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A precise estimation of the detection response is essential for a high-performance and secure quantum-key-
distribution (QKD) system. Single-photon avalanche diodes (SPADs) are widely applied to estimate the single-
photon yields. However, in the presence of the dead time and afterpulse of the SPADs, the estimations of gains
in previous models are biased, which will lead to ill-fitting optimized parameters and greatly degrade the system
performance. Here, we develop a dependency model for providing more accurate optimization to achieve higher-
performance QKD systems. Moreover, to further improve the system performance, our model guides users to
choose proper dead time. Our simulation results indicate that our model plays an important role in the practical
application and deployment of QKD systems.
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I. INTRODUCTION

Quantum key distribution (QKD) [1–3] is a technique to
generate and share private keys securely between two remote
parties in the presence of eavesdroppers. In theory, the laws
of quantum physics guarantee the unconditional security of
the QKD [4–7], which has drawn wide attention in the world
and achieved significant progress in both theory [8–12] and
practice [13–16].

In actuality, weak coherent lasers are used to substitute
for perfect single-photon sources. Weak coherent lasers emit
highly attenuated laser pulses, each of which may contain
more than one photon. They provide an excellent opportu-
nity for eavesdroppers to perform the photon-number-splitting
(PNS) attack [17,18], especially when the quantum channel
loss is high. To tackle the PNS attack, a notable scheme named
the decoy-state method was proposed [8,19,20]. The decoy-
state scheme dexterously circumvents the security loophole
introduced by multiphoton pulses and channel loss in practical
QKD systems.

In decoy-state QKD schemes, parameter optimization is
significant for maximizing the system performance. And a lot
of works [21–25] have proved that the performance of the
optimized system is greatly improved, compared with that
of the unoptimized systems. Generally, users simulate the
system based on the practical devices and environment, and
evaluate the optimal parameters of the system according to the
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simulation results. As a result, an accurate model to describe
the practical situation is of great concern.

Because of the cost-effective price, high quantum effi-
ciency, and good robustness, single-photon avalanche diodes
(SPADs) are widely employed for single-photon detection
in practical QKD systems [26]. One of the most important
factors that can be used to qualify the performance of SPADs
is the afterpulse [27]. The afterpulse is correlated with the pre-
vious ignition avalanches, which is called the non-Markovian
property [28]. When photons trigger an avalanche, a part of
photon carriers will be trapped at a deep energy level due to
the material defects of the SPADs. Then the trapped carriers
will release over time and may trigger a pseudodetection event
if the SPAD is biased above the breakdown voltage. As an
intrinsic characteristic of the SPADs, the afterpulse will intro-
duce random detector responses, which increases the quantum
bit error rate (QBER) [29,30]. Especially, the afterpulse of the
signal state has great contributions to the gain and QBER of
decoy states [31].

Particularly, in order to alleviate the influence of the after-
pulse, a possible way is to introduce the dead time, a hold-off
time during which the SPAD is unable to detect photons after a
detection event. In this interval, the gate of the SPAD is on off
state, and any photons including light pulses will not produce
any amplified signals. After the hold-off time, the SPAD is
ready for a new detection cycle. Giving a sufficiently high
dead time, the afterpulse effect can be neglected, which will
degrade the error performance. However, blindly increasing
the dead time leads to a low count rate that will decrease
the secret key rate (SKR), and goes against high-speed QKD
systems. Therefore, an applicable dead time is crucial. Given
that, precisely describing the model based on the dead time
and afterpulse is vital for achieving higher-speed and higher-

2469-9926/2022/106(6)/062607(10) 062607-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0590-7229
https://orcid.org/0000-0002-9138-8316
https://orcid.org/0000-0003-1822-1613
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.062607&domain=pdf&date_stamp=2022-12-07
https://doi.org/10.1103/PhysRevA.106.062607


XIAO-JUAN HUANG et al. PHYSICAL REVIEW A 106, 062607 (2022)

performance QKD systems. And beyond that, the absence of
the afterpulse and dead time description leads to the skewing
of simulated gains and QBERs, which results in ill-fitting
optimal parameters, thus lower SKR.

Reference [32] proposed an analytical model for the dark
counts and dead-time regime on the measured count rate,
based on free-running SPADs. But this model does not take
the afterpulse effect into account. Reference [33] analyzes
effects of dead time and active reset on afterpulse probability
of InGaAs/InP single-photon avalanche diodes. In Ref. [33],
the authors introduced three models to calculate the afterpulse
probability: the simple model, the first-order model, and the
second-order model, which are applicable to different situa-
tions. The second-order model can provide a more accurate
SPD model, but its analytical model is complex so that it can
only be found numerically, while our model is of good appli-
cability and can give simple, analytical, and comprehensible
estimates of gains.

