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Universal quantum computation with symmetric qubit clusters coupled to an environment
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One of the most challenging problems for the realization of a scalable quantum computer is to design a
physical device that keeps the error rate for each quantum processing operation low. These errors can originate
from the accuracy of quantum manipulation, such as the sweeping of a gate voltage in solid state qubits or the
duration of a laser pulse in optical schemes. Errors also result from decoherence, which is often regarded as more
crucial in the sense that it is inherent to the quantum system, being fundamentally a consequence of the coupling
to the external environment. Grouping small collections of qubits into clusters with symmetries may serve to
protect parts of the calculation from decoherence. In this work, we use four-level cores with a straightforward
generalization of discrete rotational symmetry, called ω-rotation invariance, to encode pairs of coupled qubits and
universal two-qubit logical gates. We include quantum errors as a main source of decoherence, and show that
symmetry makes logical operations particularly resilient to untimely anisotropic qubit rotations. We propose
a scalable scheme for universal quantum computation where cores play the role of quantum-computational
transistors, or quansistors for short. Initialization and readout are achieved by tunnel-coupling the quansistor to
leads. The external leads are explicitly considered and are assumed to be the other main source of decoherence.
We show that quansistors can be dynamically decoupled from the leads by tuning their internal parameters, giving
them the versatility required to act as controllable quantum memory units. With this dynamical decoupling,
logical operations within quansistors are also symmetry-protected from unbiased noise in their parameters. We
identify technologies that could implement ω-rotation invariance. Many of our results can be generalized to
higher-level ω-rotation-invariant systems, or adapted to clusters with other symmetries.

DOI: 10.1103/PhysRevA.106.062610

I. INTRODUCTION

Quantum information theory has become a mature field
of research over the last three decades, equipped with its
own objectives towards quantum computation and commu-
nication [1], as well as quantum simulation [2], while at the
same time allowing entirely novel perspectives on other es-
tablished fields, in particular an algorithmic approach to quan-
tum systems, a structure-of-entanglement characterization of
large classes of many-body quantum states (matrix product
states, tensor networks) [3], and quantum-enhanced mea-
surements reaching the Heisenberg precision limit (quantum
metrology) [4].

Quantum information processing departed from its classi-
cal counterpart with the proof that two-qubit gates [5–7] can
simulate arbitrary unitary matrices, followed by the identifi-
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cation of “simple” quantum universal sets like single-qubit
gates with CNOT [8], and finite quantum universal sets like
Toffoli with Hadamard and π

4 -gate [9], or SWAP with almost
any two-qubit gate [10,11]. The deep theorem of Solovay
and Kitaev showed that it is possible to translate between
strictly universal sets with at most polylogarithmic overhead
[9]. Alongside strict universality, encoded universality [12,13]
and computational universality [14] allow even more systems
to qualify as universal quantum computers.

Circumstantial evidence suggests that quantum computers
might achieve superpolynomial speedups over probabilis-
tic classical ones. Lloyd’s universal quantum simulator and
Shor’s algorithms for integer factorization and for discrete
logarithms are prominent examples of efficient quantum so-
lutions for problems suspected to be not computable in
polynomial time classically [15,16]. Quantum communication
protocols are provably exponentially faster than classical-
probabilistic ones for specific communication complexity
problems [17,18], and there exist problems that space-
bounded quantum algorithms can solve using exponentially
less work space than any classical algorithm [19]. Nonethe-
less, large classes of quantum tasks involving highly entangled
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states are efficiently simulatable classically. Quantum tele-
portation, superdense coding and computation using only
Hadamard, CNOT, and measurements fall into this category
according to the Gottesman-Knill theorem [1,20]. Fermionic
linear optics with measurements, and more generally match-
gate computation, are also known to be classically simulatable
in polynomial time [21–23]. [This is in contrast to universal
bosonic linear optics with measurements [24] and univer-
sal fermionic nonlinear optics with measurements [25]. The
computational difference between particle-number-preserving
fermions and bosons arises as a result of the easy task of com-
puting a (Slater) determinant in the case of fermions versus
the hard task (�P-complete) of computing a permanent [26] in
the case of bosons.]

The physical realization of quantum computers and quan-
tum communication channels is a major endeavor. Most
building blocks of quantum computers are based on qubits,
which are quantum two-level systems. They form the unit
cells that allow us to exploit the potential of quantum infor-
mation processing, when many of these qubits are coherently
coupled and manipulated so as to perform various coherent
quantum operations. While many different types of qubits
have been developed, such as semiconductor technologies in
quantum dots [27], including silicon [28,29], or GaAs [30], in
superconducting technologies [31,32], in all-optical technolo-
gies [33], and in hybrid technologies such as ion traps [34],
cold atoms, and nitrogen-vacancy centers in diamond [35]
that require quantum systems and a laser for control. Topo-
logical technologies can also form the basis of qubits [36],
though their experimental realization is much harder. These
technologies all share the same basic principle of operating as
a quantum two-level system.

In this work we explore a quantum processing unit based
on a four-level system. While there have been some earlier
works on such higher-level systems, including multilevel su-
perconducting circuits as single qudits and two-qubit gates
[37,38], here we consider a special four-level system with ω-
rotation invariance, defined and discussed below, that we will
compare to a pair of qubits in order to address one of the major
challenges in quantum information processing, namely, the
fidelity of two-qubit operations against environment-induced
effects [39].

Indeed, one of the biggest obstructions for a competitive
quantum computation is to keep the error rate low for each
quantum operation [40]. These errors can stem from the pre-
cision of the quantum manipulation, like the sweeping of a
gate voltage in solid-state qubits or the duration of a laser
pulse in optical schemes [41]. In addition, there are errors due
to decoherence [42]. These are often considered more funda-
mental in the sense that they don’t depend on the precision
of the instrumentation but are intrinsic to the quantum system
considered. They are a reflection of the coupling to the outside
environment. Sources of decoherence can be leads, nuclear
spins, optical absorption, phonons, and nonlinearities. Most
of these environments fall into the category of fermionic or
bosonic baths [43,44].

In our basic quantum information unit, based on a four-
level system, untimely single-qubit and double-qubit unitaries
will correspond to environment-induced logical errors. We
will also consider the effect of external leads as the other main

source of decoherence. Indeed, in solid-state-based qubits
electric leads are often the main source of decoherence, partic-
ularly in superconducting qubits and semiconductor quantum
dots [45]. While our model is not limited to a particular im-
plementation, we will use the coupled quantum dot geometry
as an illustration of our quantum processor unit.

We will restrict ourselves to examining the fidelity and
robustness of two double-qubit gates in the presence of a
selected error set, and observe what appears to be an improve-
ment in the results arising due to symmetry. Our results are of
immediate relevance to the study of noisy intermediate-scale
quantum (NISQ) devices, which could realize useful versions
of quantum supremacy in the very near future, long before
fully operational fault-tolerant architectures become available
[46]. Here we do not discuss logical error decay under the
consumption of a resource, nor do we discuss fault tolerance
beyond a few remarks in the Outlook.

II. PRELIMINARIES

Let us consider first a physical system formed by a core
of four coupled quantum dots with on-site energies εi. Each
quantum dot interacts with all the other dots via complex
couplings (we will discuss in Sec. III F how it is possible
to realize complex couplings physically). The corresponding
isolated Hamiltonian is

Hcore = 1

2

4∑
i=1

εia
†
i ai + 1

2

4∑
i, j=1

hi ja
†
i a j + H.c. (1)

Each dot is now made to interact with a semi-infinite chain
consisting of a semi-infinite hopping Hamiltonian with hop-
ping parameter set to unity (thus setting the scale for all
energies). The leads have scattering eigenstates with energies
−2 < E < 2. Tunnel couplings between dot and chain are
initially all identical and are chosen real, positive and small
(0 < tc � 1). As in the case of double and triple dots, the
Feshbach projector method shows that the effect of each lead
is to modify the self-energies of the dots. In this work, we
will study a similar core system formed by four sites (though
not necessarily quantum dots) tunnel-coupled to semi-infinite
leads, but with a crucial additional core symmetry.

Specifically, we will consider the single-particle sector of a
class of tunable systems possessing a simple geometric sym-
metry, dubbed ω-rotation invariance, to be defined in the next
section. A diagram of the model used throughout the paper
is displayed in Fig. 1. It consists of a completely connected
four-site core system tunnel-coupled to four identical semi-
infinite leads (a simple physical example being four quantum
dots tunnel-coupled to semi-infinite leads). The Hamiltonian
is

H = Hcore + Hint + Hlead

= 1

2

4∑
i, j=1

hi ja
†
i a j + tc

4∑
i=1

a†
i bi,1 +

4∑
i=1

∞∑
j=1

b†
i, jbi, j+1+ H.c.

(2)

restricted to the single-particle sector of Hilbert space. The
core couplings hi j are chosen to satisfy relationships ensuring
ω-rotation invariance (see Sec. III). The coupling between site
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FIG. 1. Depiction of the model, consisting of a four-site core
system (disks and dark arrows) tunnel-coupled to four identi-
cal semi-infinite leads (rectangular boxes). The core system is
ω-rotation-invariant (see Sec. III) for any ω4 = 1. The tunable pa-
rameters are ε, γ ∈ R and τ ∈ C. The hopping parameters linking
the sites are generally complex. The coupling constants between the
core’s sites and the leads are equal to tc. All hopping amplitudes
along the leads are set to unity.

i and lead i is tc, which can be taken real and positive without
loss of generality. The Hamiltonian has been normalized such
that the hopping parameter within the semi-infinite chains is
unity. The operators ai and bi, j are annihilation operators,
acting respectively on site i of the core system and on site j of
the ith lead. Since we work in the single-particle sector, these
operators could be fermionic or bosonic. (An example of each
would be a single electron and a Cooper pair, respectively.
Cold atoms can realize either choice.) Our choice of a four-
level core is motivated by our desire to describe two coupled
qubits. The four semi-infinite leads simulate individual con-
tact with the environment and enable us to reveal selective
protection from decoherence. Most of our results can be gen-
eralized to an arbitrary number of sites in the core system with
corresponding identical leads. The required modifications will
be discussed briefly in the Outlook and in the Appendixes.

A. Outline of the paper

In Sec. III we focus on the core system. We define ω-
rotation invariance as an obvious generalization of discrete
rotation invariance, and show that the tunable parameters of an
ω-rotation-invariant system give full control over its eigenen-
ergies while the energy eigenstates remain fixed. Independent
control over the energy levels will be used frequently and is
the main motivation for implementing ω-rotation invariance.
Systems with this symmetry could be realized by applying
the technique of synthetic gauge fields on a tight-binding
Hamiltonian [47]. Selecting a representative from two distinct
ω classes and following the scheme of Deutsch et al. [10], we
show that our four-level core system is strictly universal for
quantum computation. We then consider one possible two-
qubit logical basis and discuss single-pulse logical gates as
well as symmetry protection against errors, and qubit initial-
ization and readout.

In Sec. IV we consider the effect of the four identical leads
on the core. The effective Hamiltonian of the core will in gen-
eral be non-Hermitian but will remain ω-rotation-invariant,
and as a consequence will still allow independent energy

tuning. Our ability to fully control the (potentially complex)
eigenenergies will result in the possibility of transmitting an
eigenstate through the leads or else of protecting it from
decoherence, independently of the other eigenstates. In that
sense, the four-level core may be used as a two-qubit quantum
memory unit.

Finally, in Sec. V we propose a scalable scheme for uni-
versal quantum computation based on four-level cores as the
elementary computational units. The number of cores required
scales linearly in the number of qubits. Because cores play
a role similar to that of transistors in classical computation,
we propose to call them quantum-computational transistors,
or more succinctly quansistors.

Rotation-invariant (circulant) 4 × 4 Hamiltonians have re-
cently been advocated [48] as a way to implement the
adiabatic Fourier transform on two qubits, with gate fidelities
and entanglement benefitting from a symmetry that pro-
tects against decoherence. The proposal includes a possible
physical implementation of circulant symmetry by tuning
spin-spin interactions in ion traps. Although our work also uti-
lizes (generalized) circulant symmetry for protection against
decoherence, the aim and scope of the present article are
somewhat different. We put forward a blueprint for scalable
universal quantum computation based on symmetry-protected
qubit clusters, with ω-rotation invariance standing out as the
prototype of a symmetry which is provably universal, and re-
alistically implementable physically on a variety of platforms.

