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Supporting multiple entanglement flows through a continuous-variable quantum repeater
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Quantum repeaters are critical to the development of quantum networks, enabling rates of entanglement
distribution beyond those attainable by direct transmission. We consider multiple continuous-variable, squeezed
light-based entanglement flows through a repeater involving noiseless linear amplification and dual homodyne
detection. By analyzing a single-repeater-enhanced channel model with asymmetric half-channel losses across
the repeater, we determine placements of the central repeater hub in a four-user hub-and-spoke network that
enhance the rate of each entanglement flow.
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I. INTRODUCTION

The second quantum revolution [1] has given rise to
novel technologies such as quantum computation [2], quan-
tum sensing [3], and quantum cryptography [4–6]. There is a
growing interest in forming networks of quantum computers
and sensors for distributed applications. Developing quantum
networks and interconnecting them to form a global-scale
“quantum internet” [7,8] requires reliable quantum commu-
nication over long-haul interconnecting links. Due to their
ability to be transmitted over vast distances photons are a nat-
ural choice of information carrier. Consequently, the primary
challenge to overcome in realizing quantum networks and the
quantum internet is photon loss in the form of fiber losses, free
space attenuation, coupling losses, and detector inefficiencies.

In classical communications, data rate deterioration due to
photon loss can be mitigated using electrical regenerators or
optical amplifiers at intermediary nodes. In quantum com-
munications, the directly analogous deterministic quantum-
limited amplifiers (both phase insensitive and phase sensitive)
are ineffective in mitigating the effects of photon loss [9].
Thus, special purpose quantum regenerative repeaters, in the
form of quantum processors equipped with optical sources,
detectors, and quantum memories have been proposed to “ef-
fectively” amplify quantum information-bearing signals and
extend the range of communication. A variety of different
quantum repeater architectures have been analyzed. They dif-
fer in the type of quantum information encoding [10,11], or in
the type of the underlying protocols [12].

For the so-called continuous-variable (CV) quadrature-
based bosonic encodings [11] such as the coherent and
squeezed states of light, there are several proposed quantum

*ijtillman@email.arizona.edu
†allison.rubenok@arizona.edu
‡saikat@optics.arizona.edu
§kausesh@pitt.edu

repeater architectures [13,14]. One proposed architecture in-
volves the use of the quantum scissor (QS) [15]. The QS is
a nondeterministic operation that, when successful, approxi-
mates the action of a noiseless linear amplifier (NLA) on low
mean photon number states [16]. In CV entanglement distri-
bution based on transmission of two-mode squeezed vacuum
(TMSV) light from spontaneous parametric downconversion,
the QS acting on the lossy transmitted mode can probabilis-
tically herald high-purity states of higher entanglement, in
terms of the logarithmic negativity and entanglement of for-
mation, than the original lossy TMSV state [17]. In particular,
it is possible to tune the gain parameter of the QS such that the
heralded states have distillable entanglement [18] exceeding
the direct transmission entanglement distribution capacity of
the channel, Cdirect, which can be expressed as [19]

Cdirect = −log2(1 − η) ebits/mode

at any given transmission distance, where η is the transmis-
sivity of the channel [20]. Such distilled entangled states
shared over two adjacent quantum links can then be used
to extend the range of entanglement via entanglement swap-
ping. The QS has been shown to support quantum repeater
action for entanglement distribution when used with TMSV
light sources, mode multiplexing, and multimode quantum
memories [14,21,22]. The entanglement distribution rate vs
end-to-end distance has been determined also for the limiting
case of an ideal NLA consisting of infinitely many QSs [23].