In our paper, based on gated-mode SPADs, we develop
a dead time and afterpulse model, named the “dependency
model,” in Sec. II. Our model helps users to estimate the actual
gains of each state. In Sec. III, we validate the veracity of
our model. The gains estimated by our dependency model and
Monte Carlo simulation are both in good agreement with the
experimental results. In Sec. IV, we compare our model with
the previous model that omits afterpulse and dead time, named
the “isolated model,” and our model shows great advantage
in implementing higher-performance QKD systems. Last but
not least, choosing proper dead time is crucial for further
improving the SKR and practical deployment of high-speed
QKD systems. A conclusion is provided in Sec. V.

II. MODELS

On account of the low price, high quantum efficiency, and
good robustness, SPADs are widely used as single-photon de-
tectors in practical QKD systems. As is shown in Fig. 1(b), the
SPAD is working on gated mode. In Fig. 1(c), except for the
light pulses in blue rectangles, there are two other factors to
trigger the detector responses: dark counts in green rectangles
and afterpulse in red rectangles. It should be noticed that users
cannot tell which factor causes the detection response and they
just record all response events.

As already stated, the afterpulse of SPADs is non-
Markovian in nature. After a detection response, the popula-
tion of the trapped carriers exponentially decays in time [34].
Most of trapped carriers are subsequently released, which
leads to high afterpulse rate. As an intrinsic property of the
SPADs, the afterpulse will bias the estimated gains and in-
troduce QBERs. Based on this property, the most common
method to alleviate the impact on afterpulse is to set the dead
time. As is shown in Fig. 1(b) in dashed lines, during the dead
time, there are no on-gate states applied to the detector, and
whether light pulses, dark counts, or afterpulses, detection
responses will occur with a certain probability of zero. As
a consequence, we have to evaluate the discarded events in
dead time to obtain more accurate gains. However, the pre-
vious model simply considers the responses caused by light
pulses and dark counts, ignoring the effects of dead time and
afterpulses, resulting in incorrect estimates of the true gains
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FIG. 1. Schematic illustrations of the response of a SPAD de-
tector. (a) Light pulses sent by Alice, assuming that the gate and the
optical pulse have the same frequency. (b) The SPAD operating in the
gated mode. After a response event, in any case, the SPAD will not
respond during the dead time in dashed lines. (c) Events ignited by
light pulses in blue rectangles, afterpulses in red rectangles, and dark
counts in green rectangles after setting dead time. The detection re-
sponses at detection windows of (i + 5), (i + 2), and i, which all have
impact on the current detection window, and (i + 9). The response
at the (i + 9)th detection window is triggered by afterpulse. (d) and
(e) are equivalent to (b) and (c) after setting dead time, respectively.
The pulses during dead time are discarded in the equivalent physical
scenarios.

and QBERs. Here, we first analyze the previous model. Then
we build our model and extend it.

A. Isolated model

In previous works, the gain with intensity μ is often given
by

D = 1 − e−ημ(1 − Y0), (1)

where η is the detection efficiency and Y0 is the dark count
rate. Equation (1) means the light pulses and dark counts
ignite the SPAD responses with probability D. The light pulses
and dark counts have nothing to do, and each response is
independent. Thus we regard this model as the isolated model.

As is shown in Fig. 2, the red line represents the opti-
mal SKR of the isolated model in three-intensity-decoy-state
QKD protocol [35] which is deferred to Appendix A. The
pentagrams are the corresponding Monte Carlo simulation
results. The Monte Carlo simulation is a method to be used to
simulate the real detecting process, and details are presented
in Appendix B. In practice, the afterpulse and dead time exist.
If using the isolated model to analyze, the gap between theory
and practice is wide. The results in Fig. 2 say it all. It reveals
that the SKR is seriously overestimated in the isolated model,
which will mislead users to analyze the system performance
in practice.

This simulated gains are not precise enough to fit the prac-
tical situation. In general, the dead time and afterpulse are
both the most important factors for SPADs. Because of the
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FIG. 2. Secret key rate as a function of fiber length L. The red
line is the optimal secret key rate of the isolated model and the
pentagrams are the corresponding Monte Carlo simulation results at
L = 30, 60, and 100 km.

exponential distribution of the afterpulse rate, after a detection
response, afterpulse can ignite another response with a high
probability and dead time alleviates this effect. The dead time
and afterpulse affect the simulated gains significantly so that
both of them cannot be neglected. Thus, we need to paint a
more precise physical picture.

