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Complete hierarchy of linear systems for certifying quantum entanglement of subspaces
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We introduce a hierarchy of linear systems for showing that a given subspace of pure quantum states is
entangled (i.e., contains no product states). This hierarchy outperforms known methods already at the first level,
and it is complete in the sense that every entangled subspace is shown to be so at some finite level of the
hierarchy. It straightforwardly generalizes to the case of higher Schmidt rank, as well as the multipartite cases
of completely and genuinely entangled subspaces. These hierarchies work extremely well in practice even in
very large quantum systems, as they can be implemented via elementary linear algebra techniques rather than
the semidefinite programming techniques that are required by previously known hierarchies.
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I. INTRODUCTION

Quantum entanglement is one of the central features of
modern physics, and the problem of determining when en-
tanglement is present in a quantum system is one of its most
active research areas [1,2]. Of particular interest in this area is
the problem of determining whether or not a given subspace
is entangled. That is, the problem of determining whether or
not every pure state in the subspace is entangled (i.e., not a
product state) [3,4].

In the bipartite setting of two quantum systems, one of
the standard uses of certifying entanglement in subspaces
is that any mixed quantum state supported on an entangled
subspace is necessarily entangled [5,6], but numerous other
applications have appeared in recent years. For example,
entangled subspaces can be used to construct entanglement
witnesses [7,8] and to perform quantum error correction
[9,10]. Further applications of this problem and its robust
variants include determining the performance of quantum
Merlin-Arthur [QMA(2)] protocols, computing the geometric
measure of entanglement, and determining the ground-state
energy of mean-field Hamiltonians as examples [11]. (For yet
more applications, Ref. [11] contains a compendium of 21
equivalent or closely related problems in quantum information
and computer science.)

In the multipartite setting of three or more quantum
systems, there are different notions of entanglement of a sub-
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space. A completely entangled subspace is one containing no
product states [6], while a genuinely entangled subspace is
one containing no states that are product across any bipartition
(genuine entanglement is a stricter requirement than complete
entanglement) [12,13]. Completely entangled subspaces are
useful for locally discriminating pure quantum states [14,15],
while genuinely entangled subspaces have been shown to have
applications in quantum cryptography [16].

Determining whether or not a subspace is entangled is a
difficult problem (see [17] or [11, Corollary 14], for exam-
ple). To certify that a subspace is not entangled, it suffices
to present a product vector in that subspace, but it is hard to
actually find such a product vector in the first place. In the
other direction, it is not known how to efficiently show that a
given subspace is entangled, even with the help of a certificate.
To date, the only practical methods known for solving this
problem work in very limited situations, such as when the
subspace’s dimension is smaller than the local dimensions
[18-20], or when the dimensions are small enough that sep-
arability hierarchies based on semidefinite programming can
be employed [21-23].

We solve this problem by presenting a hierarchy of linear
systems that can be used to certify that a given subspace
is entangled. Our hierarchy is distinct from other hierar-
chies commonly used in quantum information theory; known
semidefinite programming hierarchies are based on symmetric
extensions and/or the sum of squares hierarchies [21], while
our hierarchy is based on Hilbert’s projective nullstellensatz
from algebraic geometry [24]. As a result, our hierarchy ter-
minates (i.e., detects every entangled subspace) at a finite level
that depends only on the local dimensions; something that is
known not to be possible for separability-based hierarchies
such as symmetric extensions [25].

©2022 American Physical Society
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Our hierarchy works extremely well in practice, with even
its first level being able to certify entanglement in subspaces
that are much larger (quadratic in the local dimensions) than
can be handled by other known techniques. The hierarchy also
straightforwardly generalizes to r-entangled subspaces (i.e.,
subspaces in which every pure state has large Schmidt rank
[26]), as well as to multipartite completely entangled sub-
spaces and genuinely entangled subspaces. It also provides,
as an immediate corollary, a separability criterion that works
well at detecting entanglement in low-rank mixed quantum
states, even those whose entanglement cannot be detected by
the partial transpose [27] (i.e., bound entangled states [28]).
We provide MATLAB code that implements all of our methods
(see Supplemental Material [29]).

II. THE FIRST LEVEL OF THE HIERARCHY

We use H, and Hp to denote finite-dimensional complex
Hilbert spaces (which can be thought of as C% and C9) of di-
mension d4 and dp, respectively. A pure state |x) € Ha @ Hp
(i.e., a unit column vector) is said to be a product state if it can
be written in the form |x) = |v) ® |w) for some |v) € H4 and
|w) € Hp, and it is said to have Schmidt rank r [denoted by
SR(|x)) = r] if it can be written as a linear combination (i.e.,
superposition) of r product states but not fewer. A subspace of
Ha ® Hp is called r entangled (or just entangled if r = 1) if
every pure state in it has Schmidt rank r 4 1 or larger.