We consider the CV repeater architecture based on mul-
tiplexed TMSV state transmissions, QS-based entanglement
distillation, and coherent dual homodyne detection (DHD)
based entanglement swapping in the context of a hub-
and-spoke network. The network consists of quantum links
between four end users and the central repeater hub node,
with DHD being performed at the hub between any two links.
Our paper considers a generalized repeater-enhanced chan-
nel model with nonsymmetric parameters (i.e., transmissivity,
scissor gain, and squeezing amplitude) for the two links being
connected by the repeater node. This general model allows us
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FIG. 1. (a) We model two-user channels based on two sets of asymmetric half channels; each comprises a two-mode squeezed vacuum
(TMSV) source and a quantum scissor (QS) separated by a pure loss channel. One mode from each half channel is mixed using dual homodyne
detection (DHD) resulting in the two-user channel. (b) Our network model consists of four users, each possessing the necessary equipment to
function as either “Alice” or “Bob,” placed on the vertices of a square. They all share a single repeater node “Charlie” placed somewhere in
the center of the square. We compare the rates we achieve to the repeaterless capacity for both the shortest path between the users (ηmin) and
the path going through our Charlie node (η1η2).

to explore arbitrary placements of our hub repeater node that
could cater to multiple entanglement flows between different
pairs of end users, creating a nontrivial optimization problem.
Moreover, the model also corresponds to and enables us to
analyze more realistic real-world network scenarios than pre-
viously considered grid networks with regular spacings. Using
provable lower bounds on the distillable entanglement of the
final two-mode state, we find placements for which the re-
peater hub can help surpass the repeaterless capacity for each
entanglement flow within a square network. Our paper paves
the way towards implementing repeater-enhanced distributed
sensors [24–27] and long baseline telescopes [28,29], which
are important applications of the quantum internet.

The paper is organized as follows. In Sec. II we explain
our repeater model and motivate a definition for entanglement
rate. Section III contains our results. In Sec. IV we discuss nu-
ances in our model, summarize, and look at future directions
for this work.

II. REPEATER MODEL AND RATE FORMULA

Our model of a two-user repeater-enhanced end-to-end
quantum channel with nonsymmetric parameters for entangle-
ment distribution is shown in Fig. 1(a). It consists of two sets
of multiplexed, adjacent “half channels,” one from each of the
two users to a repeater node between them. Each half channel
consists of a TMSV source, pure-loss transmission of arbi-
trary transmissivity of one of two modes in the TMSV state,
and a QS-based approximate NLA. A successfully heralded
half channel from each of the two sets is picked with the help
of a switch and the two are connected by a coherent DHD
entanglement swap operation at the repeater node, resulting
in the two-user end-to-end channel. Below we mathematically
describe each of these elements.

The TMSV state is traditionally described in terms of
the mode annihilation operators, â and b̂, and the squeez-
ing operator S(ζ ) = eζ ∗âb̂−ζ â†b̂†

acting on the joint vacuum
state |0, 0〉AB. We find it useful to expand this in the
Fock basis:

|χ〉AB ≡ S(ζ ) |0, 0〉AB =
√

1 − χ2
∞∑

n=0

χn |n, n〉AB , (1)

where we take ζ � 0 and define χ ≡ tanh(ζ ) so that 0 �
χ < 1. When one of the two modes from the TMSV state is
transmitted through a pure loss bosonic channel of transmis-
sivity η, the distillable entanglement of the distributed state in
the limit of infinite squeezing attains the capacity of the un-
derlying lossy bosonic channel for entanglement distribution.
This can be shown by calculating the reverse coherent infor-
mation (RCI) based Hashing lower bound on the distillable
entanglement of the lossy TMSV state, which in the limit of
χ → 1 attains its maximum value that matches the capacity
Cdirect [30].

The action of an ideal NLA on a generic quantum state |ψ〉
is defined as

|ψ〉 ≡
∞∑

n=0

cn |n〉 �→ T̂∞ |ψ〉 = A
∞∑

n=0

gncn |n〉 , (2)

where T̂k sends Fock state |n〉 �→ gn |n〉 if n � k and removes
all higher-order modes. The QS, as shown in Fig. 1(b) of
[21] and experimentally realized in [31], is an operation based
on single-photon injection and detection that can probabilisti-
cally herald an approximation of this transformation for low
mean photon number states. The QS operation truncates the
input quantum state to only its {0, 1} Fock state support, while
amplifying its 1 photon component relative to the vacuum
component. This is mathematically described as

|ψ〉 �→ T̂1 |ψ〉 = A(c0 |0〉 + gc1 |1〉), (3)

and succeeds with probability

PNLA = (1 − χ2)(χ2(ηg2 + η − 1) + 1)

(1 + g2)((η − 1)χ2 + 1)2
, (4)

where A is a normalizing constant and g is called the NLA
gain.

