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We analyze three quantum communication protocols that have been proposed in the literature and compare
how well they communicate single-rail entanglement. We use specific metrics for output-state purity and
probability of success and include the presence of imperfect photon source and detection components. We find
that a distributed noiseless linear amplification (NLA) protocol with a relay point placed halfway between Alice
and Bob outperforms NLA at Bob’s end and a recently proposed purification protocol under most conditions,
unless the distance is very small or the photon source component is very good.
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I. INTRODUCTION

The distribution of entangled states is a critical resource
in many quantum communication protocols [1–3]. Due to
relatively low interaction of quantum states of light with their
environment, single-photon entanglement and linear optics
produce one of the simplest instances of such protocols [4].

Nevertheless, practical implementation of these schemes
has proven highly challenging due to inevitable losses
in optical-fiber transmission channels. Methods that were
successful in overcoming optical loss for classical communi-
cation are unfortunately inadequate in the context of quantum
communication. Indeed, it can be shown that deterministic
amplification rapidly destroys entanglement, an effect that is
not relevant for classical communication [5].

While, historically, most schemes have employed dual-rail
encoding [6], interest has recently increased in single-rail
encoding [7], where vacuum represents logical zero, and one-
photon states represent logical one. In this paper we will focus
on the distribution of single-rail entanglement.

Among various techniques that have been proposed to
mitigate such loss, noiseless linear amplification (NLA) is
an entanglement distillation protocol in which the measure-
ment result heralds whether the amplification was successful
or not [8]. It has been used to demonstrate various loss
mitigation schemes [9–13]. In particular, this protocol was
experimentally demonstrated to be capable of distributing
high-fidelity entanglement over loss-equivalent distances of
up to 50 km [14] and was subsequently used to implement an
error-corrected quantum channel [15]. A similar scheme with
photon detection implemented at a central station halfway
between Alice and Bob was also demonstrated experimentally
[16]. This is a specific example of a general type of repeater
protocol based on distributed NLA [17]. While NLA proto-
cols produce entangled states with arbitrarily high, but finite,
purity, purification protocols have also been proposed [18,19]
as a scheme to obtain perfect entangled-state purity, at the cost
of introducing additional source and detection components as
well as a decreased probability of protocol success.

A key difficulty in the practical implementation of all
such schemes is the efficiency of the single-photon source
and detectors used by the protocol [20]. Implementing such
components in practice is technologically highly challenging.
In recent state-of-the-art experiments, single-photon detection
was achieved with 98% efficiency and high time resolution
using superconducting nanowire single-photon detectors [21].
Furthermore, single-photon generation was recently demon-
strated to yield a 66.7(24)% probability of collecting a single
photon using heralded single-photon sources [22,23]. The
trade-off between state purity and heralded probability is
therefore analyzed here in the presence of these constraints.

We begin by introducing the NLA and our various as-
sumptions in the next section. We illustrate our figures of
merit initially by examining direct transmission of single-
rail entanglement through a lossy channel. We then see how
the situation changes when we introduce our two different
NLA protocols. The purification protocol is then introduced in
Sec. III, and then we proceed to compare their performances
in Sec. IV before briefly concluding in Sec. V.

II. NLA PROTOCOL

We first assume that perfect single-photon sources and
single-photon detection devices are available and later relax
this assumption in Sec. II D. Environmental noise is modeled
as a vacuum state entering the open port of a beam splitter
with transmissivity η, such that a photon sent by Alice to
Bob either gets transmitted with probability η or gets lost
with probability 1 − η. A click or “success” is a measurement
result that heralds entanglement of the state. In absence of a
click, the state is discarded, and another trial is made.

The aim of all protocols analyzed here is that whenever
there is a click, Alice and Bob share a state whose entangled
component is maximal (unbiased) and which contains as little
environmental loss as possible. Such a final state can always
be successfully targeted even if there is detection and/or
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FIG. 1. In the most basic framework, Alice prepares an entangled
state using a beam splitter, then sends part of that state over to Bob
through a lossy channel of transmissivity η. The channel loss is mod-
eled as a vacuum state |0〉ei entering through the open port of a beam
splitter. The parameter τ is chosen such that the resulting output state
in modes a and b is a mixture of a pure maximally entangled state
|ψ f 〉 and an environmental loss state |ψ0〉. The output-state purity is

quantified using the ratio X = Pf

P0
.

source loss. We do not consider thermal noise of dark counts
here, which could lead to additional error states if included.

A. “Do-nothing” protocol

In order to compare the performance of different protocols,
a reference is first established by considering the metrics
obtained in the absence of a distillation protocol.

