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The shot noise in coherent control of a quantum system sets an ultimate precision limit in measurement
and information processing. It is caused by the fundamental quantum fluctuation of the photon number of a
coherent control field and thus is inevitable. By strongly coupling a two-level system to a quantum vacuum
field, we propose an effective N-type four-level system. In such a configuration, the coupling of a conventional
N-type system to a coherent control field is replaced by the quantum vacuum field. As a result, we can achieve a
shot-noise-suppressing quantum nonlinearity, due to the vanishing fluctuation of photon number of the quantum
vacuum field. The resulting photon blockade effect is only subject to the contribution from the probe field.
Thus, it becomes shot-noise suppressing. Our work shows an advantage of a quantum vacuum protocol over a
coherent-field protocol in manipulation of quantum systems and presents an opportunity to exploit the quantum
vacuum field as a powerful tool in quantum information processing.
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I. INTRODUCTION

The laser plays a key role in regulating quantum sys-
tems for quantum information processing [1]. However, the
photon-number fluctuation is inevitable in a coherent light
field. This shot-noise fluctuation typically has a Poisson dis-
tribution [2,3], leading to the so-called standard quantum limit
in quantum simulation [4], quantum measurement [5,6], and
imaging [7]. Although many schemes have been proposed to
control quantum fluctuations [8,9], it is still very challenging
to eliminate this intrinsic noise and then beat the standard
quantum limit. In this work we exploit the quantum vacuum
field to induce a shot-noise-suppressing quantum nonlinearity
and to circumvent the limitation of photon-number fluctuation
related to the coherent control field in quantum information
processing.

The quantum vacuum field is a fundamental concept in
quantum physics. To explain the spontaneous photon emis-
sion, Dirac proposed that an excited quantum emitter (QE) can
transfer energy by emitting a photon into a quantum vacuum
field unoccupied electromagnetic mode [10], breaking the
common perception of a quantum vacuum as the absence of
everything [11]. Due to such a counterintuitive picture, the
nature of quantum vacuum fields quickly draws intensive at-
tention [12–14]. The interest ranges from the basic science to
potential applications of technology [11] such as vacuum-field
detection [15,16], Casimir effect [17], Lamb spectral shifts
[2], and vacuum-induced phonon heat transfer [18].

*keyu.xia@nju.edu.cn

The interaction of a continuum-mode light field with a QE
is usually weak in free space, resulting in imperceptible effects
of the vacuum-field coupling. In space confined by an optical
cavity, the intracavity matter strongly couples to the discrete
optical modes of the cavity, even in the quantum vacuum
state without any photons [11]. Thus, the quantum proper-
ties of a QE can be greatly modified with an optical cavity
[19,20]. This cavity-enhanced light-QE interaction gives birth
to cavity quantum electrodynamics (QED) [2,21]. The quan-
tum vacuum-induced coupling (VIC) of QEs and an optical
cavity can generate a photon-photon interaction without the
use of an external light field. It also leads to many exotic
physical phenomena, including vacuum Rabi splitting in a
two-level QE [12,22–25] and vacuum-induced transparency
in a three-level quantum system [13].

Conventionally, the nonlinear interaction between photons
is very weak. A cavity QED system with an N-type four-level
QE controlled by a coherent field can be used to achieve
a strong photon-photon interaction [26,27]. Compared to a
cavity QED system with a two-level QE, this N-type cavity
QED system has the merits of a giant quantum nonlinearity
of photons. Therefore, it promises many important applica-
tions in quantum information technologies such as quantum
phase gates [28–30] and the single-photon extraction via the
photon blockade effect [31]. The concept of photon blockade
has been extended to the phonon domain recently by creat-
ing a phononic N-type quantum system with the VIC [32].
Nonetheless, the advantage of the quantum vacuum field as a
resource for quantum information processing has barely been
addressed.

Here we propose a vacuum-induced N-type system supe-
rior to a coherent-field-controlled N-type system in generating
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FIG. 1. Schematic diagram of the N-type VIC and CFC con-
figurations. (a) Schematic of the VIC configuration consisting of
a two-level QE, an auxiliary cavity composed of upper and lower
cavity mirrors (yellow), and a probe cavity composed of left and
right cavity mirrors (blue). (b) Level diagram of the vacuum-induced
N-type system. (c) Schematic of the CFC configuration, containing
an N-type QE and a probe cavity. (d) Level diagram of the coherent-
field-controlled N-type system.

quantum nonlinearity for photon blockade. By modeling the
classical coherent field as a coherently driven cavity, we show
a considerably large shot noise in the coherent-field-coupling
(CFC) protocol. In contrast, the shot noise caused by the co-
herent control field disappears in the VIC protocol, achieving
a shot-noise-suppressing Kerr photonic nonlinearity.

II. SYSTEM AND MODEL

The VIC configuration, as shown in Fig. 1(a), consists of
a two-level QE with a resonance frequency ωe, an auxiliary
cavity, and a probe cavity. The auxiliary cavity d̂ and the probe
cavity â couple to the two-level QE with strengths gc and gp,
respectively. We consider that the auxiliary cavity is made
from two perfect mirrors such that only the intrinsic loss κd,i

should be taken into account in the decay. A weak coherent
probe field with amplitude αin is incident to the probe cavity
from the left input port. We are interest in the transmitted field
to the right output port. The probe cavity has three main decay
channels [33]: κp,e1 for the input port, κp,i for the intrinsic
decay, and κp,e2 for the output port. The total decay rate is
κp = κp,e1 + κp,i + κp,e2. In experiments, the intrinsic loss κd,i

can be far less than κp [21,34]. In the case of a weak probe
and gp � gc, the quantum vacuum state with zero photons is
mostly populated in the auxiliary cavity. Thus, it is reasonable
to truncate the cavity mode d̂ up to the first excited Fock state
|1d〉.