Coherent DHD involves mixing two modes on a 50:50
beam splitter followed by measurement of two conjugate
quadratures on the two modes. When performed on one mode
from each of two half channels at a repeater it accomplishes
entanglement swapping, resulting in conditional long-range
entanglement between the other unmeasured modes of the two
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half channels. The DHD is depicted in the center of Fig. 1(a).
The mixing and measuring can be modeled by projecting
these two modes onto the eigenstates defined by the complex
measurement outcome γ [21]:

|γ 〉FC = 1√
π

∞∑
n=0

D̂C (γ ) |n〉C |n〉F

= 1√
π

∞∑
n=0

e−|γ |2/2eγ ĉ†
e−γ ∗ ĉ |n〉C |n〉F , (5)

where the modes F and C are the modes being mixed and
measured with DHD. The mode notation is described in the
Appendix.

In multiplexed quantum repeaters [14,32], where one suc-
cessful half channel is heralded from each set of multiplexed
half channels over adjacent quantum links, a lower bound on
the per-mode end-to-end entanglement distribution rate can
be calculated in terms of the probability that at least one
half channel per link succeeds, the probability of success-
ful entanglement swap, the multiplexing M, and the RCI of
the conditional end-to-end entangled state. For the two-user
channel considered in this paper, where they are connected
through a single repeater node, given identical half-channel
success probabilities p over the two sets of half channels,
entanglement swap success probability q, multiplexing M,
and end-to-end entangled state ρ, the rate lower bound is given
by

R = IAB(ρ) × q × [1 − (1 − p)M]2

M
ebits/mode, (6)

where IAB(ρ) is the RCI. Because DHD is a deterministic mea-
surement, we use q = 1 in this paper. The improvement due
to multiplexing comes from the ratio [1 − (1 − p)M]2/(M p2)
going above 1 when 1 < M � 1/p2 and p 	 1. This ratio
peaks at about 0.4/p when M ≈ 1/p. For the asymmetric
half channel based on TMSV and QS with a gain g cho-
sen from the power law discussed in [14], in the regime
η 	 1 we have p = PNLA ∼ η1/4. Because IAB(ρ) ∼ η, this
implies Ropt ∼ IAB(ρ)η−1/4 ∼ η3/4, as shown in Fig. 2 as
the solid curve. However, with greater distance this requires
exponentially more multiplexed channels to achieve the opti-
mal entanglement distribution rate per mode.

For a two-user channel between Alice (A) and Bob (B)
obtained by connecting two half channels of, in general, non-
symmetric parameters at a repeater node (C) by DHD (with
outcome γ ), we determine the exact form of the density oper-
ator of the conditional end-to-end quantum state ρAB(γ ). We
numerically approximate this by truncating it in the Fock basis
to a point where the trace is 99% of the theoretical trace. The
density operator ρAB(γ ) is normalized as ρAB (γ )

Tr[ρAB (γ )] , where the
normalization (denominator) is the un-normalized probability
distribution of γ . The eigenvalues of both ρAB(γ ) and ρA(γ )
are numerically determined for every γ in the complex plane
that gives a non-negligible RCI and used to evaluate the RCI
lower bound. Using Tr[ρAB(γ )] for each γ , the entanglement
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FIG. 2. Comparison of all setups. The asymmetric distribution
case is optimal, attaining better-than-repeaterless-capacity scaling
when we allow optimizing the multiplexing factor, M, at every
distance.

rate is averaged over the γ distribution to give us an achievable
entanglement distribution rate which we call the “ergodic”
rate [20]. Details are in the Appendix.