III. CORE SYSTEM

For a 4 × 4 matrix, we make a slight generalization of
the notion of discrete rotational invariance (which can also
be viewed as cyclic permutation of the sites) to ω-rotation
invariance: M is ω-rotation-invariant if

J†
ωMJω = M, ω4 = 1, (3)

with a modified shift matrix

Jω =

⎛⎜⎜⎝
0 1 0 0
0 0 ω 0
0 0 0 ω2

ω3 0 0 0

⎞⎟⎟⎠, J4
ω = ω21. (4)

Rotational invariance obviously corresponds to the case ω =
1. The matrices J1 and Jeiπ/2 , and their higher dimensional
versions, have been discussed in discrete quantum mechanics
under the name of Weyl’s X and Y matrices, and in quantum
information under the name of generalized Pauli X and Y
matrices (see Appendix A). In the 4 × 4 case we have

X =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠ = J1, Z =

⎛⎜⎜⎝
1 0 0 0
0 i 0 0
0 0 i2 0
0 0 0 i3

⎞⎟⎟⎠,

Y = ZX = Jeiπ/2 . (5)

(Note that the matrix X is sometimes called X † in the
literature.) Just as rotation-invariant matrices are precisely
circulant matrices, ω-rotation-invariant matrices correspond
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to ω-circulant matrices, which we will write

Circω(z0, . . . , z3) =
3∑

s=0

zsJ
s
ω, (6)

with zs ∈ C. The terms “ω-rotation-invariant” and “ω-
circulant” will be used interchangeably. For Hermitian
ω-circulant 4 × 4 matrices the number of independent real
parameters is reduced to four. Such matrices constitute what
we propose to call a flat class: mutually commuting ma-
trices {H (g) | g ∈ R4} with common eigenbasis independent
of g, and real eigenvalues λ1(g), . . . , λ4(g) in one-to-one
correspondence with the values of the parameters g ∈ R4.
Each fourth root of unity ω corresponds to a flat class. (See
Appendix A for details.)

We consider four-level cores with the ability to take a
nonsymmetric form (the off mode), and a symmetric form
(the computational mode). In the off mode, the Hamiltonian
is almost diagonal in the single-particle position eigenbasis:

Hoff = −
∑
〈i j〉

Ki ja
†
i a j +

∑
i

εia
†
i ai, (7)

where large energy offsets |εi − ε j | � Ki j > 0 effectively
suppress spontaneous transitions. The logical states
{|00〉, |01〉, |10〉, |11〉} are naturally chosen to coincide
with the position basis eigenstates {|m〉}m=1,...,4. We will
come back to this mode later.

In the computational mode, the core system is ω-rotation-
invariant in the position basis for all values of its parameters.
The matrix of core couplings {hi j} in (2) will thus form a class
of Hermitian ω-circulant Hamiltonian matrices

Hpos(g, ω) =
3∑

s=0

zs(g)Js
ω, (8)

with zs ∈ C, g ∈ R4, and ω4 = 1. [Recall that the complex
coefficients zs are constrained by Hermiticity Hpos = (Hpos)†,
leaving only four real independent parameters g.] For each
q = 0, . . . , 3 the class ω = eiqπ/2 is flat and diagonalized by
a modified quantum Fourier transform FDq, where F is the
regular quantum Fourier transform

Fk,m = 1
2 e−imk(π/2) (9)

and

D = diag(e−iπ/4, 1,−e−iπ/4, 1). (10)

The eigenstates are∣∣ϕq
k

〉 = ∑
m

(FDq)†
m,k|m〉 = 1

2

∑
m

(D†
m,m)qeimk(π/2)|m〉 (11)

for q, k = 0, . . . , 3. Note that the first index of a matrix corre-
sponds to a dual vector component, whereas the second index
corresponds to a vector component:

〈m∣∣ϕq
k

〉 = (FDq)†
m,k,

〈
ϕ

q
k |m

〉 = (FDq)k,m. (12)

For the purpose of universal quantum computation, two
classes of ω-circulant Hamiltonians are necessary and suffi-
cient: for instance, the class X of circulant Hamiltonians (ω =
1), and the class Y of i-circulant Hamiltonians (ω = eiπ/2). In
Sec. III C we will build a universal set comprising only one

Hamiltonian from each class. We will now consider each of
these classes in turn.

A. Symmetry class X (ω = 1)

Class X is rotation-invariant in the position eigenbasis:

Hpos(g, 1) =
3∑

s=0

zs(g)X s (zs ∈ C, g ∈ R4). (13)

The most general form of the Hamiltonian matrix is

Hpos(g, 1) =

⎡⎢⎢⎣
ε τ γ τ †

τ † ε τ γ

γ τ † ε τ

τ γ τ † ε

⎤⎥⎥⎦ (14)

with ε, γ ∈ R and τ = |τ |eiθ = α + iβ giving the four real
parameters embodied in g. For any value of g the normalized
eigenstates of Hpos(g, 1) are

|φk〉 =
∑

m

F†
m,k|m〉 = 1

2

∑
m

eimk(π/2)|m〉 (15)

for k = 1, . . . , 4, with eigenenergies

λk = ε + 2|τ | cos

(
θ + kπ

2

)
+ (−1)kγ (16)

or

λ1 = ε − 2β − γ , λ2 = ε − 2α + γ ,

λ3 = ε + 2β − γ , λ4 = ε + 2α + γ . (17)

These can be inverted, giving

ε = λ1

4
+ λ2

4
+ λ3

4
+ λ4

4
,

α = −λ2

4
+ λ4

4
,

β = −λ1

4
+ λ3

4
,

γ = −λ1

4
+ λ2

4
− λ3

4
+ λ4

4
. (18)

Any path in the R4 manifold of eigenenergies (λ1, λ2, λ3, λ4)
of the class corresponds to a unique path in the R4 manifold
of parameters (ε, α, β, γ ), giving full control over the energy
levels of the class.

B. Symmetry class Y (ω = eiπ/2)

Class Y is eiπ/2-rotation-invariant in the position eigenba-
sis:

Hpos(g, eiπ/2) =
3∑

s=0

zs(g)Y s (zs ∈ C, g ∈ R4). (19)

The most general form of the Hamiltonian is

Hpos(g, eiπ/2) =

⎡⎢⎢⎣
ε τ −γ iτ †

τ † ε iτ γ

−γ −iτ † ε −τ

−iτ γ −τ † ε

⎤⎥⎥⎦, (20)
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TABLE I. Two possible logical bases. Binary code will be used
throughout, unless explicitly stated otherwise.

Position Binary-coded Gray-coded

|1〉 |00〉 |00〉
|2〉 |01〉 |01〉
|3〉 |10〉 |11〉
|4〉 |11〉 |10〉

where the parameters ε, γ ∈ R and τ ∈ C are chosen to have
exactly the same form as those of (14). The entries in class X
and Y are seen to differ by at most a prefactor. For any value
of g the normalized eigenstates of Hpos(g, eiπ/2) are

|χk〉 =
∑

m

(FD)†
m,k|m〉 = 1

2

∑
m

D†
m,meimk(π/2)|m〉 (21)

for k = 1, . . . , 4, where the coefficients D†
m,m are given in

Eq. (10). The eigenenergies are

λ′
1 = ε +

√
2α −

√
2β − γ ,

λ′
2 = ε −

√
2α −

√
2β + γ ,

λ′
3 = ε −

√
2α +

√
2β − γ ,

λ′
4 = ε +

√
2α +

√
2β + γ , (22)

which can be inverted, giving

ε = λ′
1

4
+ λ′

2

4
+ λ′

3

4
+ λ′

4

4
,

α = λ′
1

4
√

2
− λ′

2

4
√

2
− λ′

3

4
√

2
+ λ′

4

4
√

2
,

β = − λ′
1

4
√

2
− λ′

2

4
√

2
+ λ′

3

4
√

2
+ λ′

4

4
√

2
,

γ = −λ′
1

4
+ λ′

2

4
− λ′

3

4
+ λ′

4

4
. (23)

Again, any path in the R4 manifold of eigenenergies
(λ′

1, λ
′
2, λ

′
3, λ

′
4) of the class corresponds to a unique path in

parameter space (ε, α, β, γ ), giving full control over the en-
ergy levels of the class.

Independent control over the energy levels will be used
later and is a prime motivation for using ω-rotation invariance,
but we stress that this choice of symmetry is not unique. (See
Sec. A for details.) We can now distinguish four “natural”
bases for the system, namely, the position basis {|m〉}, the
energy bases {|φk〉} and {|χk〉}, and the logical basis |�〉 =
{|00〉, |01〉, |10〉, |11〉}, defined by identification with the posi-
tion eigenstates |m〉. Throughout, we will mostly consider the
binary-code-ordered logical basis, but at times it will be con-
venient to consider also the Gray-code-ordered logical basis.
Both bases are illustrated in Table I. Our choice of these bases
is motivated by simplicity, and also by the proposal for quan-
sistor interaction, to be discussed later. The universality result
discussed in the next section is independent of this choice.
However, we should point out that the choice of basis is not
immaterial. Indeed, the Solovay-Kitaev theorem teaches us
that simulating one universal set with another will produce, at
worst, polylogarithmic overhead. And while this is considered

FIG. 2. Commutative diagram of the four working dual bases and
their relationships. The quantum Fourier transform F and the matrix
D are defined in Eqs. (9) and (10), respectively. Top: Position basis
{〈m|}. Middle left: Class X energy basis {〈φk |}. Middle right: Class
Y energy basis {〈χk|}. Bottom: Logical basis {〈�|}.

an acceptable cost in a fault-tolerant setting, such is not the
case in a NISQ setting, where the number of qubits is a severe
constraint and even constant factor overheads are typically
important. The four working bases {|m〉}, {|φk〉}, {|χk〉}, {|�〉},
and their relationships defined in (15), (21), and Table I, are
summarized in the commutative diagram of Fig. 2. The dia-

gram actually uses dual bases, where an arrow like {〈m|} F→
{〈φk|} means 〈φk| = ∑

m Fk,m〈m|. Composition of arrows
agrees with conventional matrix composition.1

C. Strict universality on two qubits

The system Hpos(g, ω) of (8), with ω equal to either 1 or
eiπ/2, generates a strictly universal set of two-qubit gates. In
fact we prove the stronger result that the finite set {V, W} ⊂
U(4) is strictly universal, where the unitaries V and W, de-
fined below, belong to classes X and Y , respectively. (A word
about notation: sans-serif symbols, like V and W, will always
denote logical gates, other more common examples being the
π -phase shift Z, the qubit flip X or NOT, the Hadamard
gate H, the swapping gate SWAP, and the controlled-not
CNOT.) We use the scheme of Ref. [10] to prove our claim.
We construct sixteen Hermitian 4 × 4 matrices H1, . . . , H16

whose evolution unitaries are all within our repertoire, mean-
ing that those unitaries can be approximated with arbitrary
accuracy by repeatedly applying the gates V and W. The set
{H1, . . . , H16} is linearly independent over R so it spans the
16-dimensional R-space of Hermitian 4 × 4 matrices, which
are evolved to generate all 4 × 4 unitaries. Our repertoire
therefore coincides with U(4), or in other words, is strictly
universal on two qubits.

We first define

H1 = 1

2
1 + (π + i)X + X 2 + H.c.

=

⎛⎜⎜⎝
1 π + i 2 π − i

π − i 1 π + i 2
2 π − i 1 π + i

π + i 2 π − i 1

⎞⎟⎟⎠ (24)

and the unitary V = e−iH1 , both of class X . We also define

H̃ = 1

2
1 + π

(
1 + i

4

)
Y + H.c. (25)

1To agree with conventional matrix composition, from right to
left, the arrow corresponding to |φk〉 = ∑

m(F†)m,k|m〉 should be
F† : {|φk〉} → {|m〉}, which is somewhat counterintuitive.
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and the unitary W = e−iH̃/
√

2, both of class Y . All unitaries
of the form Vs = e−isH1 for s ∈ [0, 2π ) are in our repertoire,
because integers mod 2π can be found arbitrarily close to
s. The repertoire also comprises WVW†, and more generally
WVsW† for s ∈ [0, 2π ), which are generated by the Hamilto-
nian

H2 = WH1W†. (26)

(Note that whether or not H2 can be obtained from the sys-
tem’s Hamiltonian is irrelevant. It is sufficient that the unitary
WVsW† be in the repertoire for any s.) We finally define

Hj = i[H1, Hj−1], j = 3, . . . , 14,

H15 = i[H2, H3],

H16 = i[H2, H5]. (27)

Any unitary generated by Hj , for j ∈ {1, . . . , 16}, is in the
repertoire because of the identity

e[P,Q] = lim
n→∞(e−iP/

√
neiQ/

√
neiP/

√
ne−iQ/

√
n)n, (28)

which ultimately boils down to a sequence of V’s and W’s.
Unitaries generated by real linear combinations of the Hj’s
are in the repertoire as well because of the following identity
for noncommuting matrices:

ei(xP+yQ) = lim
n→∞(eixP/neiyQ/n)n. (29)

To show that {H1, . . . , H16} is linearly independent over R
we consider the 4 × 4 matrices Hj as 16-component vectors
(obtained by stacking the columns of the matrix one on top
of the next from left to right), and compute the determinant
of the 16 × 16 matrix [H1| · · · |H16] whose columns are made
of these 16-component vectors. We find det[H1| · · · |H16] =
P(π ), where P is a polynomial of high order with nontran-
scendental coefficients (specifically, coefficients in Q[

√
2, i],

that is to say, linear combinations of
√

2 and i with ratio-
nal coefficients). Since π is transcendental we conclude that
P(π ) �= 0—actually |P(π )| ∼ 1073—so {H1, . . . , H16} spans
the space of 4 × 4 Hermitian matrices, as required. We have
thus proven that the repertoire of {V, W} is all of U(4).