The starting point of our hierarchy for certifying that a
given subspace is r entangled is the observation that for |x) €
Ha ® Hp, we have SR(|x)) < rif and only if

(P, 11 ® Py, )(1X)27HD) =0, (1)

where P, ., is the projection onto the antisymmetric sub-

space of ’Hf(rﬂ) (and similarly for the “B” subscripts). This
is a classical result in algebraic geometry (see, e.g., [30])
and has been used in a variety of contexts. For example, it
appeared in a tensor decomposition algorithm in [31] and a
similar observation was made in [32], where antisymmetric
projections were used to create a semidefinite programming
hierarchy for computing the Schmidt number of a mixed state.
For brevity, we define

def
O E P ®P) . @)

and, for completeness, we formally state and prove the obser-
vation that we just made about ®/:

Proposition 1. Suppose |x) € Hs ® Hp and let ®! be the
linear map from Eq. (2). Then, SR(|x)) < r if and only if
(b}(|x>®(r+1)) =0.

Proof. Write |x) in its Schmidt decomposition |x) =
> i1 Ajlv) ® |w;) with s = SR(|x)). Then,

(Di(lx)®(r+l)) — (PAA,rJrl ®P13A,r+1)(|x)®(r+l))
= Z )"jl"')‘J'r+1P.»4A,r+l(|Uj1>®"'

® |sz~+1)) ®PBA.r+1(|wjl)® o ® |wjr+1))'

If s<r, then {|v;),...,|v;,,)} is a set containing r
or fewer members, so PAAJ(|UJ~I) ®---®lv;,,))=0, so
d>1(|x)®(’“)) = 0. _

On the other hand, if s > r, then forany 1 < j; <--- <
]::1 < s, we have

((U]~1| ®“.®(vj::1 )P.#(\,r+1(|vjl)®”'® |vjr+1>)

= ((wl® @ (wir )P (wi) @ ® |w)..)).
and this quantity is nonzero if and only if {j~1, e f,:l} =
{j1, ..., jre1}. It follows that
(i@ efvzlefw;| @ &wz[)e1xh)

Jr+l Jr+1

is nonzero (in fact, strictly positive). In particular, this means
that @} (|x)®0 D) £ 0, completing the proof. [
The superscript “1” in the notation ®! refers to the fact that
this map gives us the first level of our hierarchy for certifying
that a subspace of H4 ® Hp is r entangled:
Theorem 1. Let S C Ha ® Hp be a subspace with basis
{Ix1), ..., |xg)}. If the set

[0!(|x;)®- - ®xj,) : 1 <ji <+ < jrp1 < ds} )

is linearly independent, then S is r entangled.

We provide a brief proof of this theorem here, even though
it is a special case of the upcoming Theorem 2. The reason
for this is that Theorem 1 is rather straightforward to prove,
and it is instructive to see where this base of the hierarchy
comes from, whereas the proof of the more general Theorem
2 is quite long and technical (and thus left to the Appendix).

Proof of Theorem 1. By Proposition 1, the subspace S is r
entangled if and only if

4 ®(r+1)
o[ | D cilx) #0 )
i=1
for all nonzero cy, ..., cq, € C.

By linearity and symmetry of @/, it holds that

1
ds ®(r+1)

o) ZCi|Xi>

i=1

ds

= Z Ciy = Cipyy <I>i(|xil > Q- ® |xir+1 >)

iyeenigp1=1

= Z I’Lf],r—’—li,_,_]cil e CiH_] (1)’1’(|_xi] ) ® e ®

Kiryy )) >

i<y
4)
where ,uf]‘ﬁliw is some multinomial coefficient that counts
how many times the term ¢;, -+ ¢;,,, P} (|x;,) ® -+~ ® |x;,,,))

appears in the second line of Eq. (5).

If Eq. (4) does not hold, then it follows from Eq. (5)
that there is some linear combination of the vectors of the
form ®!(|x;) ® -+ ® |x;,,,)) that equals O [i.e., the set (4) is
linearly dependent]. The theorem is simply the contrapositive
of this statement. [ ]
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d§+1r
r+
inside the (rflﬁl)(rfl)-dimensional range of ®!, Theorem 1
can be implemented by determining whether or not a ho-
mogeneous (%)(,%,) x (%) linear system has a nonzero
solution. Despite just being the first level of the hierarchy, this
linear system can already certify r entanglement of subspaces
that are significantly larger than the local dimensions d4 and
dg; a fact that we now illustrate with several examples and an
additional proposition.

We say that a property holds for a generic ds-dimensional
subspace of Ha ® Hp if it holds with probability one for
a Haar-random ds-dimensional subspace of Hs ® Hp (see,
e.g., [14, Definition 2.2] for the definition of a Haar-random
subspace) [33]. It is known that the maximum dimension of
an r-entangled subspace is (dy — r)(dg — r) [26]. For r = 1,
the following proposition shows that the first level of the
hierarchy already certifies entanglement of a generic subspace
of dimension up to a constant multiple of this maximum. This
is surprising, given that the best-known algorithm in the worst
case for determining whether or not a subspace is entangled
runs in time exponential in /dy when dy = dg [34].