III. RESULTS

We analyze the end-to-end entanglement distribution rate
[per mode, calculated according to (6)] vs distance for a two-
user channel for all three possible different orientations of the
quantum links: (i) the setup shown in Fig. 1(a) where the users
have different equipment, (ii) a setup where both users have a
QS, and (iii) a setup where both users have a TMSV source.
For the case of half channels with symmetric transmission
losses, Fig. 2 plots the rate-distance tradeoff for the different
orientations of half channels; two of these are found to beat the
repeaterless capacity with M = 1000. This figure also shows
that optimizing M at each distance without an upper bound
for the asymmetric orientation leads to better scaling than the
repeaterless capacity. Though this optimization is trivial, we
do not include it in our network entanglement rate analysis
because doing so is infeasible for a physical implementation.
Among the different orientations, the one where one end user
has a TMSV source (Alice) and the other has a QS-based
approximate NLA (Bob), while the intermediate repeater node
(Charlie) has one of each, as shown in Fig. 1(a) yields the
highest rates. All results shown subsequently are for this sce-
nario with M = 1000.

For any placement of Charlie (defined by η1 and η2) we can
optimize the TMSV and NLA parameters (χ1, χ2, g1, and g2)
to maximize the entanglement rate. For brevity we choose not
to optimize over χ1 and χ2, which we set to 0.3 universally,
and we quasioptimize g1 and g2 by the power law discussed
in [14] using the respective half-channel losses. This gives us
noticeable improvements over fixing g1 and g2.

Now that we can approximate the optimal achievable rate
for a general single repeater-enhanced end-to-end channel, we
set up our four-user network and analyze the rates. Our net-
work model is depicted in Fig. 1(b), consisting of four users
with the one central hub repeater node, “Charlie,” that can act
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FIG. 3. (a) The area within the square beating the shortest path repeaterless capacity between two diagonal users. The size of the area
in which we beat the repeaterless capacity grows to some maximum and then shrinks. (b) The area beating the through Charlie repeaterless
capacity for two side users.

as a repeater for any two users wanting to communicate. We
compare the rates to three baselines: (a) repeaterless capac-
ity through the intermediary node, (b) repeaterless capacity
through the shortest possible path between the nodes, and (c)
rate achieved using only direct DHD at an end user.

We mainly focus on baseline (a), since for long distance
scenarios we envision a practical network will be planned
such that all users have access to at least one shared repeater
node facilitating communication between them, whereas only
a smaller subset of nodes will have the possibility to com-
municate via a direct connection. Baseline (c) can be seen as
an experimentally possible outcome as opposed to the purely
theoretical upper limits of baselines (a) and (b). We set the
squeezing parameter for baseline (c) to be χ = 0.3 to match
our modeled TMSV sources used in the repeater links, but we
use the optimal setup of assuming the DHD swap occurs at an
end user instead of at the repeater node.

We looked at the percentage of placements within the
square network where our repeater node surpasses the base-
lines listed above for diagonal and adjacent user pairs. For
every network scale we split the network into a 31×31 grid

and calculated the rates of each user pair for every Charlie
placement on that grid assuming standard 0.2-dB/km loss.
Examples comparing our rates to baselines (a) and (b) are
shown in Fig. 3. How often we beat these benchmarks in
the network scenario is shown in Fig. 4. Figure 3 gives some
intuition as to why the curves in Fig. 4 initially rise and then
drop back down again after recognizing that our rates are low-
ered in cases of asymmetric loss. We note that in the case of
baseline (a), placing Charlie at the center of the network will
always service any user pair better than repeaterless capacity
for network scales longer than about 200 km, however in the
case of baseline (b) there is no placement at any scale that
surpasses repeaterless capacity for all user pairs. With our
numerics we were able to service all user pairs better than
benchmark (b) only after placing a minimum of three Charlie
nodes within the network. With respect to both baselines (a)
and (b), we beat the repeaterless capacity by up to a factor
of about 40 (as seen in Fig. 4) and the direct DHD perfor-
mance [baseline (c)] by up to a factor of about 1750. These
correspond to the vertical distances between the asymptoti-
cally parallel lines in Fig. 2.