B. Dependency model

Actually, due to practical manufacturing processes, the
dead time and afterpulse are inevitable. The afterpulse will
cause random responses that will introduce QBERs while
the dead time can reduce this negative effect. As shown in
Figs. 1(b) and 1(c), in the dead-time interval, the pulses will
not participate in the detection process. In other terms, these
pulses are discarded, as is shown in Fig. 1(d). We can see that
the dead time is set depending on former detection response.
In the back of this interval, the SPAD continues to work
normally in the gated mode. By the way, τ represents the
number of gates during each dead-time interval. For instance,
in Fig. 1(b), the dead time corresponds to one gate, τ = 1, and
for ease of illustration and presentation, we redefine τ as the
dead time.

For the sake of understanding, let us discuss the counts and
gain of the single state with intensity μ first. As is shown in
Fig. 1(d), after setting dead time, the actual number of pulses
participating in the detection process decreases, assuming that
n̂ is the number of detection responses after setting dead time
correlated to Fig. 1(e). Thus, there are n̂τ pulses discarded
in the dead-time duration and the remaining pulses, N − n̂τ

pulses, participate in the detection process. We can estimate
the total detection responses n̂ by

n̂ ≈ D′(N − n̂τ ), (2)

where the D′ corresponds to response probability triggered by
light pulses, dark counts, and afterpulses, and is given by

D′ = 1 − (1 − D)(1 − PAP), (3)

where D is given by Eq. (1) and PAP is the response proba-
bility triggered by afterpulse, which is related to all previous
response events. More information about the derivation of PAP

[31] is given in Appendix C. We can estimate the average af-
terpulse response probability of system PAP and it is expressed
by

PAP = q

1 − q
D, (4)

where

q =
j∑

i=τ+1

p̂(i) (5)

is the overall afterpulse rate and p̂ is the afterpulse rate co-
efficient. The p̂(i) is a conditional probability and indicates
that after a response event, it may cause the afterpulse occur-
rence with a probability p̂(i) at the ith succeeding detection
window. p̂(i) represent the afterpulse contribution caused by
one response event. Thus, q reflects the totally afterpulse
contribution outside the dead time. That is, Eq. (4) reflects
that historical response events contribute to PAP. In the dead-
time duration, the afterpulse rate will not contribute to PAP

thus setting p̂(i) = 0, where i ∈ (0, τ ]. By the way, the p̂ is
measured experimentally and the details about the measuring
method are shown in Appendix D.

Equation (2) is the estimated total number of detection
responses triggered by the three factors—light pulses, dark
counts, and afterpulse—in the presence of dead time. The D′
is the gain that does not consider the dead time, but patches
the afterpulse into the total responses events. The D′(N − n̂τ )
is a bit higher than n̂. Here, we ignore the effect of high order
of D′ and consider them to be approximately equal. And the
results in Sec. III will justify making this approximation.

The most important thing is to evaluate the real number
of detection responses. After abandoning pulses in the dura-
tion of dead time, we can estimate the number of detection
responses n̂ as

n̂ = ND′

1 + τD′ . (6)

We find that the detection response n̂ is lower than the
original estimated gain, n = ND′, which confirms that Eq. (6)
is consistent with the actual situation that the dead time will
decrease the count rate. In actuality, users regard the gain as

D̂ = n̂

N
. (7)

Thus, the gain with intensity μ after correcting is expressed
by

D̂ = D′

1 + τD′ . (8)

Different from the isolated model, previous response situ-
ations have great impact on latter events and are inextricably
linked. Correcting for the isolated model is essential. For this
reason, we call our model the “dependency model.” The de-
pendency model can provide more accurate gain simulations
and help users to evaluate the practical system performance in
theory, especially in the decoy-state scheme.
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C. Extension of the dependency model

The decoy-state scheme is proven to be used to estimate
the contribution from single-photon signals and is widely ap-
plied in practical QKD systems. Usually, people will further
optimize the decoy parameters, including the intensity of each
state, and the probability choice of intensities and bases, to
achieve better performance of QKD systems. Nevertheless,
in the decoy-state scheme, since the dead time and the af-
terpulse will affect other cycles, the error of the previously
isolated model will be larger, resulting in worse performance
of the system. Thus, our dependency model becomes more
significant. Here, we extend our model to the decoy-state
scheme. Taking an r-intensity decoy-state scheme as an exam-
ple, Alice randomly prepares a pulse with intensity μi [μi ∈
(μ1, μ2, μ3, . . . , μr )].