We conclude with a few comments about the Hamiltoni-
ans H1, H̃ chosen to generate the gates V, W in the above
construction. First, these Hamiltonians were chosen to pro-
duce a sequence of matrices H1, . . . , H16 with coefficients in
Q[

√
2, π, i], a property used in the proof of linear indepen-

dence of the Hj’s. This condition is by no means necessary
for linear independence, and many sets of gates other than
{V, W} would qualify as universal. Second, the Hamiltonians
H1, H̃ were also chosen to be nondegenerate, with spectra
{3 ± 2π,−3, 1} and {1 ± 5

2
√

2
π, 1 ± 3

2
√

2
π}, respectively, a

property also shared with the off mode, Eq. (7). Nondegener-
acy plays no role in the above argument but is desirable in any
physical implementation in order to avoid spurious transitions
due to coupling with external degrees of freedom.

D. Symmetry-protected logical operations

Now let us consider how robust our proposal is against
errors. We first mention a somewhat obvious fact about pa-
rameter noise. When a quansistor is in its symmetric form,

performing a logical operation in either ω class, its eigenstates
are independent of the (real) parameters g = (ε, α, β, γ ) in
the Hamiltonian. As a consequence, when these parameters
evolve,

(ε, α, β, γ ) → (ε(t ), α(t ), β(t ), γ (t )), t ∈ [0, T ], (30)

the corresponding logical gate unitary U (T ) is a function of
the parameters’ time averages only

U (T ) = U (〈ε〉, 〈α〉, 〈β〉, 〈γ 〉), (31)

with 〈·〉 = 1
T

∫ T
0 dt (·). This is easily seen by recognizing that

H (ε, α, β, γ ) is diagonalized by a common unitary V for all
values of the parameters:

V †H (g)V = diag[λ1(g), . . . , λ4(g)]. (32)

Thus

U (T ) = V exp

(
−i
∫

dt V †H (g)V

)
V †

= V diag(e−iT 〈λ1〉, . . . , e−iT 〈λ4〉)V †. (33)

From (17) and (22) we get immediately that U (T ) =
U (〈ε〉, 〈α〉, 〈β〉, 〈γ 〉). Accordingly, any parameter noise h(t )
without bias, 〈h〉 = 0, will leave the unitary evolution operator
U (t ) unaffected:

U (g(t ) + h(t )) = U (〈g + h〉) = U (〈g〉). (34)

If the quansistor interacts with the environment in such a
way that the dominant effect of the latter on the quansistor is
unbiased noise in the parameters, then logical operations in-
ternal to the quansistor are protected from those influences by
symmetry. And if the bias has a nonzero but known value, it is
easily compensated for. The argument is valid for any flat class
(see Appendix A), i.e., generalizing from four states to N , any
class of Hamiltonians of the form V diag[λ1(g), . . . , λN (g)]V †

for some unitary V , and functions λr (g) = ∑
s gsλsr with

det[λsr] �= 0. Of course, the symmetry itself, being the key
ingredient here, must be enforced.

On a more interesting level, we now consider the robust-
ness of our logical gates against genuine quantum errors. We
empirically find that the universal set {V, W}, defined in the
previous section, is particularly resilient to small single-qubit
x and z rotations, i.e., errors of the form

E (1)
x (τ ) = e−iτ (σx⊗1), E (2)

x (τ ) = e−iτ (1⊗σx ), (35)

and

E (1)
z (τ ) = e−iτ (σz⊗1), E (2)

z (τ ) = e−iτ (1⊗σz ), (36)

for small τ . For particular values τk = π
2 + kπ , k ∈ N, the

unitaries E (1,2)
x produce single-qubit flips, while E (1,2)

z generate
phase shifts,

E (1)
x (τk ) ∝ X ⊗ 1, E (2)

x (τk ) ∝ 1 ⊗ X,

E (1)
z (τk ) ∝ Z ⊗ 1, E (2)

z (τk ) ∝ 1 ⊗ Z. (37)

As a first figure of merit, we have numerically evaluated
the average fidelity of computational sequences belonging to
the set {V, W}, when affected at each computational step by
an error randomly chosen among {E (1,2)

x (τ ), E (1,2)
z (τ )}, for a
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small fixed value of τ . (In certain situations, static imper-
fections are known to dominate random fluctuation errors
[49], to be considered next.) For comparison, we have re-
peated the same steps with two other computational sequences
belonging respectively to two other strictly universal sets,
namely, the Kitaev set {H ⊗ 1, CP(i), SWAP} [9], and the set
{A, SWAP}. Here H ⊗ 1 is the first-qubit Hadamard gate, and
CP(i) is the controlled i-phase gate

H ⊗ 1 = 1√
2

(
1 1
1 −1

)
⊗ 1, CP(i) = diag(1, 1, 1, i).

(38)
The A gate is a variant of the CNOT gate, and is part of
a class of unitaries A(φ, α, θ ) known to be strictly universal
individually (in combination with the SWAP gate) for many
values of the parameters [7,10,50]. Specifically, the A gate is

A =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 i cos(1) − sin(1)
0 0 − sin(1) i cos(1)

⎞⎟⎟⎠. (39)

Let us describe the method more precisely. For each uni-
versal set S considered, and for integers m ∈ [1, 400], r ∈
[1, 100], we generate the sequence GS

1,r, . . . , GS
m,r of gates

picked randomly from S (with equal probabilities). We call
m the computational length. We also generate sequences
E1,r, . . . , Em−1,r of errors picked randomly (with equal prob-
abilities) from {E (1,2)

x (τ ), E (1,2)
z (τ )}, with τ = 5 × 10−4. The

ideal computations are then

GS
m,r = ©m

i=1GS
i,r, (40)

while the noisy computations are

G̃S
m,r = GS

m,r ©m−1
i=1

(
Ei,rGS

i,r

)
. (41)

(The symbol “©” indicates composition from right to left.) As
an illustration, a noisy computation of length m = 5 from our
universal set {V, W} could be, say, G̃ = VE4VE3WE2VE1W.
The average fidelity of the rth computation G̃S

m,r being

F̃ xz
avg(S, m, r) =

∣∣∣∣14Tr
(
GS,†

m,rG̃S
m,r

)∣∣∣∣2, (42)

we finally average over all computations

F xz
avg(S, m) = 1

100

100∑
r=1

F̃ xz
avg(S, m, r). (43)

While the simplest comparison of the three gate sets would be
to plot average fidelity as a function of computational length
m, this is not necessarily a fair comparison since the Kitaev
set, consisting of three rather than two gates, can presumably
approximate a given unitary operator to the desired precision
in fewer gates by a factor log3 2 ≈ 0.63. Accordingly, we
define a scaled computational length m̃ which is m for {V, W}
and {A, SWAP}, and m log2 3 ≈ 1.59m for Kitaev. A plot of
F xz

avg as a function of the scaled computational length m̃ is
given in Fig. 3 for each universal set considered, {V, W},
{A, SWAP}, and {H ⊗ 1, CP(i), SWAP}. The region shown
lies within the stage of polynomial decay, and does not show
the decaying exponential behavior of the saturation stage, less

FIG. 3. Average fidelity F xz
avg, Eq. (43), against single-qubit x and

z rotations, Eqs. (35) and (36), as a function of scaled computa-
tional length m̃, for three strictly universal sets: {V, W} (upper),
{A, SWAP} (lower), and {H ⊗ 1, CP(i), SWAP} (middle). The cou-
pling τ is set to 5 × 10−4. We find power-law best fits 1 − F xz

avg =
1 − αm̃β with respective powers β1 = 1.10, β2 = 1.95, β3 = 1.37.
The scaled computational length takes account of scaling effects,
as discussed in the text. The maximum value m̃ = 403 corresponds
to sequences of length m = 403 for {V, W} and {A, SWAP}, and
m = 253 for Kitaev.

relevant from the point of view of quantum-coherent compu-
tation. The power-law best fit F xz

avg = 1 − αm̃β gives

F xz
avg ≈

⎧⎨⎩1 − 3.0 × 10−7m̃1.10 for {V, W},
1 − 3.0 × 10−8m̃1.95 for {A, SWAP},
1 − 3.0 × 10−7m̃1.37 for {H ⊗ 1, CP, SWAP}.

(44)
Manifestly, the set {V, W} fares much better than the other
two against this type of error, with an almost linear decay of
fidelity (depending on the degree of error anisotropy). When
equiprobable x-, y-, and z-rotation errors are considered, with
x, z coupling τ = 5 × 10−4 and variable y coupling τy, we
find that the advantage of {V, W} over the Kitaev set narrows
down with increasing τy, vanishing at around τy/τ = 0.55
(not shown). And {V, W} still outperforms the set {A, SWAP}
when τy/τ = 1 (not shown). This hard-y-axis, easy-xz-axes
anisotropy is a nontrivial property of the set {V, W}. (Ad-
ditional numerical results point to the special role of the W
gate.) It is worth emphasizing that, while being more sensi-
tive to y rotations, the set {V, W} outperforms the other two
universal sets with respect to both x- and z rotations.

Let us also mention that the selected type of noise is by
no means exhaustive, and was primarily chosen for ease of
comparison with more common, qubit-based universal sets. It
could nevertheless be realistic in certain implementations. For
example, in a square of charge quantum dots with Gray-code
logical basis (see Fig. 4), a thermal photon could stimulate
tunneling events along the sides of the square parallel to
polarization, increasing the likeliness of the corresponding x
rotation, of which X ⊗ 1 and 1 ⊗ X are particular instances.
In the same setup, the presence of a resonator near one side
of the square (as discussed in Sec. V B) could modify the
effective self-energies of the two closest dots. In a first-order
treatment, the corresponding logical states would be affected
by an identical phase factor, resulting in the dephasing of
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(a) (b)

FIG. 4. (Fractional) X ⊗ 1 and Z ⊗ 1 errors in quantum dots
with Gray-code logical basis. (a) Fractional X ⊗ 1 induced by an
environmental thermal photon. (b) Fractional Z ⊗ 1 induced by the
presence of a resonator near the right-hand side of the square. States
|11〉 and |10〉 acquire an extra phase factor eiφ .

parallel sides of the square, i.e., a z rotation, of which Z ⊗ 1
and 1 ⊗ Z are particular instances.

We should add that, through the technique of circuit ran-
domization, coherent Markovian noise can be tailored into
effective stochastic Pauli noise with the same error rate
[51–53]. Coherent error rate, although not explicitly consid-
ered here, is well quantified by gate fidelity against stochastic
Pauli errors. The technique was also experimentally observed
to largely suppress signatures of non-Markovian errors [52].

As a second figure of merit, let us consider fidelity against
a fluctuating noise corresponding to the larger error set

E (1)
a = e−iτa (σa⊗1),

E (2)
b = e−iτb(1⊗σb),

Eab = e−iτaτb(σa⊗σb),

(45)

for a, b ∈ {x, y, z}, and normally distributed couplings τa, τb.
The 15 corresponding generators constitute, along with the
identity, a basis for all 4 × 4 Hamiltonians. For now, these 15
errors are picked with equal probability 1/15 to generate the
noisy computations of Eq. (41), and the average fidelity

F xyz
avg (S, m) = 1

900

900∑
r=1

F̃ xyz
avg (S, m, r) (46)

is evaluated as a function of computational length m. Here
r enumerates 30 random generations of τx, τy, τz times 30
random noisy sequences for each generation. In Fig. 5 we
plot F xyz

avg as a function of the scaled computational length
m̃, defined below Eqn. (43). If the interactions with the en-
vironment are such as to produce a stronger bias on x and z
rotations, then the set {V, W} is at an advantage. This is seen
in Fig. 5 where τx and τz have average 〈τx〉 = 〈τz〉 = 10−3,
while τy has on average one order smaller, 〈τy〉 = 10−4. All
standard deviations are equal to 10−4. The power-law best fit
F xyz

avg = 1 − αm̃β gives

F xyz
avg ≈

⎧⎨⎩1 − 2.1 × 10−7m̃1.10 for {V, W},
1 − 2.0 × 10−8m̃1.81 for {A, SWAP},
1 − 1.5 × 10−7m̃1.31 for {H ⊗ 1, CP, SWAP}.

(47)

For this degree of error anisotropy, the set {V, W} presents
an almost linear decay of fidelity.