Proposition 2. In the notation of Theorem 1, if » = 1, then
the set (3) is linearly independent for a generic subspace of
dimension ds < (ds — 1)(dg — 1)/4.

We defer the proof of this proposition to the Appendix.

Proposition 2 gives a sufficient condition for a generic
subspace of dimension dg to be certified by the first level of
our hierarchy. In the opposite direction, by just considering the
size of the linear system that Theorem 1 describes, we know

that
d d d
s+ < A B ©)
r+1 r+1/\r+1
is necessary.

The following pair of examples shows that this bound is,
in fact, tight in many cases, i.e., the first level of our hierarchy
certifies entanglement of any subspace S for which dj satisfies
Ineq. (6).

Example 1. When dy = dg = 4 and r = 1, Ineq. (6) holds
exactly when ds < 8, so the largest subspace that we can hope
to certify is entangled via Theorem 1, has dimension 8. It
indeed works all the way up to dimension 8, getting quite
close to the maximum dimension of entangled subspaces of
(dy — r)(dgp — r) = 9 in this case.

For example, following the construction of large entangled
subspaces from [26], consider the subspace

Since the set (3) consists of ( ) vectors, each living

S =span{|x(),....|x3)} C Ha @ Hs,

where (here we omit normalization factors for brevity, and we
use | j) to denote the jth standard basis vector of 4 and Hp)

)=10)®10)+ 1) ®[1) +12) ®12) +13) ® |3),

)=10)®10) = 1) ®[1) +12) ® [2) = |3) ® |3),
lx3) =10) ® [1) + 1) ® |2) +12) ® [3),

)=11)®10) +12) @ 1) + [3) ® |2),

) =10) ) +2[1) ®12) +312) ® |3),

y=11) ) +212) @ 1) +313) ® 2),

TABLE 1. The maximum dimension ds of a subspace of Hs ®
‘Hp that can be certified to be r entangled by the first level of the
hierarchy (i.e., Theorem 1), as well as the time required to do the
certification, for small values of dy = dg and r. In all cases shown
here, the maximum dimension is the largest ds for which Ineq. (6)
holds.

r=1 r=2
dy = dp Max. dg Time Max. dg Time
3 3 0.01 s 1 0.03 s
4 8 0.03 s 3 0.19 s
5 13 0.08 s 7 0.65 s
6 20 0.20 s 12 2.38 s
7 29 0.49 s 18 8.17 s
8 39 1.06 s 25 27.46 s
9 50 2.24 s 33 1.78 min
10 63 5.56s 43 14.62 min

lx7) =10) ®2) +|1) ®|3), and
lxg) = 12) ® [0) +13) ® |1).

To show that S is entangled, it suffices to solve the
(r‘jfl)(r‘fl) X (drfl’) =36 x 36 linear system described by
Theorem 1. Doing so reveals that the set (3) is indeed linearly
independent, so S is entangled.

Similarly, we generated 10° Haar-random 8-dimensional
subspaces of H4 ® Hp, and Theorem 1 detected their entan-
glement every single time (we will show in the upcoming
Theorem 2 that this behavior is expected).

Example 2. When dy = dg = 4 and r = 2, Ineq. (6) holds
exactly when dg < 3, so the largest subspace that we can hope
to certify is 2-entangled, via Theorem 1, has dimension 3.
Many subspaces of this dimension are indeed certified, such
as the span of the states |x), |x3), and |x4) from Example
1. Performing this certification simply requires us to solve a

(r[i‘l)(rfl) X (drf{) = 16 x 10 linear system.

Similarly, we generated 10° Haar-random three-
dimensional subspaces of H4 ® Hp, and Theorem 1 detected
their 2-entanglement every single time.

Table I provides some numerics that show the maximum
dimension of an r-entangled subspace that can be certified
by Theorem 1 [which, in all displayed cases, is equal to
the largest value of ds for which Ineq. (6) holds] in various
local dimensions, as well as the amount of time that it takes
our code to certify such a subspace on a standard desktop
computer. The subspaces that we checked to obtain these
timings have a form that is similar to that of the subspace from
Example 1. We note that the » = 2 timings are significantly
higher than the r = 1 timings since the dimensions of the
linear system that must be solved [(i‘])(r‘ff]) X (dj:]r)] grow
quickly with r.

