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Stochastic learning control of adiabatic speedup in a non-Markovian open qutrit system
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Precise and efficient control of quantum systems is essential to perform quantum information-processing tasks.
In terms of adiabatic speedup via leakage elimination operator approach, for a closed system, the ideal pulse
control conditions have been theoretically derived by P-Q partitioning technique. However, it is a challenge to
design the corresponding control pulses for an open system, which requires noisy environments to be addressed.
In this paper, we apply the stochastic search procedures to an open qutrit system and successfully obtain the
optimal control pulses for significant adiabatic speedup. The calculation results show that these optimal pulses
allow us to acquire higher fidelities than the ideal pulses. The improvement of fidelity is large for relatively strong
system-bath coupling strength and high bath temperature. For certain coupling strength and bath temperature,
the maximal improvement can be achieved for a critical characteristic frequency which represents the memory
time of the environment. Our investigation indicates that the stochastic search procedures are powerful tools to
design control pulses for combating the detrimental effects of the environment.
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I. INTRODUCTION

Robust and accurate control of quantum systems is of
paramount importance in the field of quantum computation
and quantum information processing, such as adiabatic quan-
tum computing [1–3], adiabatic quantum state transmission
[4–7], or quantum gates [8]. In general, quantum control is
employed to find strategies of quantum state evolution from
an initial state towards a specified target state. The design
of such strategies has been widely studied, both theoretically
and numerically. For theory, it includes Lyapunov quantum
control [9,10], geometric control [11], and the Pontryagin
maximum principle [12], etc. For more complicated systems,
numerical algorithms are developed, like stochastic gradi-
ent descent (SGD) and Adam algorithms [13], the Krotov
algorithm [14–18], the gradient ascent pulse engineering al-
gorithm [19,20], the chopped random basis algorithm [21,22],
and the distributed proximal policy optimization algorithm
[23,24].

In adiabatic quantum computation [25–27], the system
needs to evolve along an adiabatic path, and normally an
infinitely long evolution time is necessary [28]. However,
undesirable transitions between various eigenstates of the sys-
tem [29,30] will occur for a short evolution time, which is
required in performing actual tasks. Adiabatic speedup, or
shortcut to adiabaticity, has been put forward to adiabati-
cally accelerate the evolution process [31,32] to restrain the
transitions, including transitionless quantum driving [33,34],
invariant-based inverse engineering [35–37], acceleration of
the adiabatic passage [38,39], superadiabatic driving [40–42],
counterdiabatic driving [43,44], and fast-forward approach
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[45,46]. Moreover, in reality the system will be inevitably
embedded in its surrounding environment. The system-
environment interaction will also destroy the adiabaticity. This
destructiveness will accumulate and become more severe over
time, which incorporates dissipation, decoherence, and other
effects [28]. Adiabatic speedup in open systems has also been
proposed. One scheme is to use the leakage elimination opera-
tor (LEO) approach, which has been studied in closed or open
systems [27,28,47,48]. The LEO Hamiltonian can be realized
by a sequence of control pulses [29,30,49]. The pulse control
conditions have been derived theoretically by the P-Q parti-
tioning technique. However, these control conditions can only
be deduced in closed systems. For a weak environment the
system can be considered nearly closed, and the ideal closed-
system pulses will function well in this case [28,50,51]. While
for a relatively strong environment, pulse control conditions
are not as effective as in the closed case. In this case, it is nec-
essary to take into account the environmental effects for the
pulse design [8]. Then it is interesting to investigate whether
or not in open systems, stochastic search procedures (SSPs)
are able to search the optimal pulses directly and correct the
fidelity decrease due to the environment effects.