As our third and last figure of merit, we once more consider
fidelity against a fluctuating noise corresponding to the error

FIG. 5. Average fidelity F xyz
avg , Eq. (46), against the equiprobable

Pauli error set (45), as a function of scaled computational length
m̃, for three strictly universal sets: {V, W} (upper), {A, SWAP}
(lower), and {H ⊗ 1, CP(i), SWAP} (middle). The couplings τa are
normally distributed with standard deviation 10−4. The means are
〈τx〉 = 〈τz〉 = 10−3, and 〈τy〉 = 10−4. We find power-law best fits
1 − F xyz

avg = 1 − αm̃β with respective powers β1 = 1.10, β2 = 1.81,
β3 = 1.31. The scaled computational length takes account of scaling
effects, as discussed in the text. The maximum value m̃ = 403 corre-
sponds to sequences of length m = 403 for {V, W} and {A, SWAP},
and m = 253 for Kitaev.

set (45), but we now assume that interactions with the envi-
ronment are such as to make the system more prone to x and
z rotations. For definiteness, the eight errors E (1)

a , E (1)
a , Eab ,

for a, b ∈ {x, z}, are picked randomly with probability 3/31,
while the seven remaining errors, each containing at least one
y rotation, are picked with probability 1/31. The couplings
τa are now identically distributed without bias, 〈τa〉 = 0, and
with standard deviation 10−3. The average fidelity is

F xyz
avg (S, m) = 1

2500

2500∑
r=1

F̃ xyz
avg (S, m, r), (48)

where r enumerates 50 random generations of τx, τy, τz times
50 random noisy sequences for each generation. In Fig. 6 we
plot F xyz

avg as a function of the scaled computational length m̃,
defined below Eq. (43). The power-law best fit F xyz

avg = 1 −
αm̃β gives

F xyz
avg ≈

⎧⎨⎩1 − 2.2 × 10−7m̃1.24 for {V, W},
1 − 1.1 × 10−7m̃1.63 for {A, SWAP},
1 − 5.0 × 10−7m̃1.14 for {H ⊗ 1, CP, SWAP}.

(49)
In spite of the fact that the Kitaev set has a smaller β ex-
ponent than {V, W}, we find that {V, W} is at an advantage,
up to m̃ ∼ 3500, in the presence of a hard-y-axis anisotropy.
Evaluating the performance of {V, W} on a larger error set,
generated by linear combinations of Pauli tensors, is the object
of a future work. The use of fractional V and W operations is
also likely to help reducing errors in variational algorithms,
where small-angle rotations typically abound. Error-divisible
gates implement these small-angle operations directly, with-
out using long, noisy sequences of full rotations [54].

Although we have been concerned with the short-m̃ stage
of polynomial decay, it should be mentioned that for larger m̃,
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FIG. 6. Average fidelity F xyz
avg , Eq. (48), against the Pauli error

set (45), as a function of scaled computational length m̃, for three
strictly universal sets: {V, W} (upper), {A, SWAP} (lower), and
{H ⊗ 1, CP(i), SWAP} (middle, just below upper). Errors without a
y rotation have probability 3/31; other errors have probability 1/31.
The couplings τa are normally distributed without bias, and with
standard deviation 10−3. The scaled computational length takes ac-
count of scaling effects, as discussed in the text. The maximum value
m̃ = 403 corresponds to sequences of length m = 403 for {V, W} and
{A, SWAP}, and m = 253 for Kitaev.

some of the curves plotted in Figs. 3, 5 and 6 present fidelity
revivals (“echoes” in the Loschmidt echo [55–57], not shown)
before reaching the large-m̃ saturation stage.

For implementation purposes in realistic, nonideal plat-
forms, it is important to understand the effect of slightly
breaking the ω-invariance symmetry of the set {V, W}. For
simplicity’s sake, we consider once more four quantum dots
arranged in a square, and perform fidelity simulations in the
presence of a systematic asymmetry A in the Hamiltonians.
Specifically, ω-invariant Hamiltonians H are replaced with
H + A for on-site energy asymmetry,

A0 =

⎛⎜⎜⎝
ε 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, ε � 0, (50)

and asymmetry in nearest-neighbor coupling strengths, and in
second-nearest-neighbor coupling strengths, respectively,

A1 =

⎛⎜⎜⎝
0 ε 0 0
ε 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠, A2 =

⎛⎜⎜⎝
0 0 ε 0
0 0 0 0
ε 0 0 0
0 0 0 0

⎞⎟⎟⎠. (51)

For each asymmetry type, average fidelity F xz
avg against single-

qubit x and z rotations is plotted as a function of ε in Fig. 7. We
detect no singular effect of the asymmetries, with fluctuations
well within 10−5, and a minor dependence on ε.

E. Gauge potentials for ω classes

We now provide a “lattice gauge field” description of ω-
rotation invariance. In Fig. 8 the core is displayed so that
it can be visualized as either planar (as shown) or tetrahe-
dral (by raising the central point |4〉). The complex hopping
parameters linking the sites (the link variables) have the

FIG. 7. Average fidelity F xz
avg against single-qubit x and z rotations

as a function of asymmetry parameter ε, for on-site energy asymme-
try A0, nearest-neighbor asymmetry A1, and second-nearest-neighbor
asymmetry A2. [A0, A1, and A2 are defined in Eqs. (50) and (51).] The
computational length is m = 100. The average is obtained over 200
iterations.

form h jk = |h jk|eiθ jk . In the lattice picture, vertices | j〉 stand

for the matter field, and the phases on the links | j〉 θ jk−→ |k〉
correspond to a U(1) gauge potential θ jk = ∫ k

j A · dr. Paths
around elementary triangular plaquettes yield gauge-invariant
plaquette fluxes,

� j =
∮

�
j

A · dr, (52)

which may be written
∮
�

j
A · dr = ∫∫

� j
(∇ × A) · ds. A Her-

mitian Hamiltonian has θ jk = −θk j , and it is straightforward
to check directly that the field B = ∇ × A is divergence-free
in the tetrahedron, ∑

j

� j = 0. (53)

As a consequence, only three plaquette fluxes are linearly
independent, and the planar and tetrahedral models are
completely equivalent. (The four-level quansistor is essen-
tially two-dimensional. This is in contrast to higher-level

(a) (b)

FIG. 8. Core displayed as either planar or tetrahedral. The
parameters are as in Fig. 1, with τ = |τ |eiθ , γ ∈ R, and ω =
eikπ/2. (a) Transition amplitudes. The part of the Hamiltonian in
span(Jω, J3

ω ) is proportional to τ (solid black). The part of the Hamil-
tonian in span(J2

ω ) is proportional to γ (dotted red). (b) Gauge phases
on links for γ > 0. If γ ∈ R<0, there is an additional phase of π on
θ13 and θ24 (dotted red). If γ = 0, then both θ13 and θ24 vanish.

062610-9



BOUDREAULT, ELEUCH, HILKE, AND MACKENZIE PHYSICAL REVIEW A 106, 062610 (2022)

FIG. 9. Flux structure modulo 2π for H ∈ span(Jω, J3
ω ). The pa-

rameters are τ = |τ |eiθ , and ω = eikπ/2. The first structure depends
on the coupling τ . The second structure is topological, and depends
only on the class ω.

quansistors, which are intrinsically higher-dimensional, as ex-
plained in the Outlook.) Of the six gauge phases θ jk , j < k,
three are independent and generate a manifold of Hamiltoni-
ans for each given flux structure. It is convenient to distinguish
ω-circulant Hamiltonians by their flux structure or “magnetic”
field, whether fundamental or synthetic. Hamiltonians with
different flux structures belong to gauge-inequivalent classes,
and are measurably different. Figure 8 displays (a) transition
amplitudes and (b) gauge phases. As before, the parameters
are τ = |τ |eiθ , γ ∈ R, and ω = eikπ/2. The corresponding flux
structures (modulo 2π ) are represented in Figs. 9 and 10. For
any Hamiltonian of class X , the flux structure is as in the left
diagram of Fig. 9. Therefore, the topological flux structure
� j ≡ −π

2 observed in the right diagram of Fig. 9, character-
istic of Hamiltonians H ∈ span(Y,Y 3), cannot be realized by
any Hamiltonian of class X . Symbolically, span(X, X 2, X 3) �

span(Y,Y 3). Similarly, the topological flux structure observed
in Fig. 10 cannot be realized by Hamiltonians of class X ,
hence span(X, X 2, X 3) � span(Y 2). On the other hand, by
combining the diagrams of Figs. 9 and 10 we see that
span(X, X 2, X 3) ∼= span(Y,Y 2,Y 3). Indeed, a matrix of class
X with X 1 coefficient τ = |τ |eiθ is gauge-equivalent to a ma-
trix of class Y with Y 1 coefficient τ ′ = |τ ′|eiθ ′

if and only if
θ ≡ θ ′ − π/4 mod 2π . In particular, the Hamiltonians H1 and
H̃ from the universality proof, Eqs. (24) and (25), belong to
inequivalent flux structures (although it can be shown that this
inequivalence is not generic).

FIG. 10. Flux structure modulo 2π for H ∈ span(J2
ω ). The pa-

rameters are γ ∈ R>0, and ω = eikπ/2. If γ < 0, there is an additional
flux π in each plaquette. If γ = 0, all fluxes vanish.

F. Physical implementation

In the previous section, we have argued that Hamil-
tonians from different ω classes may have different flux
structures, with three linearly independent plaquette fluxes.
They could therefore be realized by applying magnetic fields
onto two-dimensional or three-dimensional charged systems
with initial Hamiltonians in the form of the off-mode Hamilto-
nian, Eq. (7). The topological (rightmost) flux structure from
Fig. 9, for instance, could be produced from a very long
and thin solenoid penetrating a tetrahedron through one face,
and isotropically releasing a flux of 2π at the center of the
tetrahedron. This flux structure properly belongs to class Y ,
and cannot be realized in class X .

In this section we sketch how the classes X and Y could be
implemented in a wide range of physical systems, comprised
of either charged or neutral levels, using the techniques of
synthetic gauge fields. The appearance of gauge structures
in systems with parameter-dependent Hamiltonians [58,59] or
time-periodic Hamiltonians [60] is well known. In the former
case, and when the adiabatic approximation holds, the dy-
namics of an adiabatically evolving particle can be projected
onto the subspace spanned by the mth eigenstate ψm[R(t )].
The resulting effective Schrödinger equation for ψm[R(t )]
involves a Berry connection A(R) playing the role of a
gauge potential, through the substitution p → p − A in the
effective Hamiltonian, or equivalently, as a geometric phase
exp i

∫
dR · A acquired by ψm[R(t )] over the displacement.

This has been shown to occur in mechanical systems [61],
molecular systems [62], and condensed matter systems [63].
Similarly, for systems driven by fast time-periodic modula-
tions (Floquet engineering), one may consider the evolution
at stroboscopic times tN = NT , where T is the driving period
[47,64]. Here again, the resulting effective dynamics has been
shown to yield nontrivial gauge structures in different plat-
forms such as condensed matter systems [65,66], photonics
[67,68], ultracold atoms in optical lattices [69–74], and ions
in microfabricated traps [75,76]. In a lattice with coordination
number d , nearest-neighbor hopping terms Km,m+u|m〉〈m +
u| act on wave functions as

ψ (m) → Km,m+uψ (m + u) = Km,m+ue−iu·pψ (m), (54)

where naturally p is the momentum operator and u is a vector
of unit norm in Zd . In the presence of an effective gauge po-
tential A(m), the Peierls substitution p → p − A(m) amounts
to the complexification of real hopping parameters

Km,m+u → Km,m+ueiu·A(m) = Km,m+ueiθm,m+u . (55)

The Peierls phases θm,m+u may also depend on internal de-
grees of freedom (pseudospin) and can then be thought of
as resulting from an artificial or synthetic non-Abelian gauge
field [47]. For the implementation of the classes X and Y , we
need to realize the gauge-invariant flux structures described in
Sec. III E, whether fundamental or artificial. One possibility is
to Floquet engineer Peierls phases as in the Hamiltonians (14)
and (20). In the former, we have Peierls phases θ j, j+1 ≡ θ ,
and all others zero. In the latter, we have instead θ j, j+1 =
θ + (π/2) j−1 and θ13 = π , and all others zero.

In [71], for instance, lattice shaking is used to prompt a fast
periodic modulation of the on-site energies of a tight-binding
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Hamiltonian analogous to our off-mode Hamiltonian, Eq. (7):

H (t ) = −
∑
〈i j〉

Ki ja
†
i a j +

∑
i

[εi + vi(t )]a†
i ai, (56)

where Ki j > 0, vi(t ) = vi(t + T ), and 〈vi〉T =
1
T

∫ T
0 dt vi(t ) = 0. Using Floquet analysis, the resulting

effective time-independent Hamiltonian proves to be of the
form

Heff = −
∑
〈i j〉

∣∣Keff
i j

∣∣eiθi j a†
i a j + εeff

∑
i

a†
i ai, (57)

with complex tunneling amplitudes∣∣Keff
i j

∣∣eiθi j = Ki j〈ei(w j−wi )/h̄〉T , (58)

where wi(t ) = − ∫ t
t0

dt ′vi(t ′) + 〈∫ t
t0

dt ′vi(t ′)〉T . As long as the
driving functions break certain symmetries, the Peierls phases
can be varied smoothly to any value between 0 and 2π .
Producing nontrivial Peierls phases that cannot be gauged
away may require additional static structure, like large energy
offsets |ε j − εi| � Ki j [71]. In our setup, these large energy
offsets are already present in the off-mode Hamiltonian to
effectively suppress spontaneous transitions between logical
states (position eigenstates).