If Alice is in possession of a perfectly pure state with
arbitrary entanglement τ and sends this state to Bob through
the lossy channel of transmissivity η, as represented in Fig. 1,
the output state projected on no environmental losses is

|ψ f 〉 = √
τ |10〉ab + √

1 − τ
√

η|01〉ab, (1)

with probability

Pf = τ + η(1 − τ ), (2)

while the projection on environmental losses produces

|ψ0〉 = √
1 − τ

√
1 − η|00〉ab, (3)

with probability

P0 = (1 − τ )(1 − η). (4)

From Eq. (1), the condition of maximal entanglement yields

τ = η

1 + η
. (5)

We now define the state purity X = Pf

P0
, which represents how

pure the reduced state ρ = Tre[|ψ〉〈ψ |] is, with X = ∞ for a
perfectly pure state. The relationship of X to more standard
measures of purity such as Tr{ρ2} is Tr{ρ2} = (1 + X 2)/(1 +
X )2. For the current case, we find

X = Pf

P0
= 2η

1 − η
. (6)

FIG. 2. In the NLA protocol implemented at Bob’s end, Alice
and Bob each prepare an entangled state by sending a single photon
through beam splitters. Alice then sends part of her entangled state
to Bob through a channel of transmissivity η. Bob’s state and Alice’s
state are interfered through a 50:50 beam splitter and uses photon
detection at output modes b and c. If exactly one photon is detected at
mode b or c and no photon is detected at the other mode (representing
two possible click states), Alice and Bob will use their respective
path-entangled states at outputs a and d .

B. NLA at Bob’s end

The building block of the NLA protocol as described and
implemented in [8,14] is illustrated in Fig. 2. Details of the
calculation are given in Sec. A 1.

For the output click state projected on no environmental
losses, we obtain

|ψ f 〉 = √
τ
√

1 − t

√
1

2
|10〉ad + √

1 − τ
√

η

√
1

2

√
t |01〉ad ,

(7)

with probability

Pf = 〈ψ f |ψ f 〉 = 1
2τ (1 − t ) + 1

2 (1 − τ )ηt, (8)

and for the output click state projected on environmental
losses, we obtain

|ψ0〉 = √
1 − τ

√
1 − η

√
1 − t

√
1

2
|00〉ad , (9)

with probability

P0 = 〈ψ0|ψ0〉 = 1
2 (1 − τ )(1 − η)(1 − t ). (10)

The condition of maximal entanglement yields

τ = tη

1 − t + tη
, (11)

so that, after expressing t in terms of η and the state purity X ,
we find the probability of obtaining a click as

Psuccess = 4η(1 − η)(1 + X )

[2η + X (1 − η)][2 + X (1 − η)]
. (12)

More generally, we define Psuccess as the probability that the
protocol succeeds, in the sense that the state will not be
discarded. This is equal to the click probability in all the pro-
tocols analyzed in this paper, other than in the “do-nothing”
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FIG. 3. The probability Psuccess of obtaining a click state is plotted
as a function of the state purity X for different channel transmis-
sivities η. The dotted portions of the lines represent areas where a
higher X can be obtained from doing nothing, according to Eq. (6).
In the solid portions of the lines, the expected trade-off between click
probability and state purity is observed, as the odds of obtaining a
click decrease for higher purity.

protocol, in which the state is never discarded and therefore
Psuccess = 1.

An important benefit of the NLA protocol lies in the fact
that, given perfect source and detection components, the pu-
rity of the state X can be made arbitrarily high by adjusting the
entanglement of Bob’s input state. This, however, is expected
to come at the expense of a decreased click probability, a
relationship illustrated in Fig. 3.

Surprisingly, we find that at small distances (high η, low
losses), the click probability can actually increase with X .
However, as shown in Sec. A 1, whenever this behavior is
observed, the X produced by the NLA protocol is lower than
the X obtained without any protocol. Since the probability of
success is also lower than 1, applying such a protocol would
be worse than doing nothing. In the more typical case (longer
distances, η � 1), the expected behavior is observed, and the
probability of success decreases as an increasingly purer state
is targeted.

C. NLA halfway

An alternative setup as implemented in [16] is now ana-
lyzed, with photon detectors placed halfway between Alice
and Bob, instead of at Bob’s end. This setup is an example of
the more general distributed NLA protocol in [17]. The trans-
missivity of a channel decays exponentially with distance,
yielding the conventional assumption [14,24,25] of

η = e− d
22 , (13)

where the attenuation loss distance of 22 km is converted from
typical optical-fiber loss of 0.2 dB km−1. The transmissivity
on each half distance of the channel can therefore be mod-
eled as

√
η, such that the total transmissivity over the whole

distance is still η.

FIG. 4. NLA diagram where the photon detection components
b and c have been placed halfway between Alice and Bob. As a
result, there are now two environmental loss modes, e and f , each
modeled as a vacuum state entering the open port of a beam splitter
with transmissivity

√
η.

Repeating the calculations for the setup in Fig. 4, the click
probability is now

Psuccess = 2
√

η(1 − √
η)(1 + X )

[X (
√

η − 1) − 1]2
(14)

(key intermediary formulas are given in Sec. A 2).
Comparing Eqs. (12) and (14), we obtain the plot displayed

in Fig. 5. We see that for a given X � 1 and assuming η �
1, the click probability in this alternative protocol will now
scale with

√
η instead of η, thus leading to a much higher

probability of success for a given state purity target.