FIG. 4. (a), (b) The proportion of area beating repeaterless capacity for both a side and diagonal connection. We see an initial increase
followed by a decrease once the asymmetric losses lower our rate too much.
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IV. DISCUSSION

We chose to calculate the so-called ergodic rate rather than
the rate achieved by the average state because it is higher than
the latter while remaining achievable. The ergodic rate can in
principle be attained by considering independent asymptotic
entanglement distillation protocols implemented over multi-
ple infinitesimally small bins spanning the complex plane.

To assess when such CV repeater enhanced networks will
be experimentally viable future work should seek to fully
optimize the half-channel squeezing and gain parameters, cap
the gain parameters at some gmax, and consider a more realistic
model for the half channel inclusive of added thermal noise
from the environment. Currently, the highest recorded gain
approximating an NLA is 12 [31]. In the absence of thermal
noise, we begin to see an improvement in the repeaterless
capacity at a gain of 13.

Another consideration is the minimum equipment required
to access the network. We have found rates in our network to
be optimal when one end user has a TMSV and the other has
a QS. Therefore, in order for all pairs to be able to communi-
cate, every user will need to be in possession of both a TMSV
source and a QS, in contrast to the symmetric case where users
only need one of the two.

By doing an RCI analysis of a generalized link model with
nonsymmetric parameters, we have shown that a QS acting
as an approximate NLA can be used in quantum repeaters that
surpass the repeaterless capacity at large distances. Within our
four-user network we surpass repeaterless capacity through
Charlie for all user pairs with a single Charlie placed in the
center of the square for side lengths greater than 200 km. Us-
ing a model with nonsymmetric half-channel losses allowed
us to show that this setup is robust enough to asymmetries in
loss to be used as a shared repeater node in a network while
allowing most, if not all, user pairs to surpass the repeaterless
capacity simultaneously. Our paper paves the way to realizing
realistic CV repeater networks, including distributed sensing
and computing applications as well as quantum key distribu-
tion over the future quantum internet.
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APPENDIX: DENSITY-MATRIX CALCULATIONS

We begin with the states in [21] and follow much of the
same algebra. We label the modes implied in Fig. 1 as follows:
(1) A, Alice’s stored mode; (2) B, Bob’s stored mode; (3) C,
the mode between Charlie’s QS and the DHD; (4) D, the envi-
ronment mode on the link between Alice and Charlie; (5) E ,
the environment mode on the link between Bob and Charlie;
and (6) F , the mode between Charlie’s TMSV source and the
DHD. This gives us the following independent half-channel
states just before the DHD, written in the Fock basis:

|ψ〉ACD =
√

1 − χ2
1

1 + g2
1

[ ∞∑
n=0

χn
1 αn

1 |n, 0, n〉ACD

+ g1
√

η1

∞∑
n=1

χn
1

√
nαn−1

1 |n, 1, n − 1〉ACD

]
, (A1)

|ψ〉BEF =
√

1 − χ2
2

1 + g2
2

[ ∞∑
n=0

χn
2 αn

2 |0, n, n〉BEF

+ g2
√

η2

∞∑
n=1

χn
2

√
nαn−1

2 |1, n, n − 1〉BEF

]
,

(A2)

where η1 and η2 are the half-channel transmissivities,
χ1 and χ2 are the squeezing parameters for Alice and Bob,
g1 and g2 are the QS gains on Alice and Bob’s half
channels, and αk ≡ √

1 − ηk . Taking the inner product of
the tensor product of these two with the measurement
eigenstate

|γ 〉FC = 1√
π

∞∑
n=0

D̂C (γ ) |n〉C |n〉F

= 1√
π

∞∑
n=0

e−|γ |2/2eγ ĉ†
e−γ ∗ ĉ |n〉C |n〉F , (A3)

corresponding to dual homodyne detection on modes F and
C, and tracing out the D and E environment modes, we obtain
the final conditional density operator ρAB(γ ) of modes A and
B (expanded in the Fock basis) given by