IV. COUPLING TO LEADS

We now consider the effect of the semi-infinite leads on the
core system. As indicated in the Hamiltonian (2) and in Fig. 1,
each site (for example, a quantum dot) is tunnel-coupled to its
own lead (which could be, for example, a semi-infinite spin
chain) but the parameters and coupling constants of the four
leads are chosen to be identical. The transition amplitudes
in the leads are set to unity, and the lead-to-site coupling tc
can be chosen real and positive with no loss of generality.
Coupling the core to the leads may serve to model the core’s
immersion in its immediate environment, and that is the point
of view adopted in Sec. IV A. Alternatively, the leads may
represent designed transmission wires between the core and
distant devices. This perspective is explored in Sec. IV B.

It is shown in Appendix B that the effect of the leads on
the core Hamiltonian (8) can be summarized in an effective,
energy-dependent diagonal offset:

H∞(E ) = Hpos(g, ω) + t2
c �(E )1, (59)

where �(E ) is the surface Green’s function of a semi-infinite
lead:

�(E ) = E

2
−
√

(E + i0+)2 − 4

2
. (60)

It follows that ω circulation is preserved. For instance, when
ω = 1 (class X ) we have the circulant effective Hamiltonian

H∞(E ) =

⎡⎢⎢⎢⎢⎣
ε∞(E ) τ γ τ †

τ † ε∞(E ) τ γ

γ τ † ε∞(E ) τ

τ γ τ † ε∞(E )

⎤⎥⎥⎥⎥⎦ (61)

with effective self-energies

ε∞(E ) = ε + t2
c �(E )

= ε + t2
c

(
E

2
−
√

(E + i0+)2 − 4

2

)
. (62)

Because ω-rotation invariance is preserved, the eigenstates are
energy-independent, and still given by (15). The correspond-
ing effective eigenvalues are obtained from the isolated levels
λk , (16), by the replacement ε → ε∞(E ):

λk,∞(E ) = ε∞(E ) + 2|τ | cos

(
θ + kπ

2

)
+ (−1)kγ

= t2
c �(E ) + λk (63)

for k = 1, . . . , 4. But these are not effective eigenenergies as
can be seen from the Green’s function:

Gcore(E ) = [E − H∞(E )]−1 =
∑

k

|φk〉〈φk|
E − λk,∞(E )

; (64)

the effective energy levels of the core-with-leads are fixed
points E �

k = λk,∞(E �
k ). (From now on the symbol “�” will

always indicate an effective energy due to the presence of the
leads.) From (62), and the convention used for the definition
of the complex square root,

E �
k = 1

1 − t2
c

[(
1 − t2

c

2

)
λk − t2

c

2

√
λ2

k − 4(1 − t2
c )

]
= 1

1 − t2
c

[(
1 − t2

c

2

)
λk − i

t2
c

2

√
4(1 − t2

c ) − λ2
k

]
. (65)

Since each k mode is decoupled from the others, we have
chosen λk � 0 with no loss of generality. Equation (65) and
the corresponding expression for negative λk is obtained
in Appendix C by analytically solving the core-with-leads
Schrödinger equation. Because the effective eigenstates do
not depend on the scattering energy, it is easy to define
a first-order effective core Hamiltonian which is energy-
independent:

Gcore(E ) ≈ (E − Heff )
−1 =

∑
k

|φk〉〈φk|
E − E �

k

. (66)

In the ordered eigenbasis {|φ1〉, |φ2〉, |φ3〉, |φ4〉} we have
〈φ j |Heff|φk〉 = E �

j δ jk . All the results from Sec. III can now be
modified by the replacement λk → E �

k . Note that E �
k is real if

and only if |λk| � 2
√

1 − t2
c + O(t4

c ). (More precisely, |λk| �
2 − t2

c , as shown in Appendix C [see (C22) and (C23)]. Since
any path in (λ1, λ2, λ3, λ4)-space corresponds to a unique path
in parameter space (ε, α, β, γ ), each E �

k can be made real or
complex independently of the other three. Thus, each eigen-
state can be made to evolve unitarily or not by adjusting the
internal parameters of the core, permitting exquisite control
over (partial) decoherence [77].

For class Y (i.e., ω = eiπ/2), expressions identical to (65)
and (66) hold with the replacements φk → χk (21) and λk →
λ′

k (22). Again, full control over the core energies allows one
to make each E �

k real or complex independently of the other
three.
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The same is true, with a caveat, when the core is in the
nonsymmetric off mode,

Hoff = −
∑
〈i j〉

Ki ja
†
i a j +

∑
i

εia
†
i ai, (67)

where large energy offsets |εi − ε j | � Ki j > 0 ef-
fectively suppress spontaneous transitions, so that
position i is almost a good quantum number. Then
again Gcore(E ) ≈ (E − Heff )−1 = ∑

m
|m〉〈m|
E−ε�

m
with ε�

m =
1

1−t2
c
[(1 − t2

c
2 )εm − t2

c
2

√
ε2

m − 4(1 − t2
c )]. This time care must

be taken to maintain the large-offset condition when lowering
the εm’s below the escape threshold, in order to prevent
spurious logical transitions.

A. Leakage-free logical operations

In this section we show that, even in the presence of leads,
all logical gates can be realized without leakage, and are
still symmetry-protected from unbiased parameter noise. It
is sufficient to consider single-pulse, ω-circulant gates, since
they are universal for quantum computation. We could use
only the gates {V, W} from Sec. III C, for instance, which
are especially resilient against x- and z-rotation errors. Let
a single pulse producing the gate U be given in the time
interval t ∈ [0, T ] by the path [λ1(t ), . . . , λ4(t )] in the R4

manifold of eigenenergies of the bare core. With a lead
coupled to each site, eigenenergies λk are modified to pos-
sibly complex effective eigenenergies E �

k . We must make sure
that |λk| � 2 − t2

c at all times to keep E �
k real and prevent

escape through the leads. If not, rescaling the energies by
n and the time by 1/n leaves unchanged the unitary U =
exp(−i

∫ T
0 dt Hcore(t )). Avoiding the energy band of the leads

is therefore not an issue. Moreover, for these values of λk ,
the function E �

k (λk ) increases monotonically, and hence is
one-to-one. As an immediate consequence, there is a (unique)
path [p1(t ), . . . , p4(t )] lying entirely outside the band of the
leads such that

E �
k [pk (t )] = λk (t ), k ∈ {1, . . . , 4}, t ∈ [0, T ]. (68)

We thus obtain

Ueff = exp

(
−i
∫ T

0
dt Heff(t )

)
= U . (69)

Having reproduced the ideal gate U in the presence of
the leads, and recalling that identical leads preserve ω-
rotation invariance, we conclude that the effective gate Ueff

is symmetry-protected from unbiased noise in the effective
parameters E �

k . And since the functions E �
k (λk ) are very nearly

linear outside the band, unbiased noise in E �
k is equivalent

to unbiased noise in the bare parameters. This completes our
claim that, even in the presence of leads, logical gates can
be realized without leakage and are still protected against
unbiased noise in the parameters (whether bare or effective).

B. Core as quantum memory

Within each ω class the effective eigenenergies can be
chosen real or complex independently of one another, and
as a consequence each energy eigenstate can independently
be made to dissipate in the leads or remain stationary. (The

off mode offers comparatively less flexibility because of the
condition |εi − ε j | � Ki j > 0, although crossing levels is ill-
advised in any mode.) The dissipation of the kth eigenstate is
characterized by the tunable dynamical rate

τ−1(λk ) = |Im(E �
k )|, (70)

which is found from (65) to be a continuous function of
the (fully controllable) energy λk , with values in the interval
[0, 2/3

√
3] ≈ [0, 0.385]. The ability to prevent the eigen-

states from escaping to the leads allows us to consider the
core as a versatile quantum memory unit that can protect a
state

∑
k ak|φk〉 for a long time, and then release it entirely or

partially at a later time. (In what follows |φk〉 will stand for an
eigenstate of either class X or Y , unless specified otherwise.)
This is the perspective that we adopt in this section, and to do
so it is convenient to go beyond the first-order Green’s func-
tion analysis that we have employed so far, which loses track
of effective core eigenstates as they escape, with no possibility
of ever coming back. We emphasize that our proposal assumes
nothing other than the existence of a flat symmetry class in the
physical support of information, an aspect which to the best
of our knowledge has not been exploited in quantum memory
technologies [78–82].

We consider the following finite system: it consists of two
ω-circulant four-level cores standing face to face, and con-
nected by four identical leads, each comprised of L sites. One
may think of it as a square prism of height L, with the cores
as top and bottom faces. The cores act as memory storage
units. We will identify when and why a state localized on
one core will scatter within characteristic time τs, eventually
reaching the other core. Alternatively, we discuss how the lo-
calized state can be protected from scattering over a timescale
τb � τs. The index b stands for bound states, whose presence
or absence determines the dissipation regime.

In Appendix C we show that the ω-circulant system decou-
ples into four identical modes, each in the form of two sites of
self-energies λ,μ connected by a finite lead of L sites. The
single-particle Hamiltonian of one mode is

H1P =

⎡⎢⎢⎢⎢⎢⎣
λ tc,1

t∗
c,1 0 1

1 0 . . .
. . .

. . . tc,2
t∗
c,2 μ

⎤⎥⎥⎥⎥⎥⎦. (71)

(The argument generalizes in a straightforward manner if
the four-level cores are replaced by N-level cores.) The cor-
responding Schrödinger equation is easily solved, yielding
eigenenergies E in implicit form

��̃E − � − �̃

��̃ − 1
= UL−2(E/2)

UL−1(E/2)
, (72)

where

� = E − λ

|tc,1|2 , �̃ = E − μ

|tc,2|2 , (73)

and Un(x) is a Chebyshev polynomial of the second kind.
The L + 2 solutions of (72) are the system’s eigenenergies.
Unsurprisingly, this equation cannot be solved analytically; a
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FIG. 11. Left-hand (LHS) and right-hand (RHS) sides of the energy constraint equation (72) as a function of the dimensionless energy
E for (L, tc,1, tc,2) = (10, 0.1, 0.1). The LHS curve crosses the RHS curve L + 2 times. (a) For λ = μ = 2.5, the crossings correspond to L
continuum states in the band, plus two bound states near λ. (b) Zoom-in of the neighborhood of E = λ for λ = μ = 2.5. The nearly degenerate
bound state energies E = 2.5049765 and E = 2.5049904 are not yet resolved, but we plot these states in Fig. 12. (c) For λ = μ = 1.4 the
LHS curve crosses the RHS curve L + 2 times within the band. (d) Zoom-in of the neighborhood of E = λ for λ = μ = 1.4, showing one
continuous scattering mode (leftmost) and two hybridized scattering modes with energy separation ∼10−2.

graphical solution is displayed in Fig. 11. Note that the right-
hand side (RHS; blue curves) is independent of the couplings
to the cores and pertains to the spectrum of the leads whereas
the left-hand side (LHS; yellow curves) is independent of
the lead parameters and pertains to the coupling. L solutions
always belong to the energy band [−2, 2], and form the (per-
turbed) continuous spectrum of the leads. The two remaining
solutions may lie outside the band (bound states) or within
the band (hybridized scattering states). We now discuss these
cases in turn.

Let us write single-particle states as

|E〉 = β0

t∗
c,1

|0〉 +
L∑

j=1

β j | j〉 + βL+1

tc,2
|L + 1〉, (74)

where | j〉 is the state with one particle on site j. The coef-
ficients of bound states, with energies |E | > 2, are given by

β j = (±1) jN
[ |E | ± λ

|tc,1|2 sinh jξ − sinh( j − 1)ξ

]
, (75)

for 0 � j � L + 1. Here ± = sgn(E ), ξ = cosh−1(|E |/2),
and N is a normalization factor. These states are localized
around both endpoints, decaying exponentially over the char-
acteristic length scale ξ−1 from the endpoints.

Throughout this section, all calculations will be done using
L = 10 and tc,1 = tc,2 ≡ tc = 0.1. The bound states for λ =
μ = 2.5 are displayed in Figs. 12(a) and 12(b). We see that
there is a symmetric state |bS〉 and an antisymmetric state |bA〉,
a consequence of the Schrödinger equation symmetry j ↔
L + 1 − j resulting from � = �̃ (see Appendix C). When
L → ∞, the limiting expression for β j describes a bound
state localized at the left endpoint and decaying exponentially
with distance. Similarly, the limiting expression for βL+1− j

describes a state localized at the right endpoint. In that limit,
the eigenvalue equation (72) is equivalent to the fixed-point
relations E = λ ± |tc,1|2�(E ) and E = μ ± |tc,2|2�(E ) for
the states localized on the left and right, respectively. In the
Green’s function treatment of the core with semi-infinite leads
(see Appendix B), the same fixed-point relation appears as the
effective self-energy of the core once the leads are traced out.
In the finite-L case, states localized around a single end of

the lead will only be approximately stationary. If the system
evolves for a long time, the state localized on one end will
eventually tunnel through the lead.