The subsystem of the two-level QE and the auxiliary cavity
can be modeled as a four-level system with |1〉V = |g, 0d〉 for
the vacuum state, |2〉V = |e, 0d〉, |3〉V = |g, 1d〉, and |4〉V =
|e, 1d〉 [32], as shown in Fig. 1(b). Taking the ground state
|1〉V as a reference, the energies of the remaining three states
are ωe, ωc, and ωe + ωc. In this case, we create an N-type
four-level quantum system with the VIC. In such an equivalent
configuration, the quantum vacuum field drives the transi-
tion |2〉V ↔ |3〉V and the probe cavity mode couples to the
transitions |1〉V ↔ |2〉V and |3〉V ↔ |4〉V . It is worth noting

that this VIC configuration allows an on-chip platform of
a two-level superconducting qubit coupling to a microwave
resonator [35].

The loss of the auxiliary cavity mode d̂ causes the state
|3〉V (|4〉V ) to decay to the state |1〉V (|2〉V ) with a rate γ31 =
2κd,i (γ42 = 2κd,i). The two-level QE has a relaxation rate γ .
Because of this relaxation, the state |2〉V (|4〉V ) decays to the
state |1〉V (|3〉V ) with a rate γ21 = γ (γ43 = γ ). We find that
there is no decay channel between states |2〉V and |3〉V (see
Appendix A), that is, γ23 = 0. The transition between |2〉V and
|3〉V results from the interaction of the two-level QE with the
quantum vacuum field mode in the auxiliary cavity and thus
replacing the conventional decoherence mechanism.

In the basis of {|1〉V , |2〉V , |3〉V , |4〉V } and the frame ro-
tating at frequency ωa, the system Hamiltonian of the VIC
configuration is given by (h̄ = 1)

ĤVIC = ĤS
VIC + ĤP

VIC, (1a)

ĤS
VIC = �21ŝ22 + (�21 − �23)ŝ33 + (�43 + �21 − �23)ŝ44

+ [gp(â†ŝ12 + â†ŝ34) + gcŝ23 + H.c.], (1b)

ĤP
VIC = i

√
2κp,e1αin(â†e−i�pt − âei�pt ), (1c)

where �21 = �43 = ωe − ωa (�23 = ωe − ωc) is the detun-
ing between the two-level QE and the probe cavity mode
(the auxiliary cavity mode) and �p = ωp − ωa is the probe-
field detuning. The operator ŝmn = |m〉〈n|V (n, m = 1, 2, 3, 4)
stands for the transition of the N-type system. The interaction
Hamiltonian is described by Eq. (1b) and the last term ĤP

VIC
represents the driving Hamiltonian related to the probe field.

We now describe the CFC configuration shown in Fig. 1(c).
Unlike the VIC-based N-type system, a natural N-type atom,
such as a rubidium atom, can be placed in a Fabry-Pérot
optical cavity to achieve a strong photon-photon interaction
[36–39]. A coherent control field directly drives the transition
|2〉C ↔ |3〉C with a Rabi frequency �c [see Fig. 1(d)]. We
use the same probe setup as the VIC protocol. The system
Hamiltonian of this CFC configuration reads

Ĥ ′
CFC = ĤS′

CFC + ĤP′
CFC, (2a)

ĤS′
CFC = �21σ̂22 + (�21 − �23)σ̂33 + (�43 + �21 − �23)σ̂44

+ [gp(â†σ̂12 + â†σ̂34) + �cσ̂23 + H.c.], (2b)

ĤP′
CFC = i

√
2κp,e1αin(â†e−i�pt − âei�pt ), (2c)

where σ̂mn = |m〉〈n|C (m, n = 1, 2, 3, 4) defines the transition
operator for the four-level atom. Notably, due to the decoher-
ence mechanism of natural N-type atomic energy levels, we
retain the decay from |2〉C to |3〉C . In addition, to compare
with the VIC protocol, we consider the same decay rates for
the N-type quantum system and the probe cavity.

Comparing Eqs. (1) and (2) and two-level diagrams, we
can see that the two configurations are different only in the
coupling to the transition |2〉 ↔ |3〉. In the VIC configura-
tion, this coupling is caused by the quantum vacuum field
of the auxiliary cavity driving the two-level QE. The cou-
pling strength is a pure number gc in a practical experimental
implementation of this VIC configuration [35]. In contrast,
the coupling �c is the coherent control field driving the real
transition |2〉 ↔ |3〉 of a natural N-type atom. In conventional
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treatment, the coupling strength �c in the CFC configuration
is treated as a number without fluctuation [2]. This treatment
causes the Hamiltonian (2) to fail to reflect the photon-number
fluctuation of the coherent control field. Indeed, it is valid
when the coherent field is strong enough.

In a theoretical model of the coherent-field driving of the
atom, the coherent control field �c can be replaced by an
open-environment pseudocavity mode ĉ with a total decay rate
κc. A new coherent field ξ resonantly excites the pseudocavity
mode to a coherent state |α〉, which generates an equivalent
driving as �c to the atom. In this case, we have �c = αg′

c,
where g′

c is the mean single-photon coupling strength. In
doing so, the quantum fluctuation of the coherent control field
in experiment, corresponding to the shot noise, can be taken
into account in the model. The Hamiltonian describing this
equivalent pseudocavity QED system can be written as

ĤCFC = ĤS
CFC + ĤP

CFC, (3a)

ĤS
CFC = �21σ̂22 + (�21 − �23)σ̂33 + (�43 + �21 − �23)

× σ̂44 + [gp(â†σ̂12 + â†σ̂34) + g′
cσ̂23ĉ + h.c.]

+ iξ (ĉ† − ĉ), (3b)

ĤP
CFC = i

√
2κp,e1αin(â†e−i�pt − âei�pt ), (3c)

where ĉ is the annihilation operator of the pseudocavity mode.
The quantum-averaged photon number Nc of the pseudocavity
field is proportional to the square of driving amplitude ξ , given
by Nc = 〈ĉ†ĉ〉 = ξ 2/κ2

c . The relation between �c and g′
c is

�c = g′
c

√
Nc. We take �c = gc to keep the coupling rates

consistent in the two configurations.
Hereafter, we study the photon-number fluctuation of the

CFC configuration based on this pseudocavity QED model.
The VIC protocol, which makes full use of the quantum vac-
uum field in an auxiliary cavity interacting with a two-level
QE, provides an effective approach to suppress the shot noise
of the control field, while it is inevitable in the CFC protocol.