ρAB = e−γ 2

π

(
1 − χ2

1

1 + g2
1

)(
1 − χ2

2

1 + g2
2

)[ ∞∑
n=0

∞∑
m=0

χ2n
1 α2n

1 χ2m
2 α2m

2
(−γ )2m+1

m!
|n, 0〉 〈n, 0|AB

+
∞∑

n=0

∞∑
m=0

g2
√

η2χ
2n
1 α2n

1 χ2m+1
2 α2m

2
(−γ )2m

m!
|n, 0〉 〈n, 1|AB

+
∞∑

n=0

∞∑
m=0

m∑
k=max(m−1,0)

g1
√

η1χ
2n+1
1 α2n

1 χ2m
2 α2m

2

√
n + 1

(−γ )m+k

k!
γ 1+k−m |n, 0〉 〈n + 1, 0|AB

+
∞∑

n=0

∞∑
m=0

m+1∑
k=m

g1g2
√

η1η2χ
2n+1
1 α2n

1 χ2m+1
2 α2m

2 (m + 1)
√

n + 1
(−γ )m+k

k!
γ k−m |n, 0〉 〈n + 1, 1|AB

+
∞∑

n=0

∞∑
m=1

g2
√

η2χ
2n
1 α2n

1 χ2m−1
2 α2m−2

2

(−γ )2m−1

(m − 1)!
|n, 1〉 〈n, 0|AB
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+
∞∑

n=0

∞∑
m=1

g2
2η2χ

2n
1 α2n

1 χ2m
2 α2m−2

2

(−γ )2m

(m − 1)!
|n, 1〉 〈n, 1|AB

+
∞∑

n=0

∞∑
m=1

m−1∑
k=max(m−2,0)

g1g2
√

η1η2χ
2n+1
1 α2n

1 χ2m−1
2 α2m−2

2

√
n + 1

(−γ )m+k

k!
γ 2+k−m |n, 1〉 〈n + 1, 0|AB

+
∞∑

n=0

∞∑
m=1

m∑
k=max(m−1,0)

g1g2
2
√

η1η2χ
2n+1
1 α2n

1 χ2m
2 α2m−2

2 m
√

n + 1
(−γ )m+k

k!
γ 1+k−m |n, 1〉 〈n + 1, 1|AB

+
∞∑

n=1

∞∑
m=0

m∑
k=max(m−1,0)

g1
√

η1χ
2n−1
1 α2n−2

1 χ2m
2 α2m

2

√
n

(−γ )m+k

k!
γ 1+k−m |n, 0〉 〈n − 1, 0|AB

+
∞∑

n=1

∞∑
m=0

m∑
k=max(m−1,0)

g1g2
√

η1η2χ
2n−1
1 α2n−2

1 χ2m+1
2 α2m

2

√
n

(−γ )m+k+1

k!
γ 1+k−m |n, 0〉 〈n − 1, 1|AB

+
∞∑

n=1

∞∑
m=0

m∑
k=max(m−1,0)

m∑
j=max(m−1,0)

g2
1η1χ

2n
1 α2n−2

1 χ2m
2 α2m

2 nm!γ 2+k+ j−2m (−γ )k+ j

k! j!
|n, 0〉 〈n, 0|AB

+
∞∑

n=1

∞∑
m=0

m∑
k=max(m−1,0)

m+1∑
j=m

g2
1g2η1

√
η2χ

2n
1 α2n−2

1 χ2m+1
2 α2m

2 n(m + 1)!γ 1+k+ j−2m (−γ )k+ j

k! j!
|n, 0〉 〈n, 1|AB

+
∞∑

n=1

∞∑
m=1

m∑
k=m−1

g1g2
√

η1η2χ
2n−1
1 α2n−2

1 χ2m−1
2 α2m−2

2

√
nm

(−γ )m+k−1

k!
γ 1+k−m |n, 1〉 〈n − 1, 0|AB

+
∞∑

n=1

∞∑
m=1

m∑
k=m−1

g1g2
2
√

η1η2χ
2n−1
1 α2n−2

1 χ2m
2 α2m−2

2

√
nm

(−γ )m+k

k!
γ 1+k−m |n, 1〉 〈n − 1, 1|AB

+
∞∑

n=1

∞∑
m=1

m∑
k=m−1

m−1∑
j=max(m−2,0)