III. THE REST OF THE HIERARCHY

For an integer k > 1, the kth level of our hierarchy is based
on the following linear map acting on (H, ® Hp)®U+%:

def
oF= (P11 ® Py iy ® Lapi—1)Pyp 4 (7
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where Iyp 1 is the identity on (H4 ® Hp)®*~D and Py .,

dadp+r+k—1y_q: .
h )-dlmenswnal symmet-

ric subspace of (H, ® Hp)®'*X (i.e., the symmetrization is
performed between the r 4+ k copies of Ha ® Hp, but not
between H, and Hp).

In the k =1 case, ® is exactly the same as the lin-
ear map ®! from Eq. (2), which can be seen by noting
that range(P;, | ® Py, ) C range(Py ., ). Theorem 1 still
works if ®! is replaced by ®*, but we now furthermore get
a converse that completely characterizes all r-entangled sub-
spaces:

Theorem 2. Let S € ‘Hs ® Hp be a subspace with basis
{Ix1), ..., |x4)}. Then, S is r entangled if and only if there
exists an integer 1 < k < (max{r, 2} + 1)%“% — r such that
the set

is the projection onto the (

[Of(lx) @ ®x.)) 1< i < <k <ds) ®
is linearly independent. Furthermore, if a subspace S is cer-
tified to be r entangled at the kth level of the hierarchy
[i.e., if the set (8) is linearly independent], then a generic
ds-dimensional subspace will be certified at the kth level.

The proof of Theorem 2 is rather long and technical, so
we defer it to the Appendix, but the rough idea behind it is
as follows. The set of pure states in Hy ® Hp with Schmidt
rank at most r is an algebraic variety (i.e., can be defined via
polynomial equations), since SR(|x)) < r if and only if every
(r+1) x (r+ 1) submatrix of the matricization of |x) has
determinant zero. Numerous tools from algebraic geometry
are thus at our disposal for this problem, and in particular we
use Hilbert’s nullstellensatz to establish the hierarchy.

Theorem 2 really does establish a hierarchy for detect-
ing r entanglement in a subspace: if the set (8) is linearly
independent for a particular value of k, then it is linearly
independent for all larger values of k as well. While this
hierarchy is only guaranteed to detect all r-entangled sub-
spaces at its very high k = (max{r, 2} + 1)%% — r level, it is
remarkable that a bound that does not depend on S exists at
all (after all, no analogous bound can exist for semidefinite
programming hierarchies for the separability problem [25]).
Furthermore, the last sentence of the theorem allows us to
show in practice that a much lower level (i.e., smaller value
of k) suffices to detect most r-entangled subspaces, simply by
finding a single r-entangled subspace of the maximal dimen-
sion (dy — r)(dg — r) that is detected at that low level.

We have already found such examples at the k = 2 level
of the hierarchy in many low-dimensional cases. Example 3
illustrates how such a certification at the second level of the
hierarchy works, and Table II provides some numerics to show
how long it takes this second level of the hierarchy to certify r
entanglement of a maximum-dimensional subspace for some
small values of the local dimensions and r.

Example 3. Suppose djy=dg =24,
|x1), ..., |xs) are as in Example 1. If

r=1, and

%) = 3(10) ®10) + [1) ® 1) = 2) ®12) — |3) ® |3)),

then S := span{|x;), ..., |x9)} cannot possibly be shown to
be entangled by the first level of the hierarchy, since its dimen-

sion is too large. However, solving the (r‘i‘l) (r‘jfl)(dAdB Y=l %

TABLE II. A summary of how long it takes the second level of
the hierarchy (i.e., Theorem 2 with k = 2) to certify r entanglement
of a subspace of Hy ® Hp with dimension (d4 — r)* (i.e., the maxi-
mum dimension), for small values of dy = dp and r.

r=1,k=2 r=2,k=2
dy =dp Max. dy Time Max. dg Time
3 4 0.11s 1 0.58 s
4 9 047 s 4 7.39s
5 16 1.38 s 9 22.01s
6 25 8.04 s 16 2.59 min
7 36 48.42 s 25 33.18 min
(d5+r’::_l) = 576 x 165 linear system described by the sec-

ond level of the hierarchy (i.e., Theorem 2 when k = 2)
verifies that it is indeed entangled.

As a bit of a side note, we observe that the number of
rows in this linear system could be taken to be slightly less

than (r‘_iﬁ‘l)(r‘_lfl)(dAdB)k’l, since rank(CD’r‘) is actually smaller

than rank(PQrH ® PBA,r+1 ® lapi-1) = (r[-l:l) (r[-lfl)(dAdB)kil'
However, indexing the range of ®* so as to take advantage
of this (or even computing its rank exactly) is quite difficult.
The size of the linear system described by Theorem 2
increases exponentially with k. However, it is also very sparse,
so it can typically be solved even if it has hundreds of thou-

sands of rows and columns.