All other single-particle solutions, Eq. (74), fall within the
band of the leads, E ∈ [−2, 2], with coefficients given by

β j = N
[

E − λ

|tc,1|2 sin jθ − sin( j − 1)θ

]
, (76)

where θ = cos−1(E/2). For any finite L, there are L scattering
states from the (perturbed) continuous spectrum of the leads.
A generic feature of these L states is their small amplitude
at the endpoints. Two continuum states for λ = μ = 2.5 are
displayed in Figs. 12(c) and 12(d).

When bound states are not present, in addition to the con-
tinuum states there will be two hybridized scattering states:

(a) (b)

(c) (d)

FIG. 12. The two bound states (a), (b) and two states from the
continuum (c), (d) for (L, tc,1, tc,2) = (10, 0.1, 0.1) and λ = μ =
2.5. (a) Antisymmetric bound state, E = 2.5049765. (b) Symmetric
bound state, E = 2.5049904. The energy separation is ∼10−5. A
generic feature of bound states is their large amplitude at the end-
points (sites 0 and L + 1). (c) A symmetric continuum state, E =
0.282. (d) An antisymmetric continuum state, E = 0.827. A generic
feature of continuum states is their small amplitude at the endpoints.
In each graph, the red dot represents a consistency condition on βL+1.
See Appendix C, Eq. (C6) for details.
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(a) (b)

(c) (d)

FIG. 13. The two hybridized scattering states (a), (b) and two
states from the continuum (c), (d) for (L, tc,1, tc,2) = (10, 0.1, 0.1)
and λ = μ = 1.4. (a) Antisymmetric hybridized state, E = 1.4044.
(b) Symmetric hybridized state, E = 1.4226. The energy separation
is ∼10−2. A generic feature of hybridized states is their relatively
large amplitude at the endpoints (sites 0 and L + 1). (c) A symmetric
continuum state, E = 0.282. (d) An antisymmetric continuum state,
E = 0.827. Continuum states are visually indistinguishable from
those of Fig. 12.

one symmetric |hS〉 and one antisymmetric |hA〉. A generic
feature of these states is their relatively large amplitude at the
endpoints. Such states are displayed in Figs. 13(a) and 13(b)
for λ = μ = 1.4; for this same case example scattering states
with E ∈ [−2, 2] are displayed in Figs. 13(c) and 13(d).

Decay rates in the presence of bound states |bS〉 and |bA〉
are compared with decay rates in the presence of hybridized
states |hS〉 and |hA〉. Let the state be

|ψ〉 =
L∑
1

an|n〉 + cS|ϕS〉 + cA|ϕA〉, (77)

where |n〉 is a state from the continuous spectrum, and |ϕS,A〉
is bound or hybridized. Then

〈ψ |e−itH |ψ〉 =
L∑

n=1

|an|2e−itEn + |cS|2e−itES + |cA|2e−itEA .

(78)
Let f (Em) = |am|2 and assume Em − En ≈ (m − n)ε where
ε = 4/(L − 1). In the continuous limit,

〈ψ |e−itH |ψ〉 ∼ f̃ (t ) + |cS|2e−itES + |cA|2e−itEA , (79)

where f̃ is the inverse Fourier transform of f , and

|〈ψ |e−itH |ψ〉|2

∼ | f̃ (t )|2 + 2 f̃ (t )(|cS|2 sin ESt + |cA|2 sin EAt )

+ |cS|4 + |cA|4 + 2|cS|2|cA|2 cos(ES − ES )t . (80)

If f (E ) has support of width �E (in [−2, 2]), its in-
verse Fourier transform f̃ (t ) will decay within time �t ∼
O(1/�E ). A small decay rate implies that |ψ〉 has overlap
almost zero with most states of the continuous spectrum. This
is possible for a localized |ψ〉 only if bound states |bS〉 and
|bA〉 are available, e.g., if λ = μ /∈ [−2, 2]. An example is

|ψ〉 = (|bS〉 + |bA〉)/
√

2, which is well localized around the
left-hand dot. Then

|〈ψ |e−itH |ψ〉|2 = 1
2

(
1 + cos

(
Eb

S − Eb
A

)
t
)
. (81)

With the canonical parameter values (L, tc) = (10, 0.1), this
goes slowly to zero with rate τ−1

b = Eb
S − Eb

A ∼ 10−5 (and
oscillates back and forth unless L is infinite).

If bound states are not available (e.g., if λ = μ ∈ [−2, 2]),
then a localized state necessarily has an f (E ) with large
support �E , and |〈ψ |e−itH |ψ〉|2 will decay within time �t ∼
O(1/�E ) to the oscillating steady state

|〈ψ |e−itH |ψ〉|2 ∼ |cS|4 + |cA|4 + 2|cS|2|cA|2 cos
(
Eh

S −Eh
A

)
t .

(82)

With the same canonical parameter values, this oscillates with
rate τ−1

s = Eh
S − Eh

A ∼ 10−2. With these values, the charac-
teristic escape time of localized states is reduced by a factor
of 103 when effective eigenenergies become complex and
bound states are no longer available. The overall rate of decay,
max(�E , Eh

S − Eh
A ) � 4, can be as large as O(1). The above

analysis shows that the core in either ω class has the ability to
receive and release states over the timescale τs or shorter, and
to store a state over the much larger timescale τb. Switching
between these two coupling regimes is performed by tuning
the internal parameters of the core. The same procedure is
also possible in the nonsymmetric off mode, with somewhat
less flexibility due to the large-offset condition.

C. Qubit initialization and readout

Initializations and measurements are naturally performed
through position measurements or energy measurements of
either ω class. Position eigenstates correspond to binary-code
logical states, as given in Table I, whereas energy eigenstates
of classes X and Y correspond to columns of F† and (FD)†,
respectively:

|φk〉 =
∑

�

F†
�,k|�〉, |χk〉 =

∑
�

(FD)†
�,k|�〉. (83)

Define, for instance, the POVM {E0, E1} with elements the
joint-position projectors

E0 = |1〉〈1| + |2〉〈2|, E1 = |3〉〈3| + |4〉〈4|. (84)

These operators correspond to the measurement or initializa-
tion of the first qubit only:

E0 = |00〉〈00| + |01〉〈01| = |0〉〈0| ⊗ 1,

E1 = |10〉〈10| + |11〉〈11| = |1〉〈1| ⊗ 1. (85)

Similarly, the POVM {E0, E1} with elements

E0 = |1〉〈1| + |3〉〈3|, E1 = |2〉〈2| + |4〉〈4| (86)

corresponds to the measurement or initialization of the second
qubit:

E0 = |00〉〈00| + |10〉〈10| = 1 ⊗ |0〉〈0|,
E1 = |01〉〈01| + |11〉〈11| = 1 ⊗ |1〉〈1|. (87)

Note that Gray code produces the same output.
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V. SCALABILITY

We now propose a scalable technology for universal quan-
tum computation. The idea is strongly reminiscent of classical
computer architecture, in which operations are decomposed
into elementary two-bit steps to be performed on large arrays
of transistors. Here we use the fact that any unitary U on d
qubits can be approximated to arbitrary accuracy by finite
products of elementary two-qubit unitaries, i.e., operations
of the form S = 1⊗m ⊗ K ⊗ 1⊗d−m−2, where K is a 4 × 4
unitary [6]. For any ε > 0 there exists a finite sequence of
such two-qubit unitaries S1, . . . , Sk achieving

max
|ψ〉

‖(U − S1S2 · · · Sk )|ψ〉‖ < ε, (88)

where |ψ〉 is any normalized d-qubit state. We thus consider
the possibility of realizing quantum computation on scalable
grids of four-level cores. By analogy with the role played
by transistors in classical computation, we may consider the
cores to be quantum-computational transistors, or more suc-
cinctly, quansistors.

A. Quansistors

The core, or quansistor, is a four-level tight-binding sys-
tem with the ability to become ω-rotation-invariant for ω =
1, eiπ/2 (classes X,Y ). Until now we have mostly considered
the quansistor in its symmetric form, performing computation
on its double qubit. From the universality proof of Sec. III C,
we know that the set of gates {V, W}, constructed from the
Hamiltonians (24) and (25), is universal on two qubits. This
set contains one representative from each class, X and Y ,
and these representatives realize inequivalent flux structures.
The next step is to allow interactions between quansistors.
We choose the most basic two-quansistor interaction, involv-
ing one qubit from each quansistor. To that end, we need
to materialize the tensor product structure inherent to the
quansistor logical basis {|00〉, |01〉, |10〉, |11〉}. Thus far, these
qubit states merely label the states of the quansistor, and
need to be factored into pairs of spatially separable qubits
before they can be shared with distinct target quansistors.
Let us devote some attention to the nonsymmetric form of
the quansistor, which is also the off mode for computation.
Note that the off-mode Hamiltonian cannot be the ω-circulant
matrix ε1, because the degenerate eigenstates of the latter are
unstable to perturbations.

In the off mode, the Hamiltonian is simply

Hoff = −
∑
〈i j〉

Ki ja
†
i a j +

∑
i

ε�
i a†

i ai, (89)

where Ki j > 0, and large energy offsets |ε�
i − ε�

j | � Ki j ef-
fectively suppress spontaneous transitions, so that position
i is almost a good quantum number in the off mode. (As
before, the symbol “�” indicates an effective energy due to the
presence of the leads.) Logical states {|00〉, |01〉, |10〉, |11〉}
coincide with position eigenstates {|1〉, |2〉, |3〉, |4〉}, respec-
tively. Section III F illustrates how the system can be switched
from (89) to ω-circulant Hamiltonians of class X or Y and
back using electrically charged levels and magnetic fields on
the one hand, and neutral levels and synthetic gauge fields on

the other. Notice that

span{|1〉, |2〉} = {|0〉|ψ〉 | ψ any second qubit state},
span{|3〉, |4〉} = {|1〉|ψ〉 | ψ any second qubit state} (90)

(see Fig. 14). Similarly,

span{|1〉, |3〉} = {|ψ〉|0〉 | ψ any first qubit state},
span{|2〉, |4〉} = {|ψ〉|1〉 | ψ any first qubit state}, (91)

(see Fig. 15). We now demand that the off-mode on-site ener-
gies satisfy

ε�
3 − ε�

1 = h̄ν1 = ε�
4 − ε�

2, (92)

ε�
2 − ε�

1 = h̄ν2 = ε�
4 − ε�

3 . (93)

Equations (90) and (92) imply that setting the quansistor
into resonance at frequency ν1 prompts the onset of first-
qubit oscillations |0〉|ψ〉 ↔ |1〉|ψ〉 with frequency ν1. By the
same token, Eqs. (91) and (93) imply that quansistor reso-
nance at frequency ν2 corresponds to second-qubit oscillations
|ψ〉|0〉 ↔ |ψ〉|1〉 at frequency ν2. For this reason, the frequen-
cies ν1 and ν2 may be called qubit splitting and will be used
to exchange single qubits between distant quansistors. When
coupled to a single-mode resonator, the quansistor resonating
at one of these frequencies νq will effectively look like a single
qubit coupled to the oscillator as described by the Jaynes-
Cummings Hamiltonian

HJC = h̄νra†a + h̄νq

2
σz + h̄g(a†σ+ + aσ−), (94)

where σz = |1〉〈1| − |0〉〈0|. The frequencies ν1 ± ν2, on
the other hand, are not qubit splitting, and correspond to the
oscillations |00〉 ↔ |11〉 and |01〉 ↔ |10〉, respectively. The
same results can be obtained in Gray code with minor modifi-
cations.

B. Scalable architecture

Interactions between quansistors are to be performed by
bringing their qubit-splitting frequencies into resonance. It
seems desirable to mediate the coupling with single-mode res-
onators, allowing distributed circuit elements, and to work in
the dispersive regime where two quansistors A, B are mutually
resonant, but far-detuned from the resonator:

νA = νB �= νr . (95)

The interaction then proceeds through virtual photon ex-
change, as opposed to real photons in the resonant regime,
alleviating the major drawback of the latter, namely, the
resonator-induced decay due to energy exchange with the
resonator (Purcell effect) [83]. In the rotating wave approx-
imation, the Hamiltonian in the absence of direct coupling
between the quansistors is

H = h̄νra†a +
∑

j=A,B

h̄νq

2
σz, j +

∑
j=A,B

h̄g j (a
†σ−

j + aσ+
j ),

(96)
where νq is the common frequency of A and B. We use the
Baker-Campbell-Hausdorff formula eSHe−S = H + [S, H] +
1
2! [S, [S, H]] + · · · to perform the unitary transformation U =
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(a) (b)

FIG. 14. Quansistor’s off mode. (a) Real effective on-site energies ε�
i and negligible transition amplitudes 0 < Ki j � |ε�

i − ε�
j | (not shown).