Unlike the single intensity situation, we have to figure out
discarded pulses with different intensities, assuming that Pμi

is the probability to choose the intensity μi. Similarly, we can
derive the number of response events of each state:

n̂μ1 ≈ NPμ1 D′
μ1

− τ

(∑
μi

n̂μi

)
Pμ1 D′

μ1
,

n̂μ2 ≈ NPμ2 D′
μ2

− τ

(∑
μi

n̂μi

)
Pμ2 D′

μ2
,

n̂μ3 ≈ NPμ3 D′
μ3

− τ

(∑
μi

n̂μi

)
Pμ3 D′

μ3
,

· · ·

n̂μr ≈ NPμr D
′
μr

− τ

(∑
μi

n̂μi

)
Pμr D

′
μr

. (9)

The τ (
∑

μi
n̂μi ) represent the total number of pulses in the

dead time interval and we can estimate the discarded pulses of
each state τ (

∑
μi

n̂μi )Pμr . The formulas in Eq. (9) are similar
to Eq. (2). Adding up these terms,

∑
μi

n̂μi = N
∑
μi

Pμi D
′
μi

− τ

(∑
μi

Pμi D
′
μi

)(∑
μi

n̂μi

)
, (10)

we find the total number of detection responses of all states as∑
μi

n̂μi = N
(∑

μi
Pμi D

′
μi

)
1 + τ

∑
μi

Pμi D′
μi

. (11)

Substituting Eq. (11) into Eq. (9), and getting the n̂μi ,

n̂μi = NPμi D
′
μi

1 + τ
(∑

μi
Pμi D′

μi

) . (12)

After correcting, the gains are given by a general formula:

D̂μi = D′
μi

1 + τ
∑

μi
Pμi D′

μi

(13)

where μi [μi ∈ (μ1, μ2, μ3, . . . , μr )].
Here, what is worthy to be mentioned is that our model

can be extended to realize any QKD protocols with multiple

IM Att.

SPAD

Laser

FIG. 3. Experimental setup. IM, intensity modulator; Att., vari-
able optical attenuator; SPAD, detector.

decoy states and shows great compatibility with any single-
photon avalanche diode detectors in practice. What is more,
our formula is straightforward and comprehensible.

III. EXPERIMENTAL VERIFICATION

In order to make our model more convincing, we used a
simple experiment to verify our model. As is shown in Fig. 3,
it is our experimental setup. The intensity modulator is used to
modulate the ν1, ν2, and ν3 intensity. These light pulses pass
through an optical attenuator, with which we simulate a trans-
mission loss of L = 20 km of optical fiber. Some important
experimental parameters are listed in Table I.

We calculate the D̂νi of each state in theory, in Monte Carlo
simulations and experimentally. D̂νi is the gain after correcting
the dead time and afterpulse. In theory, the D̂νi is given by
Eq. (13).

The results are presented in Fig. 4. We introduce three
intensities with fixed probabilities, and set the dead time as
5, 10, and 20 gates as examples. Theoretical values are in
lines, experimental results are in asterisks, and the Monte
Carlo simulation results are in circles. The theoretical values
of the gain D̂νi provided by our model are in good agreement
with the value measured by experiment. It proves that our
model is reasonable to accurately describe the dead time and
afterpulse, and can estimate the gain of each state precisely.
It can provide more precise analytical reference for practical
experiment. Also the Monte Carlo simulation results agree
with the experimental results. It proves that it is reliable to
use Monte Carlo simulation to simulate the real experiment.

IV. RESULTS

In this section, we begin with the Monte Carlo method to
simulate the detection process in the three-intensity decoy-
state BB84 QKD [35] as an example. The detailed simulation
process is given in Appendix B. After Monte Carlo simu-
lation, we can obtain the statistic of detection responses of
each state type. It is accessible for us to calculate the actual
detection probability, QBER, and other information through
statistical results. The results of the numerical simulation are
presented and discussed.

TABLE I. Experimental parameters: N is the total number of
pulses, Y0 is the dark count rate, νi are the intensities of each state, Pνi

are the corresponding selecting probabilities, and ηD is the detection
efficiency of our SPAD.

N Y0 νi Pνi ηD

109 1.6 × 10−5 0.5 0.3 0.1 0.6 0.1 0.3 0.18
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FIG. 4. The comparison between our model, Monte Carlo simu-
lation, and experimental results. From the top down, the three lines
correspond to the gains of ν1, ν2, and ν3 in theory. Experimental
results are in asterisks, and the Monte Carlo simulation results are
in circles.