IV. CERTIFYING SCHMIDT NUMBER OF LOW-RANK
MIXED STATES

The Schmidt number [35] of a mixed quantum state p
acting on Hj ® Hp, denoted by SNp, is the least integer
r such that p is a convex combination of projectors onto
Schmidt-rank-r pure states from H, ® Hp,

p = pilv)vl. )
J

where {p;} is a probability distribution and each |v;) has
Schmidt rank of, at most, r. If SNp = 1, then p is called
separable, and it is called entangled otherwise [36].

Determining whether a given mixed state is separable or
entangled (or, more generally, determining a state’s Schmidt
number) is a hard problem [37,38], so in practice numerous
one-sided tests are used. One such test is the range criterion
[5], which says that if range(p) is not spanned by members of
Ha & Hp with Schmidt rank of, at most, r, then SNp > r 4+ 1
[a fact that follows immediately from the decomposition (9)
of p].

While the range criterion is simple to state and prove,
actually making use of it is difficult, since it is difficult to
show that a given subspace of Hy ® Hp is not spanned by
pure states with small Schmidt rank. Theorem 2 helps solve
this problem and immediately gives us the following result:

Corollary 1. Let p be a mixed state acting on Hy ® Hp
with d = rank(p), and let {|x;), ..., |xs)} C Hs @ Hp be a
basis of range(p). If there exists an integer k > 1 such that

{@F(Jx) @ ® |3 ) 1<t < -0 < <) (10)
is linearly independent, then SNp > r + 1.
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This corollary works best when applied to low-rank mixed
states and, in particular, we expect the first (i.e., k = 1) level
of the hierarchy to detect most states’ Schmidt number when
ds = rank(p) satisfies Ineq. (6). Higher levels of the hier-
archy allow for the certification of the Schmidt number of
higher-rank states, even those whose entanglement cannot be
detected by the celebrated positive partial transpose (PPT)
criterion [27].

Example 4. Recall thatif U € H4 ® Hp is an unextendible
product basis [6], then the density matrix

=15
dAdB—|U| ey

is a PPT entangled state. For example, let d4 = dg = 3 and
consider the 5-state “Tiles” unextendible product basis (UPB)
[39] (here we omit normalization factors for brevity),

Utiles =110} ® (10) — [1)), 12) ® (I1) = [2))(10) — [1))
®12), (I1) = 12) ® 10), (10) + [1) +12))
® (10) + 1) +12))} C Ha ® Hsp.

The associated PPT entangled state pp.. has d =
rank(pUtiles) = 4, which is too high rank for the k = 1 level

of Corollary 1 to be able to detect entanglement in.

However, we can apply the second level of that hierar-
cl}y by picking a basis of range(p) and then solving the
() (%) (dadp) =" x (“H7157") = 81 x 20 linear system de-
scribed by Corollary 1. Doing so certifies (in about 0.1

seconds) that ’OUtiles is entangled.

The above example is not a fluke: the map ®X detects
entanglement in most low-rank states. For example, repeating
the above example with the “Tiles” UPB replaced by any of
the “Pyramid” [6], “QuadRes”, or “GenTiles2” UPBs [39]
yields the exact same conclusions: ®7 detects the entangle-
ment in the associated PPT entangled state.

The following example shows how the same method can be
used to show that a low-rank mixed state is not just entangled,
but has Schmidt number strictly larger than 2:

Example 5. Let dy = dp = 4 and consider the mixed state

3
1
=32 1))l € Ha ® My,

j=1
where (we again omit normalization factors for brevity)

lx1) =10) ®10) + 1) ® 1) +12) ® |2) +[3) ® |3),
) =10)®11) +11) ®(2) +12) ® [3) +13) ® |0),
|

[x3) =10)®12) + (1) ®[3) +12) ® 10) — [3) ® | 1).

The PPT criterion readily shows that p is entangled [i.e.,
SNp > 2], but we can say more by making use of ®}. In
particular, p has rank d = 3, and solving the (; +A1) (, Jfl) X
(‘:L’) =16 x 4 system of linear equations described by
Corollary 1 shows that SNp > 3.

V. MULTIPARTITE COMPLETELY
ENTANGLED SUBSPACES

Our hierarchy straightforwardly generalizes to the mul-
tipartite scenario (i.e., the tensor product of three or more
Hilbert spaces). For example, a completely entangled sub-
space (CES) & of Hs ® Hp ® Hc is one containing no
product vector (i.e., no vector of the form |u) ® |[v) ® |w))

[3,4]. We define Pg%s to be the orthogonal projection onto
NHA @ N (Mp @ He) + A (Ha @ Hy) @ A°He,  (11)

where A?H denotes the antisymmetric (i.e., wedge) tensor
product of two copies of H. We emphasize that the subspace
(11) is a sum of subspaces of (Ha ® Hp ® Hc)®?, but it is
not a direct sum of subspaces.