The dynamics of the quantum system with an observable
operator Ô is govern by the quantum master equation

˙̂O(t ) = −i[Ô(t ), Ĥ ] + L[
, Â]Ô(t ), (4)

where the superoperator L[
, Â]Ô(t ) describes the system
dissipation and has the same form in the Heisenberg picture
for both the VIC and CFC configurations as [33,40,41]

L[
, Â]Ô(t ) = 
(2Â†Ô(t )Â − Â†ÂÔ(t ) − Ô(t )Â†Â), (5)

with 
 = {κp, κc, γ21/2, γ23/2, γ31/2, γ43/2, γ42/2} and Â =
{â, ĉ, Ŝ12, Ŝ32, Ŝ13, Ŝ34, Ŝ24} (Ŝ = ŝ, σ̂ ). The motion of the sys-
tems can be accessed directly by numerically solving the
quantum master equation [42].

III. SHOT-NOISE-SUPPRESSING
QUANTUM NONLINEARITY

We can also obtain the effective Hamiltonian by adi-
abatically eliminating the atomic operators in Eqs. (1).
Using a perturbation approach to solve the master equa-
tion [2,31,32,43–45] (see Appendix A) and then applying an
unitary transformation, defined by Û = exp(i�pâ†ât ), to the
system with the probe in the VIC configuration, we obtain the

effective Hamiltonian

Ĥ eff
VIC = (�p + δωVIC)â†â + ηVICâ†â†ââ

+ i
√

2κp,e1αin(â† − â), (6)

where δωVIC is the linear frequency shift, which can be ne-
glected in the case of two-photon resonance [37] in which
�21 = �23. The second term related to ηVIC describes the
vacuum-induced quantum nonlinearity. Note that the nonlin-
earity strength ηVIC is a number in the VIC configuration. It is
evaluated as

ηVIC = g4
p(2γ31 + γ23)

g4
cγ31(γ21 + γ23)

(
1

F
+ 1

F ∗

)
Im(F )

|F |2 , (7)

where F = γ̃2/g2
c + 1/(γ̃3 + g2

pNa/γ̃4), γ̃2 = (γ21 + γ23)/2 +
i�21 (γ23 = 0 in the VIC protocol), γ̃3 = γ31/2 + i(�21 −
�23), γ̃4 = (γ43 + γ42)/2 + i(�43 + �21 − �23), and Na is
the quantum-averaged photon number of the probe field. To a
good approximation, we have Na = |αin|2/κ2

p for κp,e 	 κp,i.
In the CFC configuration, the coherent control field has

a photon-number fluctuation, i.e., subject to the shot noise.
Such shot noise is difficult to assess using the conventional
treatment of taking the coupling strength �c as a number.
Thus, we use the pseudocavity QED model to analyze the
effect of this quantum fluctuation of the coherent control field.
We are interested in the pseudocavity mode ĉ. By adiabati-
cally eliminating the atomic operators in Eq. (3), we get the
effective Hamiltonian in the CFC configuration as

Ĥ eff
CFC = (�p + δωCFC)â†â + η̂CFCâ†â†ââ

+ i
√

2κp,e1αin(â† − â) (8)

and the corresponding quantum nonlinear coefficient

η̂CFC = g4
p(2γ31 + γ23)

g′4
c (ĉ†ĉ)2γ31(γ21 + γ23)

(
1

F
+ 1

F ∗

)
Im(F )

|F |2 , (9)

where the linear frequency shift δωCFC is also negligible under
the condition of two-photon resonance. The quantum nonlin-
ear coefficient η̂CFC is no longer a pure number but an operator
related to the photon-number operator ĉ†ĉ. Below we also
refer to the photon-photon interaction coefficients ηVIC and
η̂CFC as Kerr-type photonic nonlinearities.

We find that the nonlinearity η̂CFC depends on the photon
number of the pseudocavity field [see the factor g′4

c (ĉ†ĉ)2

in Eq. (9)]. The pseudocavity mode ĉ satisfies the relation
�c = g′

c

√
〈ĉ†ĉ〉, which leads to the fact that the mode ĉ cannot

be in a vacuum state, thus avoiding the mathematical diver-
gence of Eq. (9). In addition, from Eq. (9) it can be seen that
the nonlinearity η̂CFC is inversely proportional to the photon
number Nc. Under the condition that �c is strong enough to
ensure the realization of electromagnetically induced trans-
parency and an atomic coherent process, the smaller the
photon number of the control field, the larger the nonlinearity.
This point is confirmed both theoretically and experimentally
[26,32,37,44,45].

In experimental measurement, the nonlinearity η̂CFC we
actually get is a number varying detection by detection, due
to the random collapse of the quantum state. However, the
photon-number fluctuation of the coherent control field intro-
duces the shot noise to each measurement related to η̂CFC.
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FIG. 2. Shot-noise-suppressing Kerr photonic nonlinearity. The
red curve represents the nonlinear coefficient ηCFC of the CFC config-
uration, as a function of the average photon number Nc. The blue line
is for the VIC configuration. The decay from |2〉 to |3〉 is γ23 = 0 and
γ23 = 0.1κp in the VIC and CFC configurations, respectively. The
other parameters are κp,i = 0.2, κp,e1 = κp,e2 = 0.4, κp = 1, γ21 =
γ43 = 0.1κp, γ42 = γ31 = 0.001κp, �21 = �23 = �43 = 0.5κp, gp =
15κp, gc = 60κp, and �c = 135κp.

In stark contrast, ηVIC in the VIC configuration is a pure
number because the quantum vacuum field has zero fluctu-
ation in the photon number. This means the uncertainty of
the ηVIC measurement disappears, resulting in a shot-noise-
suppressing Kerr nonlinearity.