Some other important experimental parameters are listed
in Table II. The calculations of the SKR are explained in
Ref. [35] and discussed in Appendix A. Moreover, the full
parameter optimization is used.

Figure 5 shows the SKRs in different situations. The red
line presents the situation that the afterpulse and dead time are
both neglected in the isolated model. The optimal parameters
are substituted due to the reality that SPADs have inherent
dead time and afterpulse properties in practice, as is shown in
blue line. The yellow line shows the SKR of our model. To
validate the reliability of our model, the optimal parameters
of our dependency model and isolated model at L = 30, 60,
100 km are substituted into the Monte Carlo simulation in
solid circles and squares, respectively. The theoretical results
and the Monte Carlo simulation results are highly coincident,
which suggests that our model is realistic. Moreover, the solid
circles agree with the blue line but are away from the red
line, which means that the previous isolated model is skewed
far from the practical situation. Moreover, the solid squares
almost coincide with the yellow line, which reveals the pre-
cision of our dependency model. In a word, our model is
practical and necessary.

Comparing the red line and blue line in Fig. 5, it is ob-
vious that the SKR decreases greatly, which means a worse
performance of the QKD system. This situation gives a biased

TABLE II. Experimental parameters: N is the total number of
pulses sent by Alice, τ is the dead time, emis is the misalignment-
error probability, Y0 is the dark count rate, f is the error-correction
efficiency, and εsec and εcor are the security parameters used in the
secret-key-rate formula.

N τ emis Y0 f εsec εcor

109 5 5 × 10−3 6 × 10−7 1.16 10−9 10−15
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FIG. 5. The secret key rates as the function of fiber length in
different cases. The secret key rate of the isolated model after full
parameter optimization is in red (upper) line. The optimization pa-
rameters in the isolated model are substituted into the reality that
exists at dead time and afterpulse, which is in blue (lowest) line. The
secret key rate of our dependency model is in yellow (middle) line.
Solid circles and squares represent the Monte Carlo simulation re-
sults in the dependency model and in the isolated model respectively.
The inset is a partial enlargement.

simulated value of gains and results in a skewing optimal
parameter reference. It demonstrates that the inaccurate iso-
lated model is a stumbling stone that hinders people from
finding an accurate optimal parameter reference for practi-
cal application and further theoretical analysis. The isolated
model contributes to a worse practical QKD system, failing to
perform its full potential.

As is shown in Fig. 5, the SKR of our model in yellow
line is lower than that in red line. The reason is that afterpulse
introduces QBERs. Meanwhile, though setting dead time will
decrease the QBER induced by afterpulse, the count rate de-
creases at the same time. But it is still higher than the blue
line.

To further improve system performance, we analyze the
SKR as a function of the dead time in the cases of different
values of L, as is shown in Fig. 6. With the increase of dead
time, there is a sharp increase when dead time τ is small.
Then, a slight rise and a steady decline follow. When τ = 0,
the SKRs are low. The reason is that the QBERs induced by
afterpulse are high. And because the afterpulse rate decays
exponentially in time, after setting dead time, the QBERs
decline greatly, which makes the SKRs increase sharply.

As can be seen from Fig. 6, longer dead time is not better.
Using our model, the optimal dead time can be obtained
according to the actual experimental environment. With the
increase of dead time, most of the carriers in traps in a SPAD
have released in this interval, especially when the magnitude
of the dead time can be equal to or greater than the trap life-
time. The probability of afterpulse becomes very low, thus we
have low QBER. However, the increase of dead time means a
reduction of count rate, which may lead to a decrease of the
SKR. So longer dead time is not always better. When the dead
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FIG. 6. The secret key rate of our model as a function of the
dead time at different transmission distances. The curves from top
to bottom represent the secret key rates of L = 0, 10, 20, and 30 km,
respectively. To make it clear, the pentagrams are used to represent
the optimal values of dead time in different distance regimes.

time is too long, because the afterpulse rate p̂ is already very
low, further increasing the dead time will not only have little
effect on reducing QBER and improving the performance of
the system, but will make the system worse because of the
reduction of the count rate. Dead time is a parameter that
needs to be optimized. Thus, a sound dead time plays an
important role in further improving system performance.