Since |x) € Ha ® Hp ® Hc is a product vector if and only
if it is a product across each of the Hy ® (Hp ® Hc) and
(Ha ® Hp) ® Hc bipartitions, we have |x) being a product
vector if and only if ngsﬂx)@z) = 0. If we define the linear
map

def
(DkCES = (P%Igs ® Iapck—1)Pigc s (12)

then we have the following theorem that is directly analogous
to the bipartite hierarchy provided by Theorem 2:

Theorem 3. Let S € Ha ® Hp ® Hc be a subspace with
basis {|x1), ..., |x4)}. Then, S is completely entangled if and
only if there exists an integer 1 < k < 3%9sdc — r such that
the set

{dJkCES(|le)®~-® %00 ) 1 1< ji <o < kg < ds}
(13)

is linearly independent. Furthermore, if a subspace S is de-
tected to be completely entangled at the kth level of the
hierarchy [i.e., if (13) is linearly independent], then a generic
ds-dimensional subspace will be detected at the kth level.

The above theorem follows from Theorem 4 via analogous
arguments to those used in the proof of Theorem 2, in the
Appendix.

Example 6. The largest possible dimension of a com-
pletely entangled subspace of Hjy @ Hp @ He is dadpdc —
dy — dpg — dc + 2, and one particular example of such a sub-
space is [4]

S :=spanfliy) ® |ip) ® lic) —
ix+iptic=ja+js+tJjc
0 <1A,]A < dAaO

lja) ® 1jB) ® ljc) :

lB,]B < dB,O<lc, ]C <dc}

Our method is able to certify this maximal-dimension CES
for several small values of d4, dg, and dc, as summarized in
Table III.

Theorem 3 straightforwardly generalizes to the case of
p > 3 parties using the fact that a multipartite vector |x) is
a product if and only if it is a product across p — 1 of its

single-party bipartitions, and redefining P,%%S accordingly.

For example, if p = 4, then we would define P&%g to be the
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TABLE III. A summary of which level k of the hierarchy from
Theorem 3 can be used to detect entanglement in the maximum-
dimension completely entangled subspace of H, ® Hp ® Hc from
Example 6, for small values of d4, dp, and dc, as well as the compu-
tational time taken to do the certification.

(dy, dp, dc) Max. dg Level k Time
(2,2,2) 4 2 0.12s
(2,2,3) 7 2 0.30s
(2,2,4) 10 2 0.67 s
(2,2,5) 13 2 1.21s
(2,2,6) 16 2 347 s
2,2,7) 19 2 6.05s
(2,2,8) 22 2 18.90 s
(2,2,9) 25 2 38.40 s
(2,3,3) 12 3 19.58 s
(2,34 17 3 8.24 min
(2,3,5) 22 3 2.50 h
(3,3,3) 20 4 14.68 h

orthogonal projection onto the (nondirect) sum
NHa @ N (Hp @ He @ Hp) + AN Hp ® A (Ha @ He
® Hp) + N He ® AX(Ha ® Hp ® Hp),

and then define g = (PGED ® I s 1)Pyscp 4. This
map, if substituted into Theorem 3, provides a complete
hierarchy for detecting completely entangled subspaces in
four-party systems.

VI. MULTIPARTITE GENUINELY
ENTANGLED SUBSPACES

Another notion of multipartite entanglement of a subspace
is that of a genuinely entangled subspace, which is a subspace
in which no pure state is a product state across any bipartition
[12,13]. Genuine entanglement is a stricter requirement than
complete entanglement since pure states can be separable
across one or more bipartitions without being a product vector.

Our hierarchy can be directly applied to the case of gen-
uinely entangled subspaces simply by applying Theorem 2
across every bipartition. For example, when trying to certify
genuine entanglement of a subspace of Hq ® Hp ® Hce, we
consider the map @’1‘ from Eq. (7) with respect to a particular
bipartition of H4 ® Hp ® Hc. That is, we define

Dy e = (Pig2 ® Pl ® Iasck—1)Pipcisrs
and similarly for Qf‘c 5 and q)lf;c, 4- Theorem 2 then immedi-
ately implies the following corollary:

Corollary 2. Let S € Hs ® Hp ® Hc be a subspace with
basis {|x1), ..., [x4)}. Then, S is genuinely entangled if and
only if there exists an integer 1 < k < 3%9dc — 1 such that
the sets

{¢,§B,C(|x,i1>® e ® ’x_i1+k)) << < i < ds},
{Phen(x) @ ®|xj ) 1 < <+ < i <ds)
{@hea(xi) ® - @ [xj)) 1 1< i < -+ < i < ds)

are all linearly independent.

Example 7. Let dy = dg = dc = 3 and consider the five-
dimensional genuinely entangled subspace of Hj ® Hp ®
Hc that was introduced in [13] (see Proposition 2 of that
paper, and the discussion afterwards). To certify that this sub-
space is genuinely entangled, we can apply the k = 1 case of
Corollary 2, which requires us to solve three 108 x 15 linear
systems. Doing so verifies (in about 0.4 seconds) that it is
indeed genuinely entangled.