D. Addition of source and detection noise

We now aim to compare the two setups (NLA at Bob’s
end and NLA halfway) in the presence of imperfect (i.e.,
inefficient) photon source and photon detection components.
We analyze two situations: (i) perfect sources and imperfect

FIG. 5. Comparison of the click probability in NLA protocols
done either at Bob’s end or halfway between Alice and Bob. At long
enough distances, the

√
η scaling will always allow the halfway NLA

protocol to outperform, regardless of the state purity chosen.
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FIG. 6. Comparison of the NLA click probabilities in situations
II D and II D, using δ = 0.9, ε = 0.9, X = 10. The improvement
brought by implementing photon detection halfway between Alice
and Bob is entirely maintained in the presence of imperfect photon
source and detection components. However, with a photon source of
quality ε = 0.9, state purities higher than X = 18 cannot be reached.

detection (quality δ) and (ii) one imperfect source (quality ε)
on Bob’s end and imperfect detection (quality δ).

In each situation, we compare photon detection at Bob’s
end to photon detection halfway between Alice and Bob by
going through the same calculations as in Sects. II B and II C.
Imperfections at the source and the detectors are all mod-
eled as additional environmental loss modes. The resulting
diagrams for both situations are available in Appendixes B
and C.

Treating situation II D first, we find that in the limit of X �
1 and η � 1, the probabilities of success are, respectively,

PBob’s end
success → 4δη

X
(15)

when the measurement is done at Bob’s end and

PHalfway
success → 2δ

√
η

X
(16)

when it is done halfway between Alice and Bob. The advan-
tage of putting the detectors halfway between Alice and Bob
is therefore maintained with the same order of magnitude,
as can be seen in Fig. 6, and we see that the protocol in
general is highly resilient to detection noise. If a photon is
lost at the heralding detectors, this simply reduces the success
probability with limited effect on output quality. (Exact click
probability formulas and other intermediary relationships are
given in Appendix B.)

Situation II D is unrealistic in the sense that a perfect
source would, of course, be used in both places if one was
available. However, our aim is to characterize the limitations
introduced by the protocol itself, so looking at its perfor-
mance with an ideal input is useful. The analysis then reveals
additional purification constraints introduced by the protocol
even if acting on an initially pure state. In this case, it is not
possible anymore to reach an arbitrarily high state purity, as
the imperfection of the source imposes an upper bound on X .
Independently of whether NLA is implemented at Bob’s end

FIG. 7. Purification protocol as proposed in [19]. The resource
states |�A〉 and |�B〉 are prepared such that a single-photon detection
at each corner (a “click”) heralds complete purity of the output state
in modes h and n. In other words, it is guaranteed that no photon was
lost to the environment in modes e and f when a click is obtained.

or halfway, the bound is always given by

Xmax = 2ε

1 − ε
. (17)

In terms of click probabilities, while a lower source quality
certainly causes a significant reduction, the relative scaling
of

√
η is preserved in favor of the halfway implementa-

tion. (Click probabilities and other intermediary formulas are
given in Appendix C. The case of on-off detectors was also
considered, yielding similar results that are also given in
Appendix C.)

III. PURIFICATION PROTOCOL

A. Perfect photon source and detection

We now consider a rather different protocol that we will
refer to as the purification protocol. The diagram displayed in
Fig. 7 represents the complete purification protocol proposed
in [19]. Key differences from the NLA protocols are that Alice
now sends two entangled states through the channel (one gets
recovered) and uses more complicated resource states:

|�A〉 =
√

1

2
|001〉kihigi +

√
1

2
|110〉kihigi ,

|�B〉 =
√

1

2
|100〉mini pi +

√
1

2
|011〉mini pi . (18)

Following the same method as for the NLA protocol, we
find that an output state projected on no environmental loss
gives

|ψ f 〉 = − 1
8

√
1 − t

√
τ
√

η|10〉hn + 1
8

√
η
√

t
√

1 − τ |01〉hn,

(19)
with probability

Pf = 1
64η[τ (1 − t ) + t (1 − τ )], (20)

while the projection on environmental losses yields an empty
|ψ0〉 and therefore P0 = 0. As a result, the heralded state
is absolutely pure (X = ∞). In other words, a click means
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we know with certainty that no photon was lost to the en-
vironment. After setting the usual condition of maximum
entanglement (t = τ here) and considering the 16 possible
successful states, we obtain

Psuccess = 1
2ηt (1 − t ). (21)

We can set t = 1
2 to obtain the maximum click probability, and

therefore,

Psuccess = η

8
. (22)

B. Imperfect photon source and detection

As in the case of the NLA protocols, the quality of photon
sources and detectors must be considered. In line with the
earlier assumptions of situation II D in the NLA protocols, we
assume that Alice’s single-rail entangled states are perfect and
consider only the additional noise introduced by the protocol
by adding an imperfect source (quality ε) to the three branches
of each resource state |�A〉 and |�B〉 and imperfect detection
(quality δ) to all eight photon detectors. Repeating the earlier
analysis, the state purity is now a constant finite quantity given
by

X = 2ε2

1 − ε2
, (23)

and the probability of success is given by

Psuccess = δ4ε2η(1 + ε2)

4(1 + ε)2
(24)

(key intermediary results of this derivation are given in Ap-
pendix D). Interestingly, the state purity X produced by this
purification protocol can always be reached by the NLA pro-
tocols, as ε � 1 guarantees

2ε2

1 − ε2
� 2ε

1 − ε
. (25)

IV. PROTOCOL EVALUATION AND COMPARISON

The properties of the different protocols (or absence
thereof) are now summarized in Table I, and an example
situation is illustrated in Fig. 8 for d = 25 km and ε = 0.99.