Open system dynamics have been extensively investigated
in the past two decades [52,53]. When the memory effects
of the environment are neglected, Markovian approximation
[54,55] is often used to study the evolution of the system,
e.g., the Langevin equations [56] or the master equations [53].
However, when the memory effects have to be taken into
account, a non-Markovian description is required. For in-
stance, Ref. [57] deals with optimal control of a qubit in
a non-Markovian environment. Another recent experiment
[58] indicates that the bath coupled to an optomechanical
system is non-Markovian. With the experimental technique
on environment engineering, it might be possible to observe
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the non-Markovian dynamics of open quantum systems [59].
Normally it is a daunting task to solve the non-Markovian
dynamics of the open systems. The quantum state diffusion
(QSD) equation approach provides a very promising tech-
nique [60,61]. In this paper we adopt the QSD approach
to solve the dynamics of a three-level system and combine
it with quantum optimal control based on the SSPs [13] to
find the optimal control pulses for adiabatic speedup in a
non-Markovian environment. To be specific, the model we
consider is a qutrit linearly coupled to a finite-temperature
heat bath. Compared with the ideal closed-system pulses, the
fidelity improvement Im under different region of parameters
is discussed. Our results show that significant Im can be ob-
tained for relatively strong system-bath coupling strengths �

and high bath temperatures T . However, as the effects of the
control become weak in a more Markovian bath, there is a
critical parameter γ which corresponds to the maximum of
Im. We find that the optimal open-system pulses designed by
the SSPs bear the advantage of correcting the fidelity decrease
induced by the environment.

II. MODEL AND METHOD

A. The model and the Hamiltonian

Suppose a quantum system is immersed in a multimode
bosonic bath; the total Hamiltonian Htot then consists of three
parts:

Htot = Hs + Hb + Hint . (1)

Here Hs is merely the system Hamiltonian, and

Hb =
∑

k

ωkb†
kbk (2)

is the Hamiltonian of the bosonic bath (setting h̄ = 1), with
ωk indicating the frequency of the kth mode of the bath and
b†

k (bk) standing for the creation (annihilation) operator. More-
over, the system-bath interaction Hamiltonian Hint reads

Hint =
∑

k

(g∗
kL†bk + gkLb†

k ). (3)

Here the Lindblad operator L describes the system-bath cou-
pling, and gk denotes the coupling constant between the
system and the kth mode of the bosonic bath.

Now we adopt the QSD approach [60–63] to calculate the
system dynamics. Accordingly, the master equation of the
open system in a non-Markovian finite-temperature bath can
be constructed as

∂

∂t
ρs = −i[Hs, ρs] + [L, ρsO

†
z (t )] − [L†, Oz(t )ρs]

+ [L†, ρsO
†
w(t )] − [L, Ow(t )ρs]. (4)

Here Oz,(w)(t ) = ∫ t
0 dsαz,(w)(t − s)Oz,(w)(t ), with the environ-

mental correlation functions αz,(w)(t − s), and the operators
Oz,(w) are defined by an ansatz (for details see [63,64]).

As in Ref. [62], the master equation, Eq. (4), can be numer-
ically solved with the help of the following closed equations:

∂Oz

∂t
=

(
�T γ

2
− i�γ 2

2

)
L − γ Oz

+ [−iHs − (L†Oz + LOw ), Oz], (5)

∂Ow

∂t
= �T γ

2
L† − γ Ow + [−iHs − (L†Oz + LOw ), Ow].

(6)

Here � represents the strength of the system-bath coupling
and γ stands for the characteristic frequency of the bath.
They both are dimensionless real parameters. Furthermore,
the environmental memory time 1/γ characterizes the mem-
ory capacity of the relevant bath. For small γ , non-Markovian
properties can be observed. The larger γ is, the more Marko-
vian the bath becomes, and it has less memory capacity due to
the shrinking environmental memory time.

In the Markovian limit (i.e., γ → ∞), Eqs. (5) and (6)
become Oz = �T

2 L and Ow = �T
2 L†. The master equation in

Eq. (4) therefore reduces to the Lindblad form [62]:

∂

∂t
ρs = −i[Hs, ρs] + �T

2
[(2LρsL

† − L†Lρs − ρsL
†L)

+ (2L†ρsL − LL†ρs − ρsLL†)]. (7)

In this work we take the qutrit system as an example, and
the Hamiltonian reads [28,50]

Hs(t ) = ω0[(1 − t/Ttot )Jz + t/TtotJx]. (8)