The quantum-averaged Kerr nonlinearity of the CFC con-
figuration, ηCFC = 〈η̂CFC〉, reflects the result of the average of
multiple measurements of the system nonlinearity. As is well
known, the photon-number fluctuation of a coherent field is
proportional to the square root of the number of photons, that
is, �Nc = √

Nc. Also, we have the relation 〈(ĉ†ĉ)2〉 = N2
c +

�N2
c [2]. Therefore, we can rewrite the quantum-averaged

nonlinear coefficient for the CFC configuration

ηCFC = η̄CFC

1 + �N2
c /N2

c

= η̄CFC

1 + 1/Nc
, (10a)

η̄CFC = g4
p(2γ31 + γ23)

�4
cγ31(γ21 + γ23)

(
1

F
+ 1

F ∗

)
Im(F )

|F |2 . (10b)

In what follows, to compare the two configurations, we take
η̄CFC = ηVIC by adjusting the parameters gc and �c. Ac-
cording to Eq. (10a), the photon-number fluctuation of the
coherent field can cause reduction of the Kerr nonlinearity.
This effect is remarkable when Nc is small, as shown in
Fig. 2. When Nc increases to a large number, the contribution
of the relative fluctuation �N2

c /N2
c becomes small and the

nonlinear coefficient ηCFC rapidly approaches that of the VIC
configuration. In stark contrast, the Kerr photonic nonlinearity
in the VIC configuration ηVIC is free of the fluctuation of
the coherent control field. Then we call this nonlinearity the
shot-noise-suppressing Kerr nonlinearity, meaning it excludes
the noise from the photon-number fluctuation of a control
field. This property suppressing the control-field noise reveals
great advantages in quantum information technologies relying
on the Kerr nonlinearity, such as photon blockade.

IV. ADVANTAGES IN PHOTON BLOCKADE

The strength of available Kerr nonlinearity in a quantum
optical system directly determines the performance of photon

blockade, which is usually used to extract a single photon
from a weak coherent probe field [26]. According to the
input-output relation [46], we have âout = √

2κp,e2â in both
configurations. The statistical properties of the output photon
mode is the same as that in the probe cavity. Its average is eval-
uated with the steady-state second-order correlation function
at zero delay:

g(2)(0) = 〈â†
out(t )â†

out(t )âout(t )âout(t )〉SS

〈â†
out(t )âout(t )〉2

SS

. (11)

It is difficult to solve the exact analytical solution of the
second-order correlation function. In a weak-driving regime
(αin � κp), we truncate the Hilbert space to n = 2 for ana-
lytically solving the Schrödinger equation of the system. We
obtain the approximate function [47] (see Appendix B)

g(2)(0) ≈ κ2
p

η2
VIC + κ2

p

(12)

at resonance �p = 0 for the VIC configuration. The Kerr non-
linearity is shot-noise suppressing so that the photon-number
fluctuation-induced noise is excluded in g(2)(0). However, in
the CFC configuration, by substituting Eq. (10a) into Eq. (12)
we have

g(2)(0) ≈ κ2
p

η̄2
CFC + κ2

p

(
1 + �N2

c

N2
c

)2

. (13)

It can be seen that the fluctuation �Nc of the coherent control
field causes g(2)(0) to increase and thus weaken the photon
blockade effect.

To further evaluate the effect of the coherent control field
on the statical properties of the outgoing photon mode, we
consider the second-order intensity-correlation operator for
the output field [3,41]

Ĝ = â†
outâ

†
outâoutâout. (14)

In experiments, the field outgoing from the system is split
into two paths and measured at the same time or zero delay
to obtain the single-shot intensity correlation. Each measure-
ment generates a value of the intensity correlation distributed
randomly around its mean value due to the shot noise. The
average of a great number of measurement yields the value
〈Ĝ〉. Normalization by the squared mean intensity of the out-
put field gives the function g(2)(0).

Note that the fluctuation of Ĝ gives rise to the uncertainty
of g(2)(0) in measurement. In the VIC configuration, Ĝ has no
contribution from the photon-number fluctuation of the con-
trol field but is affected by the probe-field fluctuation. In this
sense, the g(2)(0) is shot-noise suppressing. In the CFC con-
figuration, except for the probe field contribution, the coherent
control field also causes extra shot noise to the measurement
of Ĝ, leading to an additional quantum uncertainty to g(2)(0).

The fluctuation of Ĝ can be derived approximately as (see
Appendix B)

�G ≈ 8
√

2κp,e1κ
2
p,e2α

2
in

ηVICκp
(15)
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FIG. 3. (a) Transmission and (b) fluctuation �Na as a function
of the probe-field detuning. (c) Second-order function g(2)(0) and
(d) fluctuation �G versus the probe-field detuning. The blue and
red curves represent the VIC and CFC configurations, respectively.
We take κc = κp, g′

c = 67.5κp, and ξ = 2κp, yielding Nc = 4 and
�c = 135κp. The decay from |2〉 to |3〉 is γ23 = 0 and γ23 = 0.1κp

in the VIC and CFC configurations, respectively. The other param-
eters are κp,i = 0.2, κp,e1 = κp,e2 = 0.4, κp = 1, γ21 = γ43 = 0.1κp,
γ42 = γ31 = 0.001κp, �21 = �23 = �43 = 0.5κp, gp = 15κp, α2

in =
0.04κp, gc = 60κp, and �c = 135κp.

for the VIC configuration and

�G ≈ 8
√

2κp,e1κ
2
p,e2α

2
in

η̄CFCκp
+ 8

√
2κp,e1κ

2
p,e2α

2
in

η̄CFCκp

(
�Nc

Nc

)2

(16)

for the CFC configuration. The first term of Eq. (16) is derived
from the photon-number fluctuation of the probe field itself,
which we denote by �Gp. The second term originates from
the coherent control field, denoted by �Gc. Therefore, the
use of a coherent control field introduces an additional fluc-
tuation to the second-order correlation function. We go next
to the discussion of the transmission of the system, defined
as T = 〈â†

outâout〉/|αin|2. It is proportional to 〈â†â〉. Therefore,
its fluctuation is only dependent on the photon-number fluctu-
ation of the probe field given by (see Appendix B)

�Na ≈
√

2κp,e1α
2
in/

[
(�p + δωx )2 + κ2

p

]
, (17)

with x = VIC, CFC. Note that �Na is unaffected by the
photon-number fluctuation of the control field. Hence, the
transmissions and their fluctuation in both the VIC and CFC
configurations are almost identical [see Figs. 3(a) and 3(b)].