g2
1g2η1

√
η2χ

2n
1 α2n−2

1 χ2m−1
2 α2m−2

2 nm!γ 3+k+ j−2m (−γ )k+ j

k! j!
|n, 1〉 〈n, 0|AB

+
∞∑

n=1

∞∑
m=1

m∑
k=m−1

m∑
j=m−1

g2
1g2

2η1η2χ
2n
1 α2n−2

1 χ2m
2 α2m−2

2 nmm!γ 2+k+ j−2m (−γ ) j+k

k! j!
|n, 1〉 〈n, 1|AB

]
. (A4)

By then further tracing out Bob’s mode, B, we find
Alice’s conditional density operator ρA(γ ). Using ρAB(γ )
and ρA(γ ), we calculate the RCI between Alice and
Bob as

IAB(γ ) = H (ρA) − H (ρAB), H (ρ) ≡ −
∑

λilog2λi, (A5)

where λi are the eigenvalues of ρ. In the integration win-
dow |γ | < γmax, the conditional entanglement distribution
rate R(γ ) is then calculated by multiplying the RCI of the con-
ditional end-to-end state IAB(γ ) by the multiplexing-boosted
success probability of quantum scissor-based probabilistic
noiseless linear amplification succeeding on at least one half
channel on either side of the repeater node. In other words, for
|γ | < γmax,

R(γ ) = [1 − (1 − PNLA,1)M][1 − (1 − PNLA,2)M]

M

× max(IAB(γ ), 0). (A6)

We get the asymptotic ergodic entanglement distribution
rate by averaging R(γ ) over our window |γ | < γmax:

R̄ =
∫

|γ |<γmax

R(γ )P� (γ )d2γ

= 2π
∫ γmax

0 R(γ )TrAB[ρAB(γ )]γ dγ

2π
∫ ∞

0 TrAB[ρAB(γ )]γ dγ
, (A7)

noting that, just like in Ref. [21], we set up |γ 〉FC so that the
trace of ρAB corresponds to P� (γ ), an un-normalized proba-
bility distribution of γ . γmax is chosen such that∫

γ<|γmax|
P� (γ )d2γ =

∫ γmax

0
P� (γ )2πγ dγ � 0.99.

We choose to not integrate over the entire complex plane for
computational simplicity. Both the RCI and P� (γ ) vanish with
larger |γ |, with RCI eventually going negative, so in every
scenario the RCI lost to not averaging over the entire complex
plane is negligible if not zero.
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Similarly, for the symmetric case where TMSV sources are at Alice and Bob’s end, we can do almost identical algebra to
arrive at the following (un-normalized) joint density matrix (also expanded in the Fock basis):