Here Jz = |2〉〈2| − |0〉〈0| and Jx = (|2〉〈1| + |1〉〈2| +
|1〉〈0| + |0〉〈1|)/√2. Ttot is the total evolution time,
and the Lindblad operator is considered as L = J− =√

2(|0〉〈1| + |1〉〈2|) as an example. We set the initial
spacing of the two adjacent energy levels ω0 = 1. With
the ground state |0〉 as our initial state, the dynamical
evolution process is expected to end up with the given
target state (|0〉 − √

2|1〉 + |2〉)/
√

2. Here we use the fidelity
F (t ) = √〈E (t )|ρs(t )|E (t )〉 to measure the adiabaticity during
the evolution process [28], where ρs(t ) is the reduced density
matrix and |E (t )〉 is the noiseless instantaneous eigenstate of
the system.

In Fig. 1 we plot the fidelity F vs the rescaled time t/Ttot

with and without environment for Ttot = 3, 10, respectively.
For � = 0, i.e., closed-system cases, this qutrit system is in an
adiabatic regime when Ttot = 10 but in a nonadiabatic regime
when Ttot = 3. Notice that for � = 0.04, F (Ttot = 10) is lower
than F (Ttot = 3) due to the effects of the environment over
time.

B. Adiabatic speedup under external control

For this model the fidelity decreases with the ever-growing
system-bath coupling strength �, parameter γ , and tempera-
ture T [50]. Also, this destructiveness becomes more severe
with the growth of the total evolution time Ttot . Quantum
optimal control schemes have been proposed to realize adi-
abatic speedup in a nonadiabatic regime by adding an LEO
Hamiltonian to the system. As a result, the destructiveness can
be reduced. The LEO can be implemented by a sequence of
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FIG. 1. The fidelity F vs the rescaled time t/Ttot with (� = 0.04,
γ = 2, and T = 10) and without (� = 0) environment when Ttot =
3, 10.

control pulses, which can be constructed as [28,50]

HLEO(t ) = c(t )Hs(t ). (9)

Here c(t ) is a control function. Consequently, the modulated
Hamiltonian reads

Hc(t ) = [1 + c(t )]Hs(t ). (10)

Physically, the control function c(t ) can be implemented
by a sequence of zero-area pulses, where the integral of the
control pulses in the time domain is zero in one pulse pe-
riod [50]. To obtain an effective control, the pulse intensity
and duration are needed to satisfy certain relations (for de-
tails see [30]). The control conditions for various types of
zero-area pulses have been theoretically derived by the P-Q
partitioning technique, which can only be deduced in closed
systems [4,30,65]. For instance, when the energy gap between
two adjacent energy levels is constant, for sinusoidal pulses
c(t ) = I sin(ωt ) the corresponding pulse control condition is
J0( Iτ

π
) = 0. Here I stands for the amplitude of the control

function and τ is the half-pulse period, J0(x) denoting the
zero-order Bessel function of the first kind. However, for the
qutrit system the energy gap between the ground state and
the first excited state 
E10 is time dependent, instead of a
constant. In this case the amplitude of the control function I
needs to be tuned [30,50]:

I (t ) = I/
E10(t ), (11)

where 
E10(t ) =
√

T 2
tot − 2Ttott + 2t2/Ttot. The control func-

tions such as rectangular and triangular ones have also been
investigated [28,30,65].

The pulse control conditions in above theoretical deriva-
tion are only applicable in closed systems and will lose their
effectiveness in open systems due to the detrimental effects
of the environment [51]. In this work we use the SSPs to
directly find the optimal pulses in an open system, which
have the advantage that the environmental effects are also

taken into account. To compare with the ideal sine pulses,
here the control function c(t ) is also taken as sinusoidal with
a time-dependent amplitude I (t ):

c(t ) = I (t ) sin(ωt ). (12)

Here I (t ) is a N segment piecewise constant function, whose
N values are drawn in order from the pulse amplitude se-
quence I = [I0, I1, . . . , IN−1] and take the equal time interval

t = Ttot/N (ω = 2π/
t). We set N = 5 and Ttot = 3 (Ttot =
3 lies in a nonadiabatic regime) throughout this work. The
time step size is taken as Ttot/10 000 in our calculation. Note
that zero-area pulse conditions [28–30] are followed in the
procedures as in theoretical derivation.