First, it is clear that if ε < η, doing nothing produces a
purer state and a higher Psuccess than any of the protocols
considered and is therefore a better choice. The protocols
would simply be introducing more noise in the system than
there originally was. The scaling of

√
η for NLA halfway vs

η for the other two protocols also means that, whatever the
other parameters might be, there is always going to be some
distance far enough such that this protocol will outperform the
others. It also looks likely that the purification protocol may
outperform only with very good source quality since both X
and Psuccess scale with ε2, instead of ε in NLA.

In order to produce a consistent comparison of the three
protocols across distances and source quality, a numerical
analysis is then performed using the following logic:

(i) If ε < η, doing nothing is best.

TABLE I. Limiting behavior of the different protocols. The lim-
iting behavior for the click probability Psuccess is obtained under
the assumptions X � 1, η � 1, and 1 − ε � 1. The

√
η scaling

in Psuccess is critical to the outperformance of halfway NLA vs the
other two protocols and ultimately dominates any other effect at
long distances, unless the detection and source quality is absolutely
perfect.

Source Protocol Purity X Psuccess

Perfect None 2η

1−η
1

NLA Bob’s end Arbitrary 4η

X

NLA halfway Arbitrary 2
√

η

X

Purification ∞ η

8

Quality ε None 2η

1−η
1

NLA Bob’s end Up to 2ε

1−ε
4δη( 1

X − 1−ε

2 )

NLA halfway Up to 2ε

1−ε
2δ

√
η( 1

X − 1−ε

2 )

Purification 2ε2

1−ε2
δ4ε2η

8

(ii) Otherwise, for a given source quality ε, the constant pu-
rity ratio X obtained in the purification protocol is calculated
and fixed at the same level for the two NLA protocols

(iii) The success probability is calculated as a function of
distance for all three protocols, and a higher success probabil-
ity for a given distance is considered to be a superior protocol.

Results of the analysis are displayed in Fig. 9 for δ = 0.9.
The halfway NLA protocol appears to be superior in most
situations, as the distance scaling dominates. Even in the
situations where one of the other protocols is superior, it
typically appears to offer only marginal improvements over
the halfway NLA protocol. An exception to this rule might
be with the advent of future precise source technologies with
ε ≈ 1, whereby operating in the thin green slice in Fig. 9 may
result in a significant advantage.

FIG. 8. Click probability Psuccess against state purity X for d =
25 km, δ = 0.9, and ε = 0.99. The purification protocol is consid-
ered to outperform here because its metrics place it above the NLA
curve trade-off. If the source quality ε is worsened, the green mark
moves to the left faster than the NLA curves, such that the halfway
NLA soon becomes the best protocol.
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FIG. 9. Best-performing protocol across distances and source
quality (detection quality δ is set to 0.9). The halfway NLA protocol
offers the best performance in most situations. Exceptions are for
very low distances, where doing nothing or NLA at Bob’s end may
be better, or for very high quality photon source components, where
the purification protocol outperforms up to a certain distance.

V. CONCLUSION

We compared the theoretical performance of three quan-
tum communication protocols in terms of output-state purity
and probability of success under different assumptions of
photon source and detection quality. In most realistic situ-
ations, the NLA protocol implemented in a central station
between Alice and Bob offers better trade-off metrics than
NLA implemented at Bob’s end or the purification protocol.
This is primarily due to its probability of success scaling with
the square root of the channel transmissivity, while the other
two protocols are linear. The purification protocol offers the
promise of perfect output-state purity, but it is less resilient
to source noise than the other protocols due to the higher
number of components involved. Building effective quantum
communication protocols is an area of active current research,
and we expect our results will be of interest in providing a

quantitative comparison framework of different schemes. In
future work, the analysis may be extended to take into account
other experimental considerations such as dark counts and
thermal noise, as well as to cover a broader set of protocols.
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APPENDIX A: NLA WITH PERFECT PHOTON SOURCE
AND DETECTION

1. NLA at Bob’s end

We provide full calculations for this first setup where the
detections are done at Bob’s end and perfect photon source
and detection components are available. Intermediary results
for the other setups are given without the detailed derivation
but follow exactly the same logic.

The input state is

|01010〉aibicidiei = b†
i d†

i |00000〉aibicidiei . (A1)

The input operators b†
i and d†

i can be written in terms of the
output operators based on the diagram from Fig. 2:

b†
i = √

τa† + √
1 − τ

√
1 − ηe† + √

1 − τ
√

η

√
1

2
c†

+ √
1 − τ

√
η

√
1

2
b†, (A2)

d†
i = √

td† − √
1 − t

√
1

2
b† + √

1 − t

√
1

2
c†. (A3)

