure probability, and they do not require interprobe
entanglement. Our protocol also achieves lower MAE and
RMSE bounds than the QPEA for currently realistic values of
Ntot, despite having a worse asymptotic scaling. The achieve-
ment of low phase-estimation errors with shallow circuits
suggests that our protocol is more practical to implement in
hardware-limited situations, such as noisy intermediate-scale
quantum hardware. The effect of noise present on the perfor-
mance of our protocol is left for future work.
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