C. Optimal pulse design via SSPs

Our goal is to optimize the pulse amplitude sequence I
to design a better control function for significant adiabatic
speedup, which allows us to reduce much more effects of
the bath than the ideal closed-system control function. This
optimization goal is encoded to minimize the loss, or the
fidelity error, which is normally defined as

L(I) = 1 − F (I) + λcmax. (13)

Here cmax is the maximum of the control function c(t ). In
Eq. (13) there is a competition between the infidelity 1 − F (I)
and maximal control strength cmax for the calculation of loss
L. Here we introduce a relaxation parameter λ to control
their weights [66]. When λ = 0, the SSPs are inclined to
reach a minimal infidelity at the cost of ever-growing control
strengths, which may not be easy to realize experimentally.
We can modulate λ to restrain this tendency. As the attainable
final fidelity F (Ttot ) varies with environmental parameters and
other settings, the value of λ changes accordingly. There is a
simple rule that for the same parameters a larger λ usually
corresponds to a smaller cmax.

SGD is one of the simplest gradient-based optimization
algorithms and can be applied here to construct an itera-
tive process to find satisfactory control pulses and minimize
Eq. (13) [67]. The procedure is presented below.

Algorithm 1. SGD

However, SGD may converge slowly [13,66]. To speed up
this convergence, several improvements have been proposed,
among which Adam is an efficient and scalable one [13]. The
major distinction between SGD and Adam is that Adam is
able to tune the learning rate for each parameter according
to the gradient of each iteration. When the gradient is large,
the learning rate is modulated to be small and vice versa.
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Moreover, to estimate the gradient steadily, an exponential
moving average is considered on the fly. Then an accelerated
and steady convergence is supposed to be acquired. SGD and
Adam have been used to sample at each iteration from the
distribution of the parameter uncertainty and both algorithms
behave well with respect to benchmarks [13]. The specific
depiction of Adam is given below.

Algorithm 2. Adam

Here the initial control c(t ) (I (t )) is usually constructed
by either experience or guess. The iterative process will be
terminated if the loss after an iteration L(Ik ) is less than the
given threshold ξ or the iteration times k > kmax (setting ξ =
0.001).

III. RESULTS AND DISCUSSION

In this section we take the sinusoidal function as an ex-
ample, employ these two SSPs (SGD and Adam) to design
pulses, and compare their performances with the ideal closed-
system pulses to demonstrate the adiabatic speedup. The ideal
closed-system pulse function is given by Eqs. (11) and (12),
and we take Ii = [25.185, 25.185, . . . , 25.185] as our initial
choice to design optimal open-system pulses, which are dif-
ferent from the ideal pulses. Moreover, in actual experiments
the control intensity cannot be infinite. The achievable pulse
intensity depends on the physical system and the control
agent. In this paper we limit the control intensity in the range
|c(t )| < 50.

Figure 2(a) plots the fidelity F vs the rescaled time t/Ttot

under the ideal closed-system and the optimal open-system
pulse control, respectively. The profiles of the corresponding
pulses are depicted in Fig. 2(b). Here � = 0.04, γ = 4, T =
10. Figure 2(a) shows that the fidelity evolutions under these
pulses are almost indistinguishable, i.e., both optimal pulses
have much similar performances as the ideal pulses. In the
inset of Fig. 2(a) we plot the convergence behaviors of the two
algorithms. We choose the maximum of iteration times kmax =
6000 for both algorithms and the learning rate α = 10, 1 for
SGD and Adam, respectively. Evidently, in this case Adam
converges faster: the same fidelity values are obtained after
about 3000 iteration times for SGD but less than 500 times

FIG. 2. (a) The fidelity F vs the rescaled time t/Ttot with the
help of the ideal closed-system pulses and the optimal open-system
pulses (optimized by SGD and Adam). Here � = 0.04, γ = 4, and
T = 10. For SGD (Adam), we choose the learning rate α = 10 (1).
The maximum of iteration times kmax = 6000 for both algorithms.
(b) The corresponding profiles of control pulses used in Fig. 2(a).

for Adam. Adam has the advantage to converge far faster
than SGD after several improvements. Hence from now on,
we employ Adam alone. Figure 2(b) shows the corresponding
profiles of control pulses used in Fig. 2(a). We can see that the
differences are subtle, especially for Adam and SGD.