Now we can write the input state in terms of the output
operators

|01010〉aibicidiei =
(√

τ
√

ta†d† − √
τ
√

1 − t

√
1

2
a†b† + √

τ
√

1 − t

√
1

2
a†c† + √

1 − τ
√

1 − η
√

td†e†

− √
1 − τ

√
1 − η

√
1 − t

√
1

2
b†e† + √

1 − τ
√

1 − η
√

1 − t

√
1

2
c†e† + √

1 − τ
√

η

√
1

2

√
tc†d†

− √
1 − τ

√
η

√
1

2

√
1 − t

√
1

2
c†b† + √

1 − τ
√

η

√
1

2

√
1 − t

√
1

2

(
c†

)2 + √
1 − τ

√
η

√
1

2

√
tb†d†

− √
1 − τ

√
η

√
1

2

√
1 − t

√
1

2

(
b†

)2 + √
1 − τ

√
η

√
1

2

√
1 − t

√
1

2
b†c†

)
|00000〉aibicidiei . (A4)
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After applying the operators to the state, we get

|01010〉aibicidiei =√
τ
√

t |10010〉abcde − √
τ
√

1 − t

√
1

2
|11000〉abcde + √

τ
√

1 − t

√
1

2
|10100〉abcde

+ √
1 − τ

√
1 − η

√
t |00011〉abcde − √

1 − τ
√

1 − η
√

1 − t

√
1

2
|01001〉abcde

+ √
1 − τ

√
1 − η

√
1 − t

√
1

2
|00101〉abcde + √

1 − τ
√

η

√
1

2

√
t |00110〉abcde

− √
1 − τ

√
η

√
1

2

√
1 − t

√
1

2
|01100〉abcde + √

1 − τ
√

η

√
1

2

√
1 − t

√
1

2

√
2|00200〉abcde

+ √
1 − τ

√
η

√
1

2

√
t |01010〉abcde − √

1 − τ
√

η

√
1

2

√
1 − t

√
1

2

√
2|02000〉abcde

+ √
1 − τ

√
η

√
1

2

√
1 − t

√
1

2
|01100〉abcde. (A5)

If we project onto b〈0| and c〈1| (i.e., one of the two click states), most terms drop out, and we get the state

|ψ〉 = √
τ
√

1 − t

√
1

2
|100〉ade + √

1 − τ
√

1 − η
√

1 − t

√
1

2
|001〉ade + √

1 − τ
√

η

√
1

2

√
t |010〉ade. (A6)

If instead we project onto b〈1| and c〈0| (the other successful Bell State Measurement (BSM) state), we get

|ψ2〉 = −√
τ
√

1 − t

√
1

2
|100〉ade − √

1 − τ
√

1 − η
√

1 − t

√
1

2
|001〉ade + √

1 − τ
√

η

√
1

2

√
t |010〉ade. (A7)

The probabilities of both states are the same since the am-
plitudes differ by only an experimentally correctable sign
change, so the overall probability of success is

Psuccess = 2〈ψ |ψ〉 = τ (1 − t ) + (1 − τ )(1 − η)(1 − t )

+ (1 − τ )ηt . (A8)

If we want to express the density operator for |ψ〉 as a mixed
state conditional on environment outcome, we can see that
projecting |ψ〉 onto e〈0| gives

|ψ f 〉 = √
τ
√

1 − t

√
1

2
|10〉ad + √

1 − τ
√

η

√
1

2

√
t |01〉ad ,

(A9)

with probability

Pf = 〈ψ f |ψ f 〉 = 1
2τ (1 − t ) + 1

2 (1 − τ )ηt, (A10)

and projecting |ψ〉 onto e〈1| gives

|ψ0〉 = √
1 − τ

√
1 − η

√
1 − t

√
1

2
|00〉ad , (A11)

with probability

P0 = 〈ψ0|ψ0〉 = 1
2 (1 − τ )(1 − η)(1 − t ). (A12)

As expected, we have

Psuccess = 2(P0 + Pf ). (A13)

The normalized density operator can be written in the form

ρ̂ = P0

∣∣ψ (N )
0

〉〈
ψ

(N )
0

∣∣ + Pf

∣∣ψ (N )
f

〉〈
ψ

(N )
f

∣∣
P0 + Pf

, (A14)

where |ψ (N )
0 〉 and |ψ (N )

f 〉 are the normalized states, such that

∣∣ψ (N )
0

〉 = |00〉ad (A15)

and

∣∣ψ (N )
f

〉 =
√

τ
√

1 − t
√

1
2 |10〉ad + √

1 − τ
√

η

√
1
2

√
t |01〉ad

√
τ
√

1 − t
√

1
2 + √

1 − τ
√

η

√
1
2

.

(A16)

If we want |ψ f 〉 to be in the maximally entangled state, we
need to set τ such that

√
τ
√

1 − t = √
1 − τ

√
η
√

t, (A17)

so

τ = tη

1 − t + tη
. (A18)

Now we can replace τ in Eq. (A8), and we get

Psuccess = (1 − t )

(
1 − η + tη2

1 − t + tη

)

+
(

1 − tη

1 − t + tη

)
ηt . (A19)

From the expressions for P0 and Pf , we can also write X = Pf

P0
as a function of t and η, and after some simplifications, we get

X = 2tη

(1 − η)(1 − t )
. (A20)
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Inverting this to get t as a function of X and η, we obtain

t = X (1 − η)

2η + X (1 − η)
. (A21)

Now we can replace all occurrences of t by their expressions
in Eq. (A19), and after some manipulations, we obtain

Psuccess = 4η(1 − η)(1 + X )

[2η + X (1 − η)][2 + X (1 − η)]
. (A22)