The above corollary straightforwardly generalizes to any
number of parties by similarly applying the map <I>’f from
Eq. (7) to all 2°~! — 1 bipartitions of the p parties.

VII. CONCLUSIONS

We have introduced a hierarchy of systems of linear equa-
tions for certifying that a given subspace is entangled. This
hierarchy is complete in the sense that every entangled sub-
space is certified to be so at a finite level that is independent
of the subspace being checked. Since the hierarchy only de-
pends on solving a linear system, it can be implemented much
more easily, and it runs much quicker, than methods based
on semidefinite programming. The hierarchy works extremely
well in practice, with many entangled subspaces of interest
already being detected at the first or second level, and it
straightforwardly generalizes to higher Schmidt rank and the
multipartite setting.
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APPENDIX: PROOF OF THEOREM 2
AND PROPOSITION 2

We now prove our main result—Theorem 2, which Theo-
rem 1 occurs as a special case of. We require the following
result, which essentially amounts to a translation of Hilbert’s
projective nullstellensatz.

Theorem 4. Let r be a positive integer and let W!:
’H?(”l) — Hy be a linear map that is invariant under all
permutations of the r + 1 copies of Hy, i.e., \IJ,IP)XJJr1 = LIJrl.
Then, the following statements are equivalent:

(i) W} (|x)®+D) £ 0 for all pure states |x) € Hy.

(i1) There exists a positive integer 1 < k < (max{r, 2} +
1)%* — r for which range(ngrJrk) N ker(lllf) = {0}, where
k= (V'@ Ixi-)Py

Proof. For 2 = 1, if range(Py ) Nker(¥f) = {0}, then
for all pure states |x) € Hy, it holds that

0 # \pllf(|x)®(r+k)) — \IJrl(|x)®(r+l)) ® |x)®(k’1),

SO \Ilrl(lx)®(’“)) # 0. The converse 1 = 2 is more difficult
and is obtained by translating statement (i) to a statement
about zeros of homogeneous polynomials, invoking Hilbert’s
projective nullstellensatz, and then translating back.
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In more details, first observe that the coordinates of
Wl(|x)®+D) as | x) ranges over the unit vectors in Hy can be
written as homogeneous dx-variate polynomials py, ..., pg,
in |x) of degree r + 1, so statement (i) is equivalent to there
being no unit vector |x) (or, equivalently, by scaling, no
nonzero vector |x)) for which pi(|x)) = --- = pg4,(Jx)) = 0.
By Hilbert’s projective nullstellensatz and a degree bound due
to Kolldr, this is equivalent to the existence of a positive in-
teger 1 < k < (max({r, 2} + 1) — r for which every degree
r + k monomial x; ---x;,, can be written as a linear com-

bination of the polynomials g;, ._;,_,.; = X+ Xi,_, D¢, Where
i1, ..., 1x—1 range from 1 to dy, and ¢ ranges from 1 to dy
[24,40].

As with W!(|x)®0+D), the coordinates of WX(|x)®U+h))
as |x) ranges over the unit vectors in Hx can be written as
homogeneous dy-variate polynomials of degree r + k. Di-
rect calculation shows that these polynomials are precisely
qii.....i_,,j (the identity map Ix ;_ that appears in the definition
of W¥ produces the monomials x;, - - - x;,_,). Since every mono-
mial x;, ---x;,, can be written as a linear combination of the
polynomials g, . ; , j, there exists a linear map E : Hy ®
HEED o 4B for which B o WE(|x)®0H0) = |x)@0+h)
for all |x) € Hy. It follows that

ker (¥F) N span{|x)®"*9 : |x) € Hy} = {0}

This completes the proof since span{|x)®"+%) : |x) € Hy} =
range(Py ). ]

In the following proof of Theorem 2, we make use of
Theorem 4 in the special case where Hy = H, ® Hp and
Hy = (Ha @ Hp)®'™ @ (Ha @ Hp)® ™+,

Proof of Theorem 2. Let P3 be the projection onto the
orthogonal complement of S. Then, S is r entangled if
and only if there does not exist |x) € Hy ® Hp for which
Wl (|x)®0*D) = 0, where we define

q,rl . (HA ® HB)®(r+l) N (HA ® HB)®(F+1)
® (Ha ® Hp)®'
by

llll def (Dil'
T LPs ® L )P |

Indeed, by Proposition 1, & is r entangled if and only if
for every |x) € Hy ® Hp for which P§-|x> = 0, it holds that
@1 (|x)®+D) £ 0, which is easily seen to be equivalent to the
above statement about W!.