As is shown in Fig. 6, we have simulated the optimal
dead time in different distance regimes. And we find that the
optimal dead time at long distance is longer than that at short
distance. The increase in transmission distance will lead to a
decrease in the count rate triggered by light pulses. And the
light count is randomly distributed, thus the light-count dis-
tribution is going to be more dispersed in the longer-distance
regime, while the distribution of the afterpulse always tends to
be immediately adjacent to the previous response. Therefore,
as the transmission distance increases, the influence of the
dead time on the light counts will decrease, while the effect
on the afterpulse remains almost constant. On the other hand,
with the increase of transmission distance, the QBER induced
by afterpulse will gradually become dominant in the SKR.
So comparing with the case of short transmission distance,
the suppression of the afterpulse become more significant,
resulting in longer optimal dead time. In different cases, the
optimal dead time is different, and our model can help users
to choose a proper dead time and analyze the effect on the real
QKD system.

According to the results, our model reveals good compat-
ibility to afterpulse and dead time. Although the QBER is
introduced by the afterpulse and the count rate decreases due
to setting dead time, our dependency model still shows great
advantage in balancing the relation between them. Our depen-
dency model help users to evaluate the optimal parameters and
provide a better performance of the QKD system. In contrast,
the previous isolated model will mislead the simulation and

degrade the practical system performance. Meanwhile, a rea-
sonable dead time is positive for further increasing the SKR
and constructive to the application of higher-performance
QKD systems.

V. CONCLUSION

In conclusion, we develop an improved dead time and
afterpulse model named the “dependency model” to eval-
uate more accurate gains. Afterpulse ignites the detection
responses randomly while the dead time can reduce the neg-
ative impact on SKR. In addition, we theoretically analyze
and evaluate the gap of the SKRs between the isolated model
and our dependency model in the same condition. The per-
formance of the isolated model gets worse while our model
is superior, not only in providing optimized parameters accu-
rately, but also in a better system performance. Furthermore,
we present the SKRs as a function of the dead time at different
fixed distances. The result shows that the SKR first grows and
then decreases with the adding of dead time. The dependency
model guides people to choose proper dead time to further
improve the performance of the QKD systems. Therefore, our
model is proven to be compatible with the dead time and
afterpulse in practical QKD systems.

First and foremost, high SKR is significant to expand the
application of QKD. The SKR can be improved by reducing
the QBER and increasing the count rate. The proposed model
can reduce the QBER caused by the afterpulse in the method
of setting the dead time, and improve the count rate as much
as possible by choosing decoy parameters and the dead time
reasonably. Our model is readily comprehensible and plays an
important role in the practical application and deployment of
QKD systems.
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APPENDIX A: CALCULATION OF SECRET KEY RATE

In real-word experiments, to give full play to the best
performance of QKD system, users always select a group of
optimal parameters including selecting the intensities of states
as well as the probability of different intensities and bases,
according to the actual experimental environment. The secret
key rate R is given by

R = l

N
(A1)

where

l = sX,0 + sX,1[1 − h(eX,1)] − λEC − 6 log2
21

εsec
− log2

2

εcor

(A2)
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where h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary
entropy function. The sX,0 and sX,1 denote the number of the
vacuum events and the number of the single-photon events in
the X basis, which are given by

sX,0 = τ0
μ2F−(μ3, nX,μ3 ) − μ3F+(μ2, nX,μ2 )

μ2 − μ3
(A3)

and

sX,1 = τ1μ1

μ1(μ2 − μ3) − μ2
2 + μ2

3

×
{

F−(ν1, nX,μ2 )

− F+(μ3, nX,μ3 )−μ2
2−μ2

3

μ2
1

[
F+(μ1, nX,μ1 ) − sX,0

τ0

]}
,

(A4)

where τn = ∑
μi=μ1,μ2,μ3

e−μiμn
i Pμi/n! is the probability that

Alice sends a n-photon state, and the n±
X,α is an intermediate

variable corresponding to Hoeffding’s inequality that is given
by

F±(μi, nX,μi ) = eμi

Pμi

[
nX,μi ±

√
nX

2
ln

21

εsec

]
, (A5)

where nX = ∑
μi

nX,μi . The nX,μi is given by Eq. (6). In addi-
tion, we also calculate the phase error rate associated with the
single-photon events:

eX,1 = vZ,1

sZ,1
+ γ

(
εsec,

vZ,1

sZ,1
, sZ,1, sX,1

)
, (A6)

where

vZ,1 = τ1
F+(μ2, mZ,μ2 ) − F−(μ3, mZ,μ3 )

μ2 − μ3
(A7)

and

γ (a, b, c, d ) =
√

(c + d )(1 − b)b

cd log 2
log2

(
c + d

cd (1 − b)b

212

a2

)
.