Position is almost a good quantum number, and logical states (position eigenstates) are almost stationary. Resonance at the qubit-splitting
frequency ν1 corresponds to first qubit oscillation. The quansistor is then effectively a single qubit with basis states |0〉|ψ〉 and |1〉|ψ〉 (light
green and dark green, respectively). (b) Energy diagram satisfying the qubit-splitting conditions (92) and (93).

exp
∑

j
g j

�
(a†σ−

j − aσ+
j ), with detuning � = |νr − νq|. To

first order in gj/� we get

H = h̄νra†a +
∑

j=A,B

h̄νq

2
σz, j + h̄K (σ+

A σ−
B + σ−

A σ+
B ), (97)

where K = 2h̄gAgB/�. The qubit-cavity interaction terms
cancel out exactly, leaving only an effective qubit-qubit in-
teraction with coupling K . This term, when evolved for a
time π/4K , generates the

√
iSWAP gate, which is entangling

and equivalent to the CNOT gate [27,83], up to single-qubit
operations already available within the quansistors. The dis-
persive regime thus allows for the possibility of long-distance
entangling interactions between quansistors.

One possible architecture for universal computation on
2d qubits consists in a closed linear array of d quansistors
coupled through resonators. Each quansistor represents a pair
of qubits, and every qubit is represented exactly once (see
Fig. 16). Additional qubit-splitting frequencies may be added
to prevent untimely higher-order, mth-nearest-neighbor cou-
plings. To cut down space and running time costs, a physical
implementation of the array would likely be folded, and a res-
onator would couple every adjacent pair of quansistors, thus
reducing considerably the need for qubit-shuffling operations.
Figure 17 schematically depicts a planar-grid computer. Each

FIG. 15. Quansistor’s off mode. Resonance at the qubit-splitting
frequency ν2 corresponds to second qubit oscillation. The quansistor
is then effectively a single qubit with basis states |ψ〉|0〉 and |ψ〉|1〉
(light green and dark green, respectively).

quansistor would be coupled to four identical leads (not shown
in the figure) for initialization and readout.

VI. OUTLOOK

Error-correcting codes are a promising avenue to make
quantum computation fault-tolerant. In our technology, quan-
sistors are the support of the physical qubits, whose states and
interactions are symmetry-protected, to some extent, against
external influences. Once we identify the dominant errors af-
fecting them, we can find k-qubit states (typically k = 5, 7, 9)
that are invariant under those errors. These would be encoded
logical qubits. (In the standard Hamming notation, we get a
code of type [kn, n] using kn physical qubits, and having 2n

logical codewords [84].) Having physical universality at hand
gives the freedom to encode qubits and operations yielding
encoded universality. Because our technology is scalable (Q
quansistors making 2Q qubits), the encoding uses k identical
“processors” instead of one.

Crucially, we must determine whether the dominant errors
are constrained by the symmetry of the quansistors. We have
already observed a significant robustness of the universal set
{V, W} against single-qubit and double-qubit x and z rotation
errors. As a second source of decoherence, we considered the

FIG. 16. A d-quansistor linear array for universal computation
on 2d qubits. The numbers schematically represent the qubits. Quan-
sistors (larger, blue) perform two-qubit universal operations on qubit
pairs (2 j, 2 j + 1), j = 0, . . . , d − 1 (mod d ). Couplers (smaller,
green) perform entangling

√
iSWAP gates on qubit pairs (2 j −

1, 2 j), j = 0, . . . , d − 1 (mod d ). Leads are attached to the lower
faces of the quansistors. With only three qubit-splitting frequencies
in the system, ν1, ν2, ν3, untimely second-nearest-quansistor interac-
tions occur at higher orders. [For instance, pairs (2,3) and (6,7) both
respond to ν1.] More frequencies may be added to suppress these
unwanted exchanges. The required physical resources scale linearly
in the number of qubits.

062610-16



UNIVERSAL QUANTUM COMPUTATION WITH SYMMETRIC … PHYSICAL REVIEW A 106, 062610 (2022)

FIG. 17. A 36-quansistor grid for universal computation on 72
qubits. Quansistors (large blue squares) perform universal two-qubit
operations. Couplers (smaller green squares) perform entangling√

iSWAP between qubits of adjacent quansistors. Each quansistor
is coupled to four identical leads (not shown) for initialization and
readout. The required physical resources scale linearly in the number
of qubits.

coupling to semi-infinite leads, and have omitted other factors
such as the effect of a heat bath on the system, the types of
errors that it would produce, and the extent to which it would
destroy symmetry.

Throughout, we have used ω-rotation invariance as the
prototype of a symmetry of flat classes, universal for quan-
tum computation, and realistically implementable physically.
Other flat classes would perform equally well at protecting
information and operations, as long as leads (or any other
immediate environment of the clusters) do not break the
corresponding symmetry. Universal sets of gates originating
from nondegenerate Hamiltonians are symmetry-specific, but
should not be too difficult to find given the relative scarcity
of nonuniversal sets and the completeness of flat classes. The
possibilities of physical implementation, on the other hand,
will strongly depend on the chosen symmetry and would have
to be found on a case-by-case basis.

There might be additional value to using larger qubit
clusters, i.e., k-qubit quansistors realized as 2k sites with sym-
metries, for k = 3, 4, 5. All observations from the previous
point regarding protection, universality, and implementation,
apply here as well. Larger clusters and symmetry classes
would offer protection to k-qubit operations. It could also
allow the encoding of a logical qubit within a single k-qubit
quansistor. Encodings with k = 3 (eight sites) can already
correct some single-qubit errors, while some encodings with
k = 5 (32 sites) can correct any single-qubit error [1].

There is provable surplus value to using higher alphabets
(ququarts, specifically), instead of qubit pairs, in encrypted
communications [85]. Since ω-circulant four-level quansis-
tors are universal in U(4), i.e., universal for single-ququart
operations, and have the ability to dynamically decouple from
the leads, a quansistor-with-leads could be a versatile mem-
ory unit for ququarts, and become an essential component of
quantum-secure communications. Generalizations to d-level
quansistors (qudits), with d > 4, is also conceivable, as ar-

gued in the previous point. Error-correcting codes, notably,
have been developed for qudits, which use d × d Weyl ma-
trices (or equivalently the d × d version of our matrices X
and Y ) [86,87]. Note, however, that the diagram of transition
amplitudes of the general qudit (Kd in graph theory terminol-
ogy) is nonplanar for d � 5 [88], in contrast to the essentially
planar diagram K4 of the four-level system (Fig. 8). A gauge
potential implementation of ω-rotation invariant qudits, in the
spirit of Secs. III E and III F, might then be essentially three-
dimensional.

For the purpose of reconstructing the final state of an N-
qubit system, a symmetry based on Pauli tensors of dimension
d = 2N is better suited than ω-rotation invariance (based on
Weyl matrices) as it allows for the maximal number (2N + 1)
of mutually unbiased bases, and complete state characteriza-
tion via state tomography [89,90]. By contrast, the four-level
quansistor (N = 2) based on ω-rotation invariance has only
three unbiased bases: {|m〉}, {|φk〉}, {|χk〉}, the respective
eigenbases of Z, X,Y . As for reconstructing the final state
of an N-qupit system (where p is an odd prime), the Weyl-
based scheme of dimension d = pN allows for the maximal
number (pN + 1) of mutually unbiased bases, and complete
state characterization via quantum tomography [89,91]. This
could be of value for encrypted communication using a higher
(prime) alphabet (see previous point), and could be based on
p-site quansistors with ω-rotation invariance.

To perform interquansistor interactions, we have used the
simplest possible scenario involving a single qubit from each
quansistor. It would be worth investigating whether a com-
bined use of resonators and symmetry could make possible the
implementation of robust three- and four-qubit gates, or even
interactions soliciting three quansistors or more. However,
this is beyond the scope of this work.

VII. CONCLUSION

In this work, we have put forward a blueprint for scalable
universal quantum computation based on two-qubit clusters
(quansistors) protected by symmetry (ω-rotation invariance).
We find a significant robustness of the proposed universal
set against single-qubit and double-qubit x- and z-rotation
errors. Embedding in the environment, initialization and read-
out are achieved by tunnel-coupling each quansistor to four
identical semi-infinite leads. We show that quansistors can
be dynamically decoupled from the leads by tuning their
internal parameters, giving them the versatility required to
act as controllable quantum memory units. With this dy-
namical decoupling, universal two-qubit logical operations
within quansistors are also symmetry-protected against un-
biased noise in their parameters. Two-quansistor entangling
operations are achieved by resonator-coupling their qubit-
splitting frequencies to effectively carry out the

√
iSWAP

gate, with one qubit coming from each quansistor. We have
also identified a variety of platforms that could implement
ω-rotation invariance.

The complete tunability of ω-circulant quansistors can
be exploited to build highly expressive and trainable pa-
rameterized quantum circuits, to be used as the noisy
intermediate-scale quantum (NISQ) component of a quantum-
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classical hybrid machine learning model [92–94]. These ideas
will be explored in detail in a future publication.
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APPENDIX A: MATHEMATICAL FRAMEWORK

This section describes some mathematical aspects of ω-
rotation invariance. Although this paper has focused on a
four-level system, many of the results are easily generalized.
Here we consider the more general case of an N-level system.
For multiple reasons it may be desirable to have full control
over the N eigenenergies of the system. In what follows we
consider what we propose to call flat classes of Hamiltoni-
ans: classes of Hermitian matrices {H (g) | g ∈ RN } with a
common eigenbasis, and real eigenenergies λ1(g), . . . , λN (g)
in one-to-one linear correspondence with the values of the
parameters, that is, λr (g) = ∑

s gsλsr with det[λsr] �= 0. (The
term flat refers to vanishing Berry curvature in g space.) A
class of Hamiltonians is flat in this sense if and only if it can
be represented as a sum of N × N Hermitian matrices,

H (g1, . . . , gN ) =
N∑

s=1

gsHs, [Hs, Hr] = 0 (∀s, r), (A1)

and the N × N matrix [λsr] of all eigenvalues of the Hs’s
is nonsingular, det[λsr] �= 0. (The key observation is the
action of the diagonalizing unitary: U−1(

∑
s gsHs)U =∑

s gsdiag(λs1, . . . , λsN ) = diag[λ1(g), . . . , λN (g)].) Flat
classes therefore coincide with N-dimensional commutative
algebras of N × N Hermitian matrices, the nonsingularity
of [λsr] being equivalent to the linear independence of the
Hs’s. Because each flat class is diagonalized by a common
unitary U (unique up to permutations), the set of all flat
classes that correspond to the same [λsr] is in one-to-one
correspondence with unitaries modulo permutations. (In
this paper, we do not consider nonunitarily diagonalizable
matrices, like non-Hermitian PT -symmetric Hamiltonians,
for instance.) The exponentials of a flat class also share the
common eigenbasis of the class, and their eigenenergies are
in (nonlinear) one-to-one correspondance with the values of
the parameters g. There seems to be an interesting connection
between flat classes, on the one hand, and commuting
bases of unitary matrices [89] and stabilizers of quantum
error-correcting codes [86], on the other.

For the purpose of quantum computation a single flat
class is clearly not enough because it is commutative. The
ω-circulant matrices defined in (6) are of the form (A1), and
constitute a flat class for each ω. Independent control over
the energy levels is a prime motivation for using ω-rotation
invariance, but we stress again that this choice of symme-
try is far from unique. Starting from any nonsingular matrix
[λsr], defining the functions λr (g) = ∑

s gsλsr , and applying

any unitary U to the matrix class {diag[λ1(g), . . . , λN (g)] |
g ∈ RN } will produce a commutative family of (Hermitian)
Hamiltonian matrices H(g) with eigenstates independent of
g, and linearly controlled eigenenergies λr (g), i.e., a flat class.
If symmetries other than ω-rotation invariance were preferred
for practical reasons, one would replace the diagonalizing
unitaries F and FD, defined in Eqs. (9) and (10), with the
appropriate operations.

It is instructive to recast ω rotations in terms of Sylvester’s
clock-and-shift matrices (also called Weyl’s matrices or gen-
eralized Pauli matrices)

Z4 =

⎛⎜⎜⎝
1

ω

ω2

ω3

⎞⎟⎟⎠, X4 =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞⎟⎟⎠,

(A2)
with ω = eiπ/2. For k = 0, . . . , 3 we have the identity
Zk

4 X4 = Jeikπ/2 . The matrices {Zk
4 X j

4 }k, j=0,...,3 constitute a non-
Hermitian trace-orthogonal basis for gl(4,C), and in fact the
same is true of their obvious N-dimensional generalization,
with ω = ei2π/N , which span gl(N,C) and are orthogonal
under the Hilbert-Schmidt inner product. If N = 2, they re-
duce (up to a factor) to the Pauli matrices. The matrices
XN and ZN are central to Weyl’s formulation of periodic
finite-dimensional quantum mechanics where they respec-
tively correspond to finite position and momentum shifts:

XN = ei(2π/N )p̂, XN |x〉 = |x − 1 mod N〉,
ZN = ei(2π/N )x̂, ZN | p〉 = |p + 1 mod N〉, (A3)

where of course |x〉 and | p〉 are position and momentum
eigenstates, respectively. Thus ω-rotation invariance is a sym-
metry in quantum (or optical) phase space, and is not found
in other, internal-space generalizations of Pauli matrices like
Pauli tensor products or Gell-Mann matrices.