By Theorem 4, this is in turn equivalent to the existence of
a positive integer 1 < k < (max({r, 2} + 1)%9 — r for which
range(Py; ,.) Nker(¥f) = {0}, where

ef (Dk

U (W ® g )P p = r .
r = (¥ ® Lapit) Py (Pg ® Inp.rik-1)Pg ik

Now, range(PXB,rJrk) N ker(\llf) ={0} if and only if

range(Pyy ;) Nrange(Ps ® Ixp,rx-1) N ker(®%) = {0},

where Ps denotes the projection onto S. Observe that

range(Pyy ,.;) Nrange(Ps ® I rk—1)

= range(Py ;) Nrange(PE" )

= range(P, AVB,rJrkP éQ? ")
= Span{PXB,r+k(|xh ) ®--® |xj"+k )) 2

< Jis oo Jrak < ds}

= Span{PXB.r+k(|xj1 ) ®---® |xj/'+k)) o1
<t <o e < dsh,

where the first line follows from permutation invariance, the
second follows from the fact that the projections Py .., and

pRUFh commute, the third is clear, and the fourth follows

from the fact that

PAVB.,r-&-k(|xj1 ) Q- ® |xjr+k>)
= PXB,r+k(|ij(l)) Q& ‘xja(H»k) ))

for every permutation o of {1, 2, ..., r + k} (i.e., permutation
invariance again). By permutation invariance of ®f, S is r
entangled if and only if

span{|le)® e ® |xj,<+k> 01
< i <o K ek <ds) Nker (@F) = {0},

i.e., the set in Eq. (8) is linearly independent.

For the statement beginning with “Furthermore...,” observe
that the linear independence of the set in Eq. (8) is equivalent
to the nonvanishing of some (dsfi;flfl) (dszgflfl)-minor
of the matrix formed by taking the vectors in the set as
columns. Since this determinant is a polynomial in the entries

of |x1), ..., |x4), and any polynomial that is not identically
zero vanishes on a set of Haar measure zero, this completes
the proof. [ ]

Proof of Proposition 2. A generic subspace S C Ha ® Hp
of dimension dy can be chosen by picking ds generic vec-
tors |x1), ..., |xg) € Ha ® Hp for the basis that spans S.
Let G = {Pp,(x;,) ® |x;,)) : 1 < ji < ja < ds}. We need
to show that with probability 1,

ker (CD}) N span(G) = {0}. (A1)
We remark that the above condition is invariant under scaling
of the vectors |x1), ..., |xs). Hence, we will ignore the unit
vector requirement for |x;), ..., |x4 ) (and all the vectors) for
the purposes of this proof.

We now prove (Al). In the set G, the indices j;, j, could
be equal. We will partition the (ds; l) vectors in G into subsets
Geq = {PAVB,Q(pCj) ® |xj)) 01 g .] < dS} and Gneq =G \ Geq
has the terms with unequal indices. To establish (A1), it suf-
fices to prove the following claim.

Claim. With probability 1 over the choice of
[x1), ..., |xa), we have, for all 1 < j; < j» < ds and all
1<j<ds,

Pipo(|x;,) ® |x1.)) ¢ span(ker (@})
X UGncq \ {PXB,2(|x./'1>® |sz ))}) (A2)
and

|x;)®% ¢ span(ker (@{) U Gpeq U Geq \ {1x/)%%}).  (A3)
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To prove the claim, we first define the following subspaces.
For each i € [ds], let

U; = span{P, ,(|x;) ® [2)) : [2) € Ha ® Hp}.
Note that dim(lf;) < dadp and dim[ker(CDi)] = (dadp)? —
dn\ (dp
(5)(3)-
Consider Py ,(|x),) ® |xj,)) for some 1 < ji < ja < ds,

and let J* = {j;} U {j»} representing the distinct indices in-
volved. We observe that if U_;+ := Uie[dﬂv* U;, then

If ji < j2o Gueg \{Pipa([x3) @ [xp))} SU-. (A4
else ifji = jo, GneqU Geg\ {|%;,)} SU.  (A5)

This is because when j; < j,, every other vector in Gyeq
involves at least one vector |x;) with j € [ds]\ J*. Hence,

(A4) is true. Similarly, when j; = j,, we have (AS) since
every other vector in both Geq and Gy,eq involves at least one
vector |x;) with j e [ds] \ J*.

The rest of the argument is the same for both (A2) and
(A3).

Let V_j :=im(Pyy,) Nker(®]) 4+ U_-. Then,

dim(V_;) < <dAd’-’;+ 1) — (‘le) . (?) + ds(dadp)

<dAd3 + 1)
< 9
2

since ds - (dadp) < (dzf‘)(df) by our assumption on ds. It
follows that V_;- C im(Pyp ,). Hence, Py ,(|x),) ® |x;,)) ¢
V_,« for a generic choice of |x; ), |x;,) (note that V_;- does
not depend on |x; ), [xj,)). This establishes both (A2) and

(A3), and completes the proof of Proposition 2. [ ]
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