(A8)

The λEC = nX f h(EX ) is the consumption of the information
in error correction, f is the efficiency factor of the error
correction, and εsec and εcor are the security parameters.

APPENDIX B: MONTE CARLO SIMULATION

We use Monte Carlo simulation to simulate the detec-
tion process to identify the validity of our dependency
model. Alice randomly selects different intensities, μi ∈
(μ1, μ2, μ3, . . . , μr ), with its corresponding probability Pμi ,
respectively, where Pμi ∈ (Pμ1 , Pμ2 , Pμ3 , . . . , Pμr ), and ran-
domly encodes her qubits in ω basis with the probability of
Pω, where Pω ∈ (PX , PZ ). Alice sends her qubits to Bob via
the optical fibers with an attenuation coefficient of 0.2 dB/km.
And the transmittance ηch is expressed by 10−0.2L/10. Bob uses
the detection program to receive the signals and decodes the
qubits. If the detector responds, perform dead time operation,
otherwise determine whether the afterpulse elicits a response
or not based on the previous response situation. In the end,
we obtain the statistic of detection responses, and calculate
and analyze the information we need. The detailed simulation

Start

 = 1

NO

Afterpulse 
resp.

Cal.  

>

YES

NO
 = + τ + 1

YES

NO

YES
Do statistic

Alice selects  
and basis 

Bob selects 
basis ′

= ′

Resp. with 
prob. ( )

 = + 1

NO

YES

=
1
2

Cal. ( )

End

FIG. 7. Pseudocode of Monte Carlo simulation.

process is shown in Fig. 7. The x is the round number, D(μi )
corresponds to Eq. (1), and PAP is the afterpulse contribution
related to its previous responses.

APPENDIX C: DERIVATION
OF AFTERPULSE PROBABILITY

PAP is the response probability triggered by afterpulse,
which is related to all previous response events. Because of
the non-Markovian property of afterpulse, historical response
events will contribute to PAP at the current detection window,
thus

PAP =
k∑

i=τ+1

Di p̂(i) (C1)

where Di is the detector response probability of the ith detec-
tion and p̂(i) is the afterpulse rate coefficient. In other words,
p̂(i) indicates that after a response event it may cause the after-
pulse occurrence with a probability p̂(i) at the ith succeeding
detection window. Thus, Di p̂(i) is the afterpulse contribution
from the ith response event. PAP represents the sum of the
effects of all previous response events on the afterpulse at the
current detection window.
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The detection response can be ignited by light pulse, dark
count, and afterpulse. The afterpulse ignited by a light pulse
or dark count is called the first-order afterpulse. Therefore, the
first-order afterpulse probability, P(1)

AP , is given by

P(1)
AP =

k∑
i=τ+1

p̂(i)Di. (C2)

Di is the response probability triggered by the light pulse or
dark count:

Di = D̃ =
∑

μ

PμD̃μ, (C3)

where D̃μ is the weighted average of the gain of varying decoy
states and is given by

D̃μ = (
P2

X + P2
Z

){
1 −

[
1 − 1

2 (1 − e−μη )

]
(1 − Y0)

}
+ 2PX PZ [1 − e−μη/2(1 − Y0)]. (C4)

The afterpulse will ignite afterpulse as well, which are col-
lectively called the high-order afterpulse. For accuracy and
authenticity, we have to consider these higher-order after-
pulses. Therefore,

P(2)
AP =

k∑
i=τ+1

p̂(i)P(1)
AP = q2D̃,

P(3)
AP =

k∑
i=τ+1

p̂(i)P(2)
AP = q3D̃,

· · ·

P(l )
AP =

k∑
i=τ+1

p̂(i)P(l−1)
AP = ql D̃. (C5)

PAP is given by

PAP =
∞∑

l=1

P(l )
AP = q

1 − q
D̃, (C6)

where

q =
j∑

i=τ+1

p̂(i) (C7)

is the overall afterpulse rate and meets q < 1.