To confirm our analytical results, now we numerically
study the full quantum dynamics of both the VIC and CFC
configurations by solving the quantum master equation (4)
based on Eqs. (1) and (3) with the same parameters for
comparison. Figures 3(a) and 3(b) show the same trans-
missions and corresponding fluctuations for both cases as
a function of �p. The statistical properties of the output
photons, however, are quite different. As expected from the
analysis above, the fluctuation �Nc weakens the photon
blockade effect and gives rise to a larger g(2)(0) in the CFC

FIG. 4. (a) Second-order function g(2)(0) and (b) fluctuation �G
versus the quantum-averaged photon number Nc of the coherent
control field. Red solid (blue dashed) solid curves indicate the case
of a strong nonlinearity ηVIC = 5κp (η̄CFC = 5κp) in the VIC (CFC)
configuration with the parameters gp = 15κp, γ23 = 0, and gc =
60κp (gp = 15κp, γ23 = 0.1κp, and �c = 135κp). Green dash-dotted
(purple dotted) curves represent the case of a weak nonlinearity
ηVIC = κp (η̄CFC = κp) in the VIC (CFC) configuration with the
parameters gp = 10κp, γ23 = 0, and gc = 40κp (gp = 10κp, γ23 =
0.1κp, and �c = 90κp). The other parameters are κp,i = 0.2, κp,e1 =
κp,e2 = 0.4, κp = 1, γ21 = γ43 = 0.1κp, γ42 = γ31 = 0.001κp, �p =
0, �21 = �23 = �43 = 0.5κp, and α2

in = 0.04κp.

configuration [see Fig. 3(c)]. At �p = 0, the second-order
correlation function g(2)(0) is 0.003 and 0.1 in the VIC and
CFC configurations, respectively. As shown in Fig. 3(d), the
fluctuation of the second-order intensity correlation �G in
the VIC configuration is considerably smaller than that in the
CFC configuration, because the additional quantum fluctua-
tion �Nc in the latter case adds an extra contribution to �Gc.
This smaller �G implies an important advantage of the VIC
protocol in photon blockade. Figure 4 shows g(2)(0) and �G
versus Nc. When Nc varies, we keep gc and �c unchanged,
resulting in the same Kerr-type photonic nonlinearity ηVIC =
η̄CFC. In the VIC configuration, g(2)(0) and �G are constant
since they are independent of Nc. The performance of photon
blockade is thus stable in the VIC protocol. In stark con-
trast, due to the fluctuation �Nc, g(2)(0) and �G are strongly
dependent on Nc in the CFC configuration. It can be seen
from Fig. 4 that g(2)(0) and �G have large values when Nc

is small. With the increase of Nc, they decrease and eventually
converge with that of the VIC configuration. It is worth noting
that the weaker the nonlinearity is, the slower g(2)(0) and �G
decrease with Nc, and the higher stable value g(2)(0) and �G
approach (see the blue dashed curve for a strong nonlinearity
ηVIC = η̄CFC = 5κp and the purple dotted curve for a weak
nonlinearity ηVIC = η̄CFC = κp). This implies that, under a
weak nonlinear condition, the VIC protocol shows a larger ad-
vantage than the CFC protocol in photon blockade for a small
Nc. Due to the limitation of available computation resources,
we preform simulations to a small Nc. In practice, to approach
the comparable performance as the VIC protocol, the coher-
ent control field needs to be very strong, corresponding to a
large Nc, which goes beyond the computation capability of a
classical computer.

V. CONCLUSION

We have shown an essential advantage of the VIC protocol
over the CFC protocol in quantum manipulation. A shot-
noise-suppressing quantum nonlinearity is created by virtue
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of the VIC in a cavity QED. As a result, a more stable and
stronger photon blockade effect is obtained, in comparison
with the conventional CFC-based method. Our VIC-based
method using the quantum vacuum field will greatly en-
rich quantum information technologies. With the help of the
VIC, one can construct a three- or four-level superconducting
quantum system [32,34], thus boosting quantum information
technologies based on nonlinear quantum optics. Moreover,
the proposed VIC protocol for quantum manipulation pro-
vides a good platform for investigating the nature of the
quantum vacuum field.
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APPENDIX A: EFFECTIVE QUANTUM NONLINEARITY
COEFFICIENTS OF THE VIC AND CFC

CONFIGURATIONS

Using the perturbation approach [2,31,32,43–45], we can
obtain the effective quantum nonlinear coefficients of the VIC
and CFC configurations. We first derive the VIC configu-
ration. The system consists of a two-level QE, an auxiliary
cavity, and a probe cavity. The operators σ̂+ = |e〉〈g| and
σ̂− = |g〉〈e| stand for the energy transition of the two-level
QE. The probe cavity mode â (the auxiliary cavity mode
d̂) couples to the two-level QE with a strength gp (gc). The
auxiliary cavity is in the vacuum state and without any exter-
nal drive. In the case of a weak probe and gp � gc, we can
truncate the cavity mode d̂ up to the first excited Fock state
|1d〉 and thus obtain the state space of a subsystem consisting
of the two-level QE and the auxiliary cavity [32] |1〉V =
|g, 0d〉, |2〉V = |e, 0d〉, |3〉V = |g, 1d〉, and |4〉V = |e, 1d〉, re-
spectively. This subsystem can be modeled as an N-type
four-level system. We define ŝmn = |m〉〈n|V (n, m = 1, 2, 3, 4)
to describe the transition of the N-type four-level structure.
Therefore, in the basis of {|1〉V , |2〉V , |3〉V , |4〉V }, the Hamil-
tonian of the VIC configuration is given by

ĤVIC = ĤS
VIC + ĤP

VIC, (A1a)

ĤS
VIC = �21ŝ22 + (�21 − �23)ŝ33 + (�43 + �21 − �23)ŝ44

+ [gp(â†ŝ12 + â†ŝ34) + gp(ŝ21â + ŝ43â)]