In any dimension � 2, the eigenbases of ZN , XN , and ZN XN

are mutually unbiased: a measurement in one (orthonormal)
basis {|ψr〉} provides no information about measurements in
another (orthonormal) basis {|ηs〉} because |〈ψr |ηs〉| = 1√

N
for

any r, s. In particular when N = 4, the flat classes of Z4, X4

(the matrix X in the main text), and Y4 (the matrix Y in the
main text) have mutually unbiased eigenbases {|m〉}, {|φk〉},
and {|χk〉} respectively [see (15) and (21)].

APPENDIX B: EFFECTIVE CORE HAMILTONIAN

Consider an N-level core tunnel-coupled to N identical
semi-infinite leads:

H = Hcore + Hint + Hlead

= 1

2

4∑
i, j=1

hi ja
†
i a j+

4∑
i=1

tc,ia
†
i bi,1+

4∑
i=1

∞∑
j=1

b†
i, jbi, j+1 + H.c.

(B1)

For the time being, the matrix h is not required to be Her-
mitian, and the couplings tc,i need not be equal, but could
be chosen real positive with no loss of generality since the
Hamiltonian is invariant under tc,i → tc,ieiθi , bi, j → bi, je−iθi .
We let them be complex anyways. Let us restrict the system’s
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dynamics to the single-particle sector of Hilbert space. For
illustration purposes, our examples below will use a core with
N = 3 levels, but all the results go over to general N . The
one-particle Hamiltonian matrix H with N = 3 is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 h13 tc,1
h21 h22 h23 tc,2
h31 h32 h33 tc,3
t∗
c,1 0 1

1 0 . . .
. . .

. . .

t∗
c,2 0 1

1 0 . . .
. . .

. . .

t∗
c,3 0 1

1 0 . . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B2)

which we write as

H =
[

h V
V † 13 ⊗ hlead

]
(B3)

in obvious notation. The corresponding Green’s function is

G(E ) = (E1 − H )−1

=
[

E13 − h −V
−V † 13 ⊗ (E1lead − hlead)

]−1

,
(B4)

where 1lead is the identity on the single-lead space. The top left
3 × 3 block of the Green’s function, Gcore(E ), can be obtained
using the blockwise inversion formula[

A B
C D

]−1

=
[ (

A − BD−1C
)−1 · · ·

· · · · · ·
]
. (B5)

We obtain

Gcore(E ) = {
E13 − h − V [13 ⊗ (E1lead − hlead)]−1V †

}−1

= [E13 − h∞(E )]−1. (B6)

Noticing that

[13 ⊗ (E1lead − hlead)]−1 = 13 ⊗ Glead(E ), (B7)

Glead(E ) being the Green function of a single lead, we obtain
from (B6)

h∞(E ) = h + V [13 ⊗ Glead(E )]V †. (B8)

A straightforward calculation yields

h∞(E ) = h +
⎡⎣|tc,1|2

|tc,2|2
|tc,3|2

⎤⎦�(E ), (B9)

where �(E ) is the surface Green’s function of a single lead:

�(E ) = (Glead)00(E ) = E

2
−
√

(E + i0+)2 − 4

2
. (B10)

The analogous version of (B9) for general N is now obvious.
Remarkably, if h is ω-circulant and |tc,i| = tc for all i, the

effective Hamiltonian h∞(E ) is also ω-circulant:

h =
3∑

s=0

zsJ
s
ω −→ h∞(E ) = [

z0 + t2
c �(E )

]
1 +

3∑
s=1

zsJ
s
ω.

(B11)
In particular, when h is 4 × 4 Hermitian we obtain expression
(59). Again, the fact that h∞(E ) is unaffected by the presence
of phase factors, dynamical or stochastic, in the core-to-lead
couplings tc,i is a consequence of (B1) being invariant under
tc,i → tc,ieiθi , bi, j → bi, je−iθi .

APPENDIX C: ANALYTICAL SOLUTION: TWO CORES
CONNECTED BY FINITE LEADS

We analytically solve the Schrödinger equation of two
ω-circulant N-level cores (with the same ω, but possibly dif-
ferent core Hamiltonians h1 and h2) connected face-to-face by
N identical leads of L sites. The Hamiltonian is

H = 1

2

2∑
s=1

a†
s · hs · as + tc,1 a†

1 · b1 + tc,2 a†
2 · bL

+
L−1∑
j=1

b†
j · b j+1 + H.c., (C1)

where as = (as,1, . . . , as,N ) and b j = (b1, j, . . . , bN, j ). Leads
have hopping energies all equal, and set to unity (thus setting
the scale for all energies). Eigenvalues of the unitary symme-
try (ω-rotation) correspond to superselection sectors. Without
loss of generality, energy eigenstates may be chosen to have
support in exactly one sector k. If h1, h2 are ω-circulant with
ω = eiqπ/2 and q = 0, . . . , 3, the change of basis [Eqs. (9) and
(10)]

as → ãs = FDqas, b j → b̃ j = FDqb j, (C2)

decouples the system into N identical modes, each in the form
of two dots of self-energies λk, μk connected by a finite lead
of L sites. The single-particle Hamiltonian for one of these
modes is

H1P =

⎡⎢⎢⎢⎢⎢⎣
λk tc,1
t∗
c,1 0 1

1 0 . . .
. . .

. . . tc,2
t∗
c,2 μk

⎤⎥⎥⎥⎥⎥⎦. (C3)

Let |ψ〉 = α|0〉 +∑L
j=1 β j | j〉 + γ |L + 1〉 be a single-particle

eigenstate in sector k, where | j〉 is the state with a single parti-
cle in the jth site. The Schrödinger equation E |ψ〉 = H1P|ψ〉
yields the relations

β1 = �β0, (C4)

β j + β j+2 = Eβ j+1 (0 � j � L − 1), (C5)

βL = �̃βL+1, (C6)

� = E − λ

|tc,1|2 , (C7)

�̃ = E − μ

|tc,2|2 , (C8)
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FIG. 18. LHS and RHS of (C15) for L = 11, and |tc,1| = |tc,2| = 0.1. Energy E is dimensionless. The LHS curve crosses the RHS curve
L + 2 times. One solution has energy ∼O(λ|tc,1|2), a consequence of weakly broken spectrum symmetry E ↔ −E due to simultaneous nonzero
tc,1 and nonzero λ. (a) For λ = μ = 2.5, the crossings correspond to L continuum states in the band, plus two bound states near λ. (b) Zoom-in
of the neighborhood of E = λ for λ = μ = 2.5. The nearly degenerate bound state energies E = 2.504980 and E = 2.504987 are not resolved
yet, but we plot these states in Fig. 19. (c) For λ = μ = 1.2 the LHS curve crosses the RHS curve L + 2 times within the band. (d) Zoom-in
of the neighborhood of E = λ for λ = μ = 1.2, showing one continuous scattering mode (leftmost) and two hybridized scattering modes with
energy separation ∼10−2.

where we have assumed that tc,i �= 0, and defined β0 = t∗
c,1α

and βL+1 = tc,2γ . The bulk equation (C5) is translation-
invariant with general solution

β j = Aei jθ + Be−i jθ , θ = cos−1 E

2
. (C9)

The boundary conditions (C4) and (C6) give the ratio

A

B
= � − e−iθ

eiθ − �
= e−2iθ (L+1)

(
�̃ − eiθ

e−iθ − �̃

)
, (C10)

and the eigenenergies, E = 2 cos θ , in implicit form

(� + �̃) sin θL − ��̃ sin θ (L + 1) − sin θ (L − 1) = 0.

(C11)
In terms of Chebyshev polynomials of the second kind

Un(cos θ ) = sin(n + 1)θ

sin θ
, (C12)

and recalling the recursion relation

Un(x) = 2xUn−1(x) − Un−2(x), (C13)

we find

��̃E − � − �̃

��̃ − 1
= UL−2(E/2)

UL−1(E/2)
(C14)

as in Eq. (72). In the simplest case where λ = μ and |tc,1|2 =
|tc,2|2 (identical dots, identical couplings), we have

(E − λ)(E (E − λ) − 2|tc,1|2)

(E − λ + |tc,1|2)(E − λ − |tc,1|2)
= UL−2(E/2)

UL−1(E/2)
. (C15)

The system’s L + 2 eigenvalues coincide with the solutions
of the above equation. Notice that for small |tc,1| the LHS
is ∼E + O(|tc,1|2) when E is not in the vicinity of the sin-
gularities λ ± |tc,1|2. This is illustrated in Fig. 11 for L even
(L = 10), and in Fig. 18 for L odd (L = 11). In this symmetric
case for which � = �̃, all eigenstates are either symmetric
or antisymmetric. This is seen from (C10), which becomes
A/B = e−2iθ (L+1)(A/B)−1, implying(

A

B

)
= 1 and e−iθ (L+1) = ±A

B
. (C16)

Substituting in (C9) gives βL+1− j = ±β j .We must consider
two cases: when E is outside the energy band of the leads,
and when it is within this energy band.

1. Bound states (E outside the band)

When E is outside the energy band of the leads, we have
θ = iξ if E > 2, and θ = π + iξ if E < −2, where ξ =
cosh−1(|E |/2) is a real parameter. Then

β j = (±1) jN
[ |E | ± λ

|tc,1|2 sinh jξ − sinh( j − 1)ξ

]
(C17)

with ± = sgn(E ), where N is a normalization factor, and
where the eigenenergies satisfy the constraint

��̃ sinh(L + 1)ξ ∓ (� + �̃) sinh Lξ + sinh(L − 1)ξ = 0.

(C18)

Alternatively, we can write the solution as

βL+1− j = (±1) jN ′
[ |E | ± μ

|tc,2|2 sinh jξ − sinh( j − 1)ξ

]
.

(C19)

A generic feature of these bound states is their large ampli-
tude at the dots. Because there are at least L states from the
continuous spectrum (see next section), there are at most two
bound states. The bound states for L = 10 and λ = μ = 2.5
are displayed in Figs. 12(a) and 12(b). The bound states for
L = 11 are plotted in Figs. 19(a) and 19(b).

In the limit L → ∞, the constraint is equivalent to

e2ξ ∓
(

1

�
+ 1

�̃

)
eξ + 1

��̃
=
(

eξ ∓ 1

�

)(
eξ ∓ 1

�̃

)
= 0,

(C20)
yielding e−ξ = ±� or e−ξ = ±�̃. The resulting expressions
for β j and βL+1− j describe bound states localized at either
dot and decaying exponentially with distance over the charac-
teristic length ξ−1. Moreover, the constraint equations for e−ξ

are equivalent to the fixed-point relations E = λ ± |tc,1|2�(E )
and E = μ ± |tc,2|2�(E ), respectively. These relations can be
obtained as normalizability conditions on the eigenstates of
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(a) (b)

(c) (d)

FIG. 19. States from the case L = 11, and |tc,1| = |tc,2| = 0.1.
(a), (b) The two bound states for λ = μ = 2.5 (a) Antisymmet-
ric bound state, E = 2.504980. (b) Symmetric bound state, E =
2.504987. The energy separation is ∼10−5. (c), (d) The two hy-
bridized states for λ = μ = 1.2. (c) Symmetric hybridized state,
E = 1.1990. (d) Antisymmetric hybridized state, E = 1.2142. The
energy separation is ∼10−2. In each graph, the red dot represents the
value of βL+1 from the consistency condition (C6).

a dot connected to a semi-infinite lead, by solving the cor-
responding Schrödinger equation. Alternatively, the Green’s
function treatment of the core with semi-infinite leads,
Appendix B, gives the same fixed-point relations as effective
self-energies of the core once the leads are traced out. The
bound state condition on � for E � 2 amounts to

λk =
(

1 − |tc|2
2

)
E + |tc|2

√(
E

2

)2

− 1, (C21)

or equivalently

E = 1

1 − |tc|2
[(

1 − |tc|2
2

)
λk − |tc|2

2

√
λ2

k − 4(1 − |tc|2)

]
,

(C22)

with λk � 2 − |tc|2, in agreement with (65). For E � −2, the
condition on � gives instead

E = 1

1 + |tc|2
[(

1 + |tc|2
2

)
λk + |tc|2

2

√
λ2

k − 4(1 + |tc|2)

]
,

(C23)

with λk � −2 + |tc|2. Similar relations hold for the bound
state condition on �̃.

2. Scattering states (E within the band)

When E ∈ [−2, 2], θ is real and we find

β j = N
[

E − λ

|tc,1|2 sin jθ − sin( j − 1)θ

]
, (C24)

where N is a normalization factor. For any finite L, there are
L scattering states from the (perturbed) continuous spectrum
of the lead. A generic feature of these L states is their small
amplitude at the quantum dots. Additionally, there can be two
scattering hybridized states. A generic feature of these states
is their relatively large amplitude on the dots. The hybridized
states for L = 10 and λ = μ = 1.4 are displayed in Figs. 13(a)
and 13(b). States from the (perturbed) continuous spectrum
are displayed in Figs. 12(c) and 12(d) and 13(c) and 13(d). The
hybridized states for L = 11 and λ = μ = 1.2 are displayed in
Figs. 19(c) and 19(d).
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