For η � 1 and X � 1, this expression reduces to

Psuccess ≈ 4η

X
. (A23)

We note the maximum value of Psuccess is reached for an X that
satisfies

∂Psuccess

∂X
= 0, (A24)

which gives

[2η + X (1 − η)][2 + X (1 − η)]

− (1 − η)(1 + X )[2 + 2η + 2X (1 − η)] = 0. (A25)

This is a polynomial of degree 2 in X , and after collecting the
terms and solving for the roots, we get

Xroot = −1 ±
√

(η + 1)(3η − 1)

1 − η
. (A26)

From using η � 1, we get 3η − 1 � η + 1, and therefore,

Xroot �
2η

1 − η
, (A27)

showing that any X obtained in the left portion of the curve
in Fig. 3 (where the probability of success increases with
increasing X ) is actually always smaller than the X obtained
from doing nothing.

2. NLA halfway

Following the same logic as in Sec. A 1, we obtain the
following key intermediary results. The click probability is
given by

Psuccess = τ
√

η(1 − t ) + (1 − τ )(1 − √
η)(1 − t )

√
η

+ (1 − τ )
√

ηt + (1 − τ )
√

η(1 − t )(1 − √
η).
(A28)

The projection of a click state |ψ〉 onto no environmental
losses gives

|ψ f 〉 = √
τ

√√
η
√

1 − t

√
1

2
|10〉ad

+ √
1 − τ

√√
η

√
1

2

√
t |01〉ad , (A29)

with probability

Pf = 〈ψ f |ψ f 〉 = 1
2τ

√
η(1 − t ) + 1

2 (1 − τ )
√

ηt, (A30)

while the probability of obtaining a state that includes envi-
ronmental losses after a click is

P0 = (1 − τ )(1 − √
η)(1 − t )

√
η. (A31)

The condition of a maximally entangled |ψ f 〉 yields

τ = t . (A32)

With this condition, the click probability is given by

Psuccess = 2t
√

η(1 − t ) + 2(1 − t )2√η(1 − √
η). (A33)

The ratio X representing state purity is

X = t

(1 − t )(1 − √
η)

, (A34)

and this can be inverted to obtain t as a function of X , such
that

t = X (
√

η − 1)

X (
√

η − 1) − 1
. (A35)

After replacing all occurrences of t by their expressions in
Eq. (A33) and some manipulations, we get

Psuccess = 2
√

η(1 − √
η)(1 + X )

[X (
√

η − 1) − 1]2
. (A36)

For X � 1 and η � 1, this expression reduces to

Psuccess ≈ 2
√

η

X
. (A37)

APPENDIX B: NLA WITH IMPERFECT PHOTON
DETECTION

1. NLA at Bob’s end

Using Fig. 10 and the same logic as in Appendix A, we
obtain the following key intermediary results. The click prob-
ability is given by

Psuccess = δτ (1 − t ) + δ(1 − τ )(1 − η)(1 − t ) + δ(1 − τ )ηt

+ 2(1 − τ )(1 − t )(1 − δ)ηδ. (B1)

The projection of a click state |ψ〉 onto no environmental
losses gives

Pf = 〈ψ f |ψ f 〉 = 1
2τδ(1 − t ) + 1

2 (1 − τ )δηt, (B2)

while the probability of obtaining a state that includes envi-
ronmental losses after a click is

P0 = δ(1 − τ )(1 − t )
(

1
2 (1 − η) + η(1 − δ)

)
. (B3)

The condition of a maximally entangled |ψ f 〉 is unchanged
from Sec. A 1,

τ = tη

1 − t + tη
. (B4)

With this condition, the click probability is given by

Psuccess = δ(1 − t )

(
1 − η + tη2

1 − t + tη

)

+ δ

(
1 − tη

1 − t + tη

)
ηt

+ 2(1 − t )(1 − δ)ηδ

(
1 − t

1 − t + tη

)
. (B5)

The ratio X representing state purity is

X = 2tη

(1 + η − 2ηδ)(1 − t )
, (B6)
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FIG. 10. NLA protocol in the presence of imperfect detection components for (a) NLA at Bob’s end and (b) NLA halfway. Detection
noise is modeled as an additional vacuum state entering the open port of a beam splitter of reflection δ, such that a photon going through this
component is detected with probability δ and lost with probability 1 − δ.

and this can be inverted to obtain t as a function of X , such
that

t = X (1 + η − 2ηδ)

2η + X (1 + η − 2ηδ)
. (B7)

After replacing all occurrences of t by their expressions in
Eq. (B5) and some simplifications, we get

Psuccess = 4δη(1 + η − 2ηδ)(1 + X )

[2η + X (1 + η − 2ηδ)][2 + X (1 + η − 2ηδ)]
.