+ gc(ŝ23 + ŝ32), (A1b)

ĤP
VIC = i

√
2κp,e1αin(â†e−i�pt − âei�pt ). (A1c)

The decay of the system can be described by the Lindblad
operator

LÔ = κp(2â†Ôâ − â†âÔ − Ôâ†â)

+ κd (2d̂†Ôd̂ − d̂†d̂Ô − Ôd̂†d̂ )

+ γ

2
(2σ̂+Ôσ̂− − σ̂+σ̂−Ô − Ôσ̂+σ̂−). (A2)

Here κp = κp,e1 + κp,i + κp,e2 is from the total decay of the
probe cavity, κd = κd,i accounts for the loss of the aux-
iliary cavity, and the relaxation rate γ results from the
two-level QE. Expanding operators d̂† and σ̂+ under the basis
{|1〉V , |2〉V , |3〉V , |4〉V }, we have

d̂† = (|e〉〈e| + |g〉〈g|) ⊗ |1d〉〈0d | = ŝ42 + ŝ31,

σ̂+ = |e〉〈g| ⊗ (|1d〉〈1d | + |0d〉〈0d |) = ŝ21 + ŝ43. (A3)

Then substituting Eq. (A3) into Eq. (A2) and neglecting cross
terms, we get

LÔ = κp(2â†Ôâ − â†âÔ − Ôâ†â)

+ κd (2ŝ42Ôŝ24 − ŝ44Ô − Ôŝ44)

+ κd (2ŝ31Ôŝ31 − ŝ33Ô − Ôŝ33)

+ γ

2
(2ŝ21Ôŝ12 − ŝ22Ô − Ôŝ22)

+ γ

2
(2ŝ43Ôŝ34 − ŝ44Ô − Ôŝ44), (A4)

where the second (third) term describes the decay from |4〉V

(|3〉V ) to |2〉V (|1〉V ) by the loss of the auxiliary cavity mode
and the fourth (last) term describes the decay from |2〉V (|4〉V )
to |1〉V (|3〉V ) by the relaxation of the two-level QE. We
take γ42 = γ31 = 2κd = 2κd,i and γ21 = γ43 = γ . It is worth
noting that the state |2〉V does not decay to the state |3〉V , that
is, γ23 = 0. This is because the coherent process between |2〉V

and |3〉V is induced by QE-cavity coupling, which is different
from the typical decoherence mechanism in the conventional
N-type four-level structure. Therefore, the Lindblad operator
can be rewritten as

L[
, Â]Ô = 
(2Â†ÔÂ − Â†ÂÔ − ÔÂ†Â), (A5)

where 
 = {κp, γ21/2, γ23/2, γ31/2, γ43/2, γ42/2} represents
the decay rate of each state analyzed in the main text and Â =
{â, ŝ12, ŝ32, ŝ13, ŝ34, ŝ24}. Then the Heisenberg equations for
the system in the VIC configuration take the form (γ23 = 0)

˙̂a = −κpâ − igpŝ12 − igpŝ34 + √
2κp,e1αine−i�pt , (A6a)

˙̂s11 = γ21ŝ22 + γ31ŝ33 − igp(â†ŝ12 − ŝ21â), (A6b)

˙̂s22 = −(γ21 + γ23)ŝ22 + γ42ŝ44 + igp(â†ŝ12 − ŝ21â)

− igc(ŝ23 − ŝ32), (A6c)

˙̂s33 = −γ31ŝ33 + γ23ŝ22 + γ43ŝ44 − igp(â†ŝ34 − ŝ43â)

+ igc(ŝ23 − ŝ32), (A6d)

˙̂s44 = −(γ42 + γ43)ŝ44 + igp(â†ŝ34 − ŝ43â), (A6e)

˙̂s23 = −γ̃23ŝ23 + igc(ŝ33 − ŝ22) + igpâ†(ŝ13 − ŝ24), (A6f)

˙̂s14 = −γ̃4ŝ14 + igp(ŝ24 − ŝ13)â, (A6g)

˙̂s12 = −γ̃2ŝ12 − igcŝ13 − igp(ŝ11 − ŝ22)â, (A6h)

˙̂s13 = −γ̃3ŝ13 − igcŝ12 + igp(ŝ23â − â†ŝ14), (A6i)

˙̂s24 = −γ̃24ŝ24 + igcŝ34 + igp(â†ŝ14 − ŝ23â), (A6j)

˙̂s34 = −γ̃34ŝ34 + igcŝ24 − igp(ŝ33 − ŝ44)â, (A6k)

where γ̃2 = (γ21 + γ23)/2 + i�21, γ̃3 = γ31/2 + i(�21 −
�23), γ̃4 = (γ42 + γ43)/2 + i(�43 + �21 − �23), γ̃23 =
(γ21 + γ23 + γ31)/2 − i�23, γ̃24 = (γ21 + γ23 + γ42 +
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γ43)/2 + i(�43 − �23), and γ̃34 = (γ31 + γ42 + γ43)/2 +
i�43.

The transition operator can be expanded as ŝmn = ŝ(0)
mn +

ŝ(1)
mn + ŝ(2)

mn + ŝ(3)
mn + · · · . In the case of a weak probe and gp �

gc, the system is mostly populated in the ground state |1〉V .
Hence, to a good approximation, all the populations can be
assumed in the ground state |1〉V to zeroth order, i.e., ŝ(0)

11 =
1, ŝ(0)

22 = ŝ(0)
33 = ŝ(0)

44 = 0. The terms with ŝmngp (m �= n) can
be neglected when solving ŝmn. Then we have the first-order
solutions for the operators

ŝ(1)
12 = − igp

g2
cF

â, (A7a)

ŝ(1)
13 = − igc

γ̃3 + g2
pNa/γ̃4

ŝ(1)
12 , (A7b)

with F = γ̃2/g2
c + 1/(γ̃3 + g2

pNa/γ̃4), where Na is the average
photon number of the probe field. As for a closed system, the
total population is conserved, i.e., ŝ11 + ŝ22 + ŝ33 + ŝ44 = 1.
The second-order population operators satisfy the relationship