In the above search, we only use a single sinusoidal control
function and the fidelity improvement is small. To achieve
a more significant fidelity improvement, now we propose a
combinational control function:

c(t ) =
M−1∑
i=0

Ii sin [(i + 1)ωt], (14)
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FIG. 3. (a) The fidelity F vs the rescaled time t/Ttot with the help
of the ideal closed-system pulses and the two kinds of optimal open-
system pulses (optimized by Adam). Here � = 0.04, γ = 4, and T =
10. We choose the learning rate α = 1 and the maximum of iteration
times kmax = 1000. (b) The corresponding profiles of control pulses
used in Fig. 3(a).

which is a combination of Fourier sinusoidal components and
also satisfies the zero-area pulse conditions. Here M indicates
the number of Fourier components, and we consider M = 10
in this work.

In Fig. 3(a) we plot the fidelity F as a function of the
rescaled time t/Ttot under the ideal closed-system pulses and
the two kinds of optimal open-system pulses. The profiles of
the corresponding pulses are depicted in Fig. 3(b). Here we
still take � = 0.04, γ = 4, and T = 10. For the combina-
tional pulses, we set the initial pulse amplitude sequence as
Ii = [10, 10, . . . , 10], the maximum of iteration times kmax =
1000, and the learning rate α = 1. Obviously, the single pulses

FIG. 4. The fidelity improvement Im for different environmental
parameters. Other parameters are the same as in Fig. 3(a). (a) �, γ =
4, T = 10 and T , � = 0.04, γ = 4. (b) γ , � = 0.04, T = 10.

in Eq. (12) are inferior to the combinational ones, which cer-
tainly also outweigh the ideal closed-system pulses. F (Ttot ) =
0.949 for the combinational pulses, while F (Ttot ) = 0.934 for
the single pulses. The reason may be that the combinational
control function can be updated more elaborately in each
iteration.

In order to visually show the above fidelity enhancement,
we define the fidelity improvement Im:

Im = F (Ttot )
combi − F (Ttot )

ideal. (15)

Here F (Ttot )combi and F (Ttot )ideal are the final fideli-
ties obtained by combinational pulses and ideal pulses,
respectively.
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FIG. 5. The evolution of fidelity F for different choices of N with
the help of (a) ideal and single pulses and (b) ideal and combinational
pulses. Here the environmental parameters are taken as � = 0.04,
γ = 4, and T = 10.

Now we discuss the influences of different environmental
parameters �, γ , and T on the final fidelity improvement Im.
In Fig. 4(a) we plot the fidelity improvement Im for different
� and T . Here for different T , we take � = 0.04 and γ = 4.
For different �, we take γ = 4 and T = 10. Obviously, Im
grows with the increase of parameter � or T . That is to say,
a stronger bath (higher T or �) provides more room for the
SSPs to boost the fidelity. Figure 4(b) plots the effects of the
parameter γ on the fidelity improvement Im. γ represents
the memory time of the environment, and larger γ corre-
sponds to a more memoryless environment. In Fig. 4(b) Im
first increases and then decreases with increasing γ . There
is a peak at around γ = 10. Since a more Markovian bath
affects the system more severely, Im should increase mono-

FIG. 6. Corresponding profiles of (a) single and (b) combi-
national pulses when N = 4, 5, and 6. Here the environmental
parameters are taken as � = 0.04, γ = 4, and T = 10.