(B8)

For η � 1 and X � 1, this expression reduces to

Psuccess ≈ 4δη

X
. (B9)

2. NLA halfway

For this case as represented in Fig. 10, the click probability
is

Psuccess = δ
√

η[(1 − τ )t + τ (1 − t )]

+ 2δ
√

η(1 − τ )(1 − t )(1 − δ
√

η). (B10)

The projection of a click state |ψ〉 onto no environmental
losses gives

Pf = 1
2

√
ηδ[(1 − τ )t + τ (1 − t )], (B11)

and projecting onto environmental losses gives

P0 = (1 − τ )(1 − t )δ
√

η(1 − δ
√

η). (B12)

The state |ψ f 〉 can be written in the same way as in Sec. A 2,
with only a factor of

√
δ in front of it. The condition on τ to

reach maximum entanglement is therefore unchanged,

τ = t . (B13)

With this condition, the click probability is given by

Psuccess = 2δ
√

ηt (1 − t ) + 2δ
√

η(1 − t )2(1 − δ
√

η). (B14)

The ratio X representing state purity is given by

X = t

(1 − t )(1 − δ
√

η)
, (B15)

and this can be inverted to obtain t as a function of X , such
that

t = X (1 − δ
√

η)

1 + X (1 − δ
√

η)
. (B16)

After replacing all occurrences of t by their expressions in
Eq. (B14) and some simplifications, we get

Psuccess = 2δ
√

η(1 + X )(1 − δ
√

η)

[1 + X (1 − δ
√

η)]2
. (B17)

For η � 1 and X � 1, this expression reduces to

Psuccess ≈ 2δ
√

η

X
. (B18)

APPENDIX C: IMPERFECT PHOTON SOURCE AT BOB’S
END AND IMPERFECT PHOTON DETECTION

1. NLA at Bob’s end

For this case represented in Fig. 11, the click probability is

Psuccess = εδτ (1 − t ) + εδ(1 − τ )(1 − η)(1 − t )

+ εδ(1 − τ )ηt + 2ε(1 − τ )(1 − t )(1 − δ)ηδ

+ δ(1 − τ )η(1 − ε). (C1)

The projection of a click state |ψ〉 onto no environmental
losses gives

Pf = 1
2τδε(1 − t ) + 1

2 (1 − τ )δηtε, (C2)

and projecting onto environmental losses gives

P0 = δε(1 − τ )(1 − t )
(

1
2 (1 − η) + η(1 − δ)

)
+ 1

2 (1 − τ )ηδ(1 − ε). (C3)

The state |ψ f 〉 can be written in the same way as in Sec. A 1,
with only a factor of

√
δ
√

ε in front of it. The condition on τ

062603-9
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FIG. 11. NLA protocol in the presence of imperfect source and detection components for (a) NLA at Bob’s end and (b) NLA halfway.
Detection noise is modeled as in the previous case. Source quality is modeled in a similar way, with a probability 1 − ε for the photon to get
lost. We assume Alice has a perfect entangled state in order to focus the analysis on the noise introduced by the protocols.

to reach maximum entanglement is therefore unchanged,

τ = tη

1 − t + tη
. (C4)

With this condition, the click probability is given by

Psuccess = 2δεη
t (1 − t )

1 − t + tη
+ εδ(1 + η − 2ηδ)

(1 − t )2

1 − t + tη

+ ηδ(1 − ε)
1 − t

1 − t + tη
. (C5)

The ratio X representing state purity is given by

X = 2tηε

ε(1 + η − 2ηδ)(1 − t ) + η(1 − ε)
. (C6)

Here, we note that an arbitrarily high X cannot be reached
anymore by setting t closer and closer to 1, and the maximum
X is given by

Xmax = 2ε

1 − ε
, (C7)

a level at which the click probability is exactly zero. Equa-
tion (C6) can still be inverted to obtain t as a function of X ,
such that

t = X [ε(1 + η − 2ηδ) + η(1 − ε)]

2ηε + Xε(1 + η − 2ηδ)
. (C8)

After replacing all occurrences of t by their expressions in
Eq. (C5) and some simplifications, we get

Psuccess = 2δη(1 + X )(ε + η − 2εηδ)[2ε − X (1 − ε)]

[2η+X (1+η−2ηδ)][2ε + X (2ε(1−ηδ)+η − 1)]
.

(C9)

If we assume X � 1, η � 1, and 1 − ε � 1 (i.e., very good
source quality), the expression reduces to

Psuccess ≈ 4δη

(
1

X
− 1 − ε

2

)
. (C10)

2. NLA halfway

For the case represented in Fig. 11, the click probability is
given by

Psuccess = δε
√

η[(1 − τ )t + τ (1 − t )]

+ 2δε
√

η(1 − τ )(1 − t )(1 − δ
√

η)

+ (1 − τ )
√

ηδ(1 − ε). (C11)

The projection of a click state |ψ〉 onto no environmental
losses gives

Pf = 1
2

√
ηδε[(1 − τ )t + τ (1 − t )], (C12)

and projecting onto environmental losses gives

P0 = ε(1−τ )(1−t )δ
√

η(1−δ
√

η) + 1
2 (1 − τ )δ(1−ε)

√
η.