ŝ(2)
11 + ŝ(2)

22 + ŝ(2)
33 + ŝ(2)

44 = 0. (A8)

Substituting Eqs. (A7) and (A8) into Eqs. (A6b)–(A6e), we
obtain the second-order population operators

ŝ(2)
11 = − (γ23 + γ31)g2

p

γ31(γ21 + γ23)g2
c

(
1

F
+ 1

F ∗

)
â†â, (A9a)

ŝ(2)
22 = g2

p

(γ21 + γ23)g2
c

(
1

F
+ 1

F ∗

)
â†â. (A9b)

Similarly, substituting Eqs. (A9) into Eqs. (A6f)–(A6k), we
get the operators ŝ(3)

12 and ŝ(3)
34 to third order,

ŝ(3)
12 = ig3

p(2γ31 + γ23)

g4
cγ31(γ21 + γ23)F

(
1

F
+ 1

F ∗

)
â†ââ, (A10a)

ŝ(3)
34 = 0. (A10b)

Therefore, we have

ŝ12 = ŝ(1)
12 + ŝ(3)

12 , (A11a)

ŝ34 = 0. (A11b)

For an observable Ô, related to the cavity mode â, we can
obtain the relation from the quantum master equation

˙̂O = − igp([Ô, â†]ŝ12 + ŝ21[Ô, â])

− igp([Ô, â†]ŝ34 + ŝ43[Ô, a])

+ κp(2â†Ôâ − â†âÔ − Ôâ†â)

+ √
2κp,e1αin[Ô, â†e−i�pt − âei�pt ]. (A12)

Thus, substituting Eqs. (A11) into Eq. (A12), we have

˙̂O = − iδωVIC[Ô, â†â] − iηVIC[Ô, â†â†ââ]

+ κL
VIC(2â†Ôâ − â†âÔ − Ôâ†â)

+ κNL
VIC(2â†2Ôâ2 − â†2â2Ô − Ôâ†2â2)

+ κp(2â†Ôâ − â†âÔ − Ôâ†â)

+ √
2κp,e1αin[Ô, â†e−i�pt − âei�pt ], (A13)

where

δωVIC = − Im(F )g2
p

g2
c|F |2 , (A14a)

ηVIC = g4
p(2γ31 + γ23)

g4
cγ31(γ21 + γ23)

(
1

F
+ 1

F ∗

)
Im(F )

|F |2 , (A14b)

κL
VIC = Re(F )g2

p

g2
c|F |2 , (A14c)

κNL
VIC = − g4

p(2γ31 + γ23)

g4
cγ31(γ21 + γ23)

(
1

F
+ 1

F ∗

)
Re(F )

|F |2 . (A14d)

From Eq. (A13) we can see that δωVIC and ηVIC describe the
linear frequency shift and the quantum nonlinearity of the VIC
configuration, respectively. Here κL

VIC and κNL
VIC are the linear

decay rate and the nonlinear dissipation, respectively. Under
the condition of two-photon resonance �21 = �23, the linear
frequency shift δωVIC ≈ 0 and the linear decay rate κL

VIC ≈
0 [37]. In the case of |�43| > 0, the nonlinear dissipation
|κNL

VIC| � |ηVIC|; thus it can be neglected in our paper [37,44].
It is worth noting that when we take �43 = 0, the dispersion
of the system is negligible, meaning ηVIC ≈ 0, while the non-
linear dissipation is large. This mechanism enables nonlinear
dissipation-induced photon blockade [48].

Now we consider the CFC configuration. The Hamiltonian
of the pseudocavity QED system reads

ĤCFC = ĤS
CFC + ĤP

CFC, (A15a)

ĤS
CFC = �21σ̂22 + (�21 − �23)σ̂33 + (�43 + �21 − �23)σ̂44

+ [gp(â†σ̂12 + â†σ̂34) + g′
cĉ†σ̂32 + H.c.]

+ iξ (ĉ† − ĉ), (A15b)

ĤP
CFC = i

√
2κp,e1αin(â†e−i�pt − âei�pt ). (A15c)

The Lindblad operator is given by

L[
, Â]Ô = 
(2Â†ÔÂ − Â†ÂÔ − ÔÂ†Â), (A16)

where 
 = {κp, κc, γ21/2, γ23/2, γ31/2, γ43/2, γ42/2}
represents the decay rate of each state and Â =
{â, ĉ, σ̂12, σ̂32, σ̂13, σ̂34, σ̂24}. The decay rate κc results from
the pseudocavity mode ĉ. The Heisenberg equations for the
pseudocavity QED system take the form

˙̂a = −κpâ − igpσ̂12 − igpσ̂34 + √
2κp,e1αine−i�pt , (A17a)

˙̂σ11 = γ21σ̂22 + γ31σ̂33 − igp(â†σ̂12 − σ̂21â), (A17b)

˙̂σ22 = −(γ21 + γ23)σ̂22 + γ42σ̂44 + igp(â†σ̂12 − σ̂21â)

− ig′
c(σ̂23ĉ − ĉ†σ̂32), (A17c)

˙̂σ33 = −γ31σ̂33 + γ23σ̂22 + γ43σ̂44 − igp(â†σ̂34 − σ̂43â)

+ ig′
c(σ̂23ĉ − ĉ†σ̂32), (A17d)

˙̂σ44 = −(γ42 + γ43)σ̂44 + igp(â†σ̂34 − σ̂43â), (A17e)

˙̂σ23 = −γ̃23σ̂23 + ig′
cĉ†(σ̂33 − σ̂22)

+ igpâ†(σ̂13 − σ̂24), (A17f)

˙̂σ14 = −γ̃4σ̂14 + igp(σ̂24 − σ̂13)â, (A17g)

˙̂σ12 = −γ̃2σ̂12 − ig′
cσ̂13ĉ − igp(σ̂11 − σ̂22)â, (A17h)
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˙̂σ13 = −γ̃3σ̂13 − ig′
cĉ†σ̂12 + igp(σ̂23â − â†σ̂14), (A17i)

˙̂σ24 = −γ̃24σ̂24 + ig′
cĉ†σ̂34 + igp(â†σ̂14 − σ̂23â), (A17j)

˙̂σ34 = −γ̃34σ̂34 + ig′
cσ̂24ĉ − igp(σ̂33 − σ̂44)â, (A17k)

where γ̃2 = (γ21 + γ23)/2 + i�21, γ̃3 = γ31/2 + i(�21 −
�23), γ̃4 = (γ42 + γ43)/2 + i(�43 + �21 − �23), γ̃23 =
(γ21 + γ23 + γ31)/2 − i�23, γ̃24 = (γ21 + γ23 + γ42 +
γ43)/2 + i(�43 − �23), and γ̃34 = (γ31 + γ42 + γ43)/2 +
i�43.