ρAB = e−γ 2

π

(
1 − χ2

1

1 + g2
1

)(
1 − χ2

2

1 + g2
2

)[ ∞∑
n=0

∞∑
m=0

χ2n
1 α2n

1 χ2m
2 α2m

2 |n, m〉 〈n, m|AB

+
∞∑

n=0

∞∑
m=0

g2
√

η2χ
2n
1 α2n

1 χ2m+1
2 α2m

2 (−γ )
√

m + 1 |n, m〉 〈n, m + 1|AB

+
∞∑

n=0

∞∑
m=0

g1
√

η1χ
2n+1
1 α2n

1 χ2m
2 α2m

2

√
n + 1γ |n, m〉 〈n + 1, m|AB

+
∞∑

n=0

∞∑
m=0

g1g2
√

η1η2χ
2n+1
1 α2n

1 χ2m+1
2 α2m

2

√
(m + 1)(n + 1)(1 − |γ |2) |n, m〉 〈n + 1, m + 1|AB

+
∞∑

n=0

∞∑
m=1

g2
√

η2χ
2n
1 α2n

1 χ2m−1
2 α2m−2

2

√
m(−γ ) |n, m〉 〈n, m − 1|AB

+
∞∑

n=0

∞∑
m=1

g2
2η2χ

2n
1 α2n

1 χ2m
2 α2m−2

2 m|γ |2 |n, m〉 〈n, m|AB

+
∞∑

n=0

∞∑
m=1

g1g2
√

η1η2χ
2n+1
1 α2n

1 χ2m−1
2 α2m−2

2

√
m(n + 1)(−γ 2) |n, m〉 〈n + 1, m − 1|AB

+
∞∑

n=0

∞∑
m=1

g1g2
2
√

η1η2χ
2n+1
1 α2n

1 χ2m
2 α2m−2

2 m
√

n + 1(−γ )(1 − |γ |2) |n, m〉 〈n + 1, m|AB

+
∞∑

n=1

∞∑
m=0

g1
√

η1χ
2n−1
1 α2n−2

1 χ2m
2 α2m

2

√
nγ ∗ |n, m〉 〈n − 1, m|AB

+
∞∑

n=1

∞∑
m=0

g1g2
√

η1η2χ
2n−1
1 α2n−2

1 χ2m+1
2 α2m

2

√
n(m + 1)(−γ ∗2) |n, m〉 〈n − 1, m + 1|AB

+
∞∑

n=1

∞∑
m=0

g2
1η1χ

2n
1 α2n−2

1 χ2m
2 α2m

2 n|γ |2 |n, m〉 〈n, m|AB

+
∞∑

n=1

∞∑
m=0

g2
1g2η1

√
η2χ

2n
1 α2n−2

1 χ2m+1
2 α2m

2 n
√

(m + 1)γ ∗(1 − |γ |2) |n, m〉 〈n, m + 1|AB

+
∞∑

n=1

∞∑
m=1

g1g2
√

η1η2χ
2n−1
1 α2n−2

1 χ2m−1
2 α2m−2

2

√
nm(1 − |γ |2) |n, m〉 〈n − 1, m − 1|AB

+
∞∑

n=1

∞∑
m=1

g1g2
2
√

η1η2χ
2n−1
1 α2n−2

1 χ2m
2 α2m−2

2

√
nm(−γ ∗)(1 − |γ |2) |n, m〉 〈n − 1, m|AB

+
∞∑

n=1

∞∑
m=1

g2
1g2η1

√
η2χ

2n
1 α2n−2

1 χ2m−1
2 α2m−2

2 n
√

m(1 − |γ |2)γ |n, m〉 〈n, m − 1|AB

+
∞∑

n=1

∞∑
m=1

g2
1g2

2η1η2χ
2n
1 α2n−2

1 χ2m
2 α2m−2

2 nm(1 − |γ |2)2 |n, m〉 〈n, m|AB

]
. (A8)

For the final case, symmetric distribution with the QSs at Alice and Bob’s nodes, we use covariance matrix algebra to simplify
the scenario. We can use the algebra from [33] to perform a Bell state measurement on one mode from each TMSV dual state,
leaving a two mode state that can then be propagated through the pure loss channel to reach the NLAs at Alice and Bob. It
can be shown that, before the pure loss channel, the resulting two mode state is identical to a TMSV with squeezing parameter
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χ ′ = χ1χ2. After going through the QSs the resulting un-normalized density matrix is

ρAB =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1−α2

1α2
2χ ′2 0 0 g1g2

√
η1η2χ

′

(1−α2
1α2

2χ ′2 )2

0 g2
2α

2
1η2χ

′2

(1− α2
1α2

2χ ′2 )2 0 0

0 0 g2
1α

2
2η1χ

′2

(1− α2
1α2

2χ ′2 )2 0
g1g2

√
η1η2χ

′

(1− α2
1α2

2χ ′2 )2 0 0 g2
1g2

2α
2
1η1η2χ

′2(1+ α2
1α2

2χ ′2 )
(1− α2

1α2
2χ ′2 )3

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A9)
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