(C13)

The state |ψ f 〉 can be written in the same way as in Sec. A 1,
with only a factor of

√
δ
√

ε in front of it. The condition on τ

to reach maximum entanglement is therefore unchanged,

τ = t . (C14)

With this condition, the click probability is given by

Psuccess = 2δε
√

ηt (1 − t ) + 2δε
√

η(1 − t )2(1 − δ
√

η)

+ (1 − t )
√

ηδ(1 − ε). (C15)

The ratio X representing state purity is given by

X = εt

ε(1 − t )(1 − δ
√

η) + 1
2 (1 − ε)

. (C16)

Similar to the previous case, an arbitrarily high X cannot be
reached, and the maximum X is given by

Xmax = 2ε

1 − ε
, (C17)

a level at which the click probability is exactly zero. The
formula can still be inverted to obtain t as a function of X ,
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FIG. 12. The probability Psuccess of obtaining a click is plotted
against distance for state purity X = 4, δ = 0.9, and ε = 0.9.

such that

t = X [ε(1 − δ
√

η) + 1
2 (1 − ε)]

ε + Xε(1 − δ
√

η)
. (C18)

After replacing all occurrences of t by their expressions in
Eq. (C11) and some simplifications, we get

Psuccess = δ
√

η(1 + X )(1 + ε − 2εδ
√

η)[2ε − X (1 − ε)]

2ε[1 + X (1 − δ
√

η)]2
.

(C19)
If we assume X � 1, η � 1, and 1 − ε � 1 (i.e., very good
source quality), the expression reduces to

Psuccess ≈ 2δ
√

η

(
1

X
− 1 − ε

2

)
. (C20)

3. Case of on-off detectors

The case of on-off detectors was also analyzed, still in the
presence of detection noise as well as source noise at Bob’s
end. A click state is now a state where there is at least one
photon. Any state with two photons at one detector is then
counted as part of ψ0 together with environmental losses,
while ψ f is the output state projected on no environmental
losses and a single photon at each detector.

After repeating the same calculations, for NLA at Bob’s
end, we find

Psuccess = 2δη(1 + X )(ε+η−δεη)[2ε − X (1−ε)]

[2η + X (1+η−δη)][2ε+X (2ε−δεη+η − 1)]
,

(C21)

while for NLA halfway, we find

Psuccess = 2δ
√

η(1 + X )(1 + ε − δε
√

η)[2ε − X (1 − ε)]

ε[2 + X (2 − δ
√

η)]2
.

(C22)

As displayed in Fig. 12, the improved scaling for NLA
halfway is maintained.

APPENDIX D: PURIFICATION PROTOCOL

1. Perfect source and detection

From the diagram in Fig, 7, the input state for the entire
system is

|010100〉aibicidiei fi ⊗ |�A〉 ⊗ |�B〉
= b†

i d†
i |000000〉aibicidiei fi ⊗ |�A〉 ⊗ |�B〉, (D1)

with

|�A〉 =
√

1

2
g†

i |000〉kihigi +
√

1

2
k†

i h†
i |000〉kihigi ,

|�B〉 =
√

1

2
m†

i |000〉mini pi +
√

1

2
n†

i p†
i |000〉mini pi . (D2)

The relevant operators can be written as a function of all
the output operators:

b†
i = √

1 − τ

√
1

2
b† + √

1 − τ

√
1

2
k† − √

τ
√

η

√
1

2
a†

− √
τ
√

η

√
1

2
p† − √

τ
√

1 − η f †,

d†
i = √

1 − t

√
1

2
d† − √

1 − t

√
1

2
g† + √

t
√

η

√
1

2
c†

− √
t
√

η

√
1

2
m† − √

t
√

1 − ηe†,

k†
i = −

√
1

2
b† +

√
1

2
k†,

g†
i =

√
1

2
d† +

√
1

2
g†,

m†
i =

√
1

2
c† +

√
1

2
m†,

p†
i = −

√
1

2
a† +

√
1

2
p†,

h†
i = h†,

n†
i = n†. (D3)

After expanding the input state and projecting onto no envi-
ronment losses (with the help of some computer code), we
obtain

|ψ f 〉 = − 1
8

√
η
√

1 − t
√

τ |10〉hn + 1
8

√
η
√

t
√

1 − τ |01〉hn,

Pf = 1
64η[τ (1 − t ) + t (1 − τ )]. (D4)

Projecting onto environmental loss states does not yield any
term such that P0 = 0. The condition of maximum entangle-
ment yields τ = t , from which we obtained Eq. (22).

2. Imperfect source and detection

Following the same method, we get a click probability of

Psuccess = 1
4δ4ε2η[t (1 − τ ) + τ (1 − t )]. (D5)
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A click state without environmental loss is

|ψ f 〉 = − 1
8δ2ε

√
1 − t

√
τ
√

η|10〉hn

+ 1
8δ2ε2√η

√
t
√

1 − τ |01〉hn,

Pf = 1
64δ4ε2η[τ (1 − t ) + ε2t (1 − τ )], (D6)

and a state with environmental loss |ψ0〉 has probability

P0 = 1
64δ4ε2ηt (1 − ε)(1 − τ )(1 + ε) (D7)

[and we verify Psuccess = 16(P0 + Pf ) for 16 successful states].
The condition of max entanglement for |ψ f 〉 gives

τ = ε2t

1 − t + ε2t
. (D8)

We can calculate X and Psuccess now with this condition, and
we get

X = 2ε2

1 − ε2
, Psuccess = δ4ε2η(1 + ε2)

4(1 + ε)2
. (D9)

If we assume 1 − ε � 1, the expression for Psuccess reduces to

Psuccess ≈ δ4ε2η

8
. (D10)
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