tonically with increasing γ , as shown in Fig. 4(a). However,
the effects of the control also become weak with increasing
γ [8,62,68]. Physically, the information from the system to
the environment loses faster for a larger γ , and as a result,
only little time is given to control the state of the system.
This observation is in accordance with Refs. [8,68], which
shows that the effectiveness of control can be boosted when
the environment has a longer memory time. When γ < 10, the
first effect dominates while the second one dominates when
γ > 10. There is a critical γ which corresponds to the largest
Im for certain parameters � and T . In the Markovian limit,
the dynamics is given by the Lindblad equation in Eq. (7). In
the inset of Fig. 4(b) we plot the fidelity F vs the rescaled
time t/Ttot in a Markovian environment. Here � = 0.04 and
T = 10. Clearly, the control loses its effectiveness: there is
only a small improvement compared with the free evolution
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FIG. 7. The fidelity F vs the rescaled time t/Ttot with the help
of the ideal closed-system pulses and optimal (combinational) open-
system pulses when L = Jx , J−, or Jz. Here � = 0.04, γ = 4, and
T = 10.

case. It is also worth noting that the combinational schemes
lose their advantage: the two control curves are almost indis-
tinguishable.

In previous discussions, we fix the quantity N = 5. Recall
that for the single pulses, N is the number of segments of
the piecewise constant function I (t ) in Eq. (12) and, for the
combinational pulses, N is the number of periods in the first
Fourier component sin(ωt ). Next we analyze the dependence
of our schemes on the quantity N . In Fig. 5 we plot the fidelity
F vs time t for N = 4, 5, 6 with ideal, single, and combina-
tional pulses, respectively. The environmental parameters are
set as � = 0.04, γ = 4, and T = 10. It is noticeable that a
larger N always corresponds to higher fidelities F . Moreover,
single pulses, in comparison to ideal counterparts, present
similar performances whatever N is. As for combinational
pulses, they do allow us to obtain higher fidelities than ideal
pulses all the time, but fidelity improvement Im decreases
obviously as N grows.

Figure 6 depicts how N affects the shapes of single and
combinational pulses. Environmental parameters are still cho-
sen as � = 0.04, γ = 4, and T = 10. For single pulses,
each In (n = 0, . . . , N − 1) is an amplitude of the sine func-
tion sin(ωt ) so that single pulses are always smooth. For
combinational pulses, each In (n = 0, . . . , M − 1) is an ampli-
tude of the corresponding Fourier component sin[(n + 1)ωt].

Figure 6(b) suggests that combinational pulses are not smooth
enough and this smoothness declines as N increases. Further-
more, just as we can expect, combinational pulses will become
craggier with growing M.

We only consider L = J− in the previous analysis; next we
consider different Lindblad operators L. Figure 7 plots the
fidelity vs the rescaled time for L = Jx, J−, and Jz, respec-
tively. It shows that our control schemes are still effective: the
fidelity improvement can be obtained for all three cases. For
the same environmental parameters (� = 0.04, γ = 4, and
T = 10), the improvement for J− is the most significant, Jx

is in the middle, and Jz corresponds to the smallest.

IV. CONCLUSIONS

High-accuracy quantum control is required for the re-
alization of adiabatic speedup, especially when the system
is immersed in a relatively strong environment. The ideal
pulses have been theoretically derived by P-Q partitioning
technique for closed systems. To address the open-system
cases, in this work we apply the SSPs to search the optimal
pulses for significant adiabatic speedup, which have the ad-
vantage that the detrimental effects of the environment can be
combated. Specifically, we consider a qutrit system in a non-
Markovian finite-temperature environment and use SGD and
Adam algorithms to design the optimal pulses. For the single
pulses, we find that the fidelity obtained by SSPs increases
slightly compared with the ideal case. We then construct the
combinational control function to obtain a more significant
adiabatic speedup. We define a fidelity improvement Im to
demonstrate the advantage of our SSPs. Im is significant for a
relatively strong environment, which indicates that the SSPs
are more powerful when the bath affects the system more
severely. However, as the controllability becomes weak for a
more Markovian environment, Im decreases with increasing
γ for large γ . The maximum of improvement Im can be ob-
tained for certain environmental parameters. Our investigation
demonstrates that the SSPs are powerful tools for the optimal
pulse design in open systems.
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