APPENDIX D: MEASUREMENT OF ˆp(i)

With the development of experimental techniques, there
are various methods to measure the afterpulse rate coefficient
p̂(i) accurately. Here we use the method in Ref. [36]. In
our paper, the data are collected based on the scheme, the
setup of which is shown in Fig. 8. The pulsed laser source
and the single-photon detector are triggered by clock signals
of 1 and 50 MHz, respectively. The pulsed laser generates
pulse trains spaced 1 μs apart, while the SPAD opens its
gate every 20 ns. That means only one trigger signal arrives
at the detector in every 50 detection windows. By using an
attenuator, the mean photon number of a coherent pulse which

FIG. 8. (a) Schematic diagram of the measurement of the overall
afterpulse rate p̂AP. Laser, short-pulse laser source; ATT, attenuator;
SPD, single-photon detector; TDC, time-to-digital converter; AWG,
arbitrary waveform generator. (b) Schematic diagram of the trigger
sequence and detection windows. The repetition frequency of the
laser is different from the detector, for example, the pulsed laser
source and the single-photon detector are triggered by clock signals
of 1 and 50 MHz, respectively. That means only one trigger signal
arrives at the detector in every 50 detection windows.

is generated by the laser is attenuated to 0.1. To measure the
required data, a time-to-digital converter is started by a clock
signal, which is the same as the trigger signal of the laser,
and stopped by the response signals of the detector. In each
period of start, there is a time tag with a constant delay to the
start signal according to pulse-emitting events, as is shown in
Fig. 8(b).

Here, we only measure the counts at a time tag as is shown
in Fig. 8(b) in the red box. The count, denoted by Cdd , con-
tains a successful detection response in a detection window.

0 10 20 30 40 050

i (Gate)

0

0.1

0.2

0.3

0.4

0.5

Afterpulse rate

FIG. 9. The measured afterpulse rate at each gate, p(i). The
SPAD detector opens its gate every 20 ns.
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There are sequent detection windows created by the afterpulse
responses and dark counts, the count of which is denoted by
Cad (i) at each detection window, because the detector opens
its gate without an incident pulse. In addition, the dark counts,
Cd , can be obtained by counting the detector responses with
the extinct laser source. Then, the afterpulse rate p̂(i) can be
derived:

p̂(i) = Cad (i) − Cd
50 × (50 − 1)

Cdd
. (D1)

By this method, we can obtain the afterpulse rate coefficient
p̂(i) accurately, which is easy to achieve.

The result is shown in Fig. 9. In our simulations, we use
the measured p̂ to determine the value of the overall after-
pulse rate q and afterpulse response probability PAP. And the
p̂ decays quickly with time (with gates increasing). As an
example, when the dead time is set to be five gates, the overall
afterpulse rate q is about 2.2%, and when the dead time is
set to be 20 gates, the q is about 1.12%. With the increase of
dead time, PAP decreases. And the PAP is related to the actual
pulse intensity and other parameters, so there will be some
differences in different cases, as is shown in Eq. (C6). From
the value of q, we can also roughly judge the effect of the
afterpulse on the system. Moreover, our model is applicable
to any detector type and can be used to estimate the real gains
of QKD protocols.

APPENDIX E: EFFECT OF AFTERPULSE
IN HIGH-SPEED SYSTEMS

We have simulated the PAP as a function of repetition rate at
different transmission distances, as is shown in Fig. 10 in blue
lines. At high repetition rate, the afterpulse increases sharply.
It will be more prominent in higher-speed systems, especially
when the value of PAP is comparable to the gains of decoy
states; thus the QBER of the system will greatly increase,
which will degrade the QKD system performance.

Due to the nonideality of actual SPADs, the afterpulse and
the dark counts are inevitable. In practice, users cannot dis-
tinguish what causes the response. Dark counts and afterpulse
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FIG. 10. The afterpulse probability PAP as a function of the rep-
etition rate of the QKD system at different transmission distances
in blue lines. The secret key rate as a function of repetition rate of
the QKD system at L = 0 km. When the dead time of the 1-GHz
system is increased to 1000 ns, the PAP and the corresponding SKR
are marked by an asterisk and a crisscross, respectively.

will lead to error counts which will degrade the performance
of QKD systems, especially the afterpulse effect. Here, we
simulate SKR at L = 0 km, as is shown in Fig. 10 in red line.
Other parameters are the same as in Table I. When the repeti-
tion rate is 50 MHz, the SKR is 2.34 × 10−3 per pulse, while
at 1 GHz the SKR is zero and the PAP is about 1.41 × 10−2. In
this case, the value of PAP is on the same order of magnitude
as the value of the gain of the decoy states. Thus, the error
count induced by afterpulse is very high. From that, we find
that the afterpulse effect has more influence on high-speed
systems. To improve the high-speed system, longer dead time
is needed. When dead time in a 1-GHz system is increased to
1000 ns, the PAP is about 2.42 × 10−4 and the corresponding
SKR is about 3.33 × 10−5 per pulse, as is shown in Fig. 10
by an asterisk and a crisscross, respectively. In higher-speed
systems, longer dead time is needed to mitigate the effect of
the afterpulse.
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