From Eq. (A17) it can be found that the pseudocavity
QED model provides an opportunity to evaluate the influence
of photon-number fluctuations of the control field ĉ we are
interested in. By performing the same calculation steps to
adiabatically eliminate the atomic operators (σ̂nm) and retain
operators of the control field (ĉ and ĉ†), we have the first-order
solutions

σ̂
(1)
12 = − igp

g′2
c F

â, (A18a)

σ̂
(1)
13 = − ig′

cĉ†

γ̃3 + g2
pNa/γ̃4

σ̂
(1)
12 (A18b)

and the third-order solutions

σ̂
(3)
12 = ig3

p(2γ31 + γ23)

g′4
c (ĉ†ĉ)2γ31(γ21 + γ23)F

(
1

F
+ 1

F ∗

)
â†ââ,

(A19a)

σ̂
(3)
34 = 0. (A19b)

Finally, we obtain

σ̂12 = σ̂
(1)
12 + σ̂

(3)
12 , (A20a)

σ̂34 = 0. (A20b)

Then the quantum the nonlinear coefficient in the CFC con-
figuration is given

η̂CFC = g4
p(2γ31 + γ23)

g′4
c (ĉ†ĉ)2γ31(γ21 + γ23)

(
1

F
+ 1

F ∗

)
Im(F )

|F |2 . (A21)

From Eq. (A21) we find that the nonlinearity η̂CFC related to
the photon-number operator ĉ†ĉ of the coherent control field
is no longer a pure number but an operator.

Applying a unitary transformation of Û = exp(i�pâ†ât ) to
the system, we can get the effective Hamiltonian

Ĥ eff
VIC = (�p + δωVIC)â†â + ηVICâ†â†ââ

+ i
√

2κp,e1αin(â† − â) (A22)

for the VIC configuration and

Ĥ eff
CFC = (�p + δωCFC)â†â + η̂CFCâ†â†ââ

+ i
√

2κp,e1αin(â† − â) (A23)

for the CFC configuration. As discussed in the main text,
the quantum-averaged nonlinear coefficient of the CFC

configuration ηCFC = 〈η̂CFC〉 can be derived as

ηCFC = η̄CFC

1 + �N2
c /N2

c

, (A24a)

η̄CFC = g4
p(2γ31 + γ23)

�4
cγ31(γ21 + γ23)

(
1

F
+ 1

F ∗

)
Im(F )

|F |2 . (A24b)

APPENDIX B: SECOND-ORDER CORRELATION
FUNCTION AND FLUCTUATION OF THE

SECOND-ORDER CORRELATION OPERATOR

In this Appendix we derive the analytical solution of the
second-order correlation function and fluctuation in a weak-
driving regime [47]. We first consider the VIC configuration.
Taking into account the loss of the probe cavity, the effective
Hamiltonian (A22) can be expressed in a number state repre-
sentation as

Ĥ eff
VIC =

∑
n

[(En − inκp|n〉〈n|)

+ i
√

2κp,e1αin

√
n + 1(|n + 1〉〈n| − |n〉〈n + 1|)],

(B1)

where En = (�p + δωVIC)n + n(n − 1)ηVIC represents the
eigenvalues. We expand the Hamiltonian in the basis states
{|0〉, |1〉, |2〉} for a weak-driving case,

Ĥ eff
VIC = E0|0〉〈0| + (E1 − iκp)|1〉〈1| + (E2 − 2iκp)|2〉〈2|

+ i
√

2κp,e1αin(|1〉〈0| − |0〉〈1|)
+ i

√
4κp,e1αin(|2〉〈1| − |1〉〈2|). (B2)

A general state in this subspace can be written as

|ψ (t )〉 = C0(t )|0〉 + C1(t )|1〉 + C2(t )|2〉, (B3)

with |C0|2 + |C1|2 + |C2|2 = 1. Substituting Eqs. (B2) and
(B3) into the Schrödinger equation

i|ψ̇ (t )〉 = Ĥ eff
VIC|ψ (t )〉, (B4)

we obtain

i|ψ̇ (t )〉 = i[Ċ0(t )|0〉 + Ċ1(t )|1〉 + Ċ2(t )|2〉], (B5a)

Ĥ eff
VIC|ψ (t )〉 = Ĥ eff

VIC[C0(t )|0〉 + C1(t )|1〉 + C2(t )|2〉], (B5b)

where

Ĥ eff
VICC0(t )|0〉 = E0C0(t )|0〉 + i

√
2κp,e1αinC0(t )|1〉, (B6a)

Ĥ eff
VICC1(t )|1〉 = (E1 − iκp)C1(t )|1〉 + iαinC1(t )(

√
4κp,e1|2〉

−√
2κp,e1|0〉), (B6b)

Ĥ eff
VICC2(t )|2〉 = (E2 − 2iκp)C2(t )|2〉 − i

√
4κp,e1αinC2(t )|1〉.

(B6c)

By comparison with the coefficients of the same basis
states in Eqs. (B5), we obtain

Ċ0(t ) = −iE0C0(t ) − αin

√
2κp,e1C1(t ),

Ċ1(t ) = −i(E1 − iκp)C1(t ) + √
2κp,e1αinC0(t )

− √
4κp,e1αinC2(t ),
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Ċ2(t ) = −i(E2 − 2iκp)C2(t ) + √
4κp,e1αinC1(t ). (B7)

As we analyze in the main text, in the case of a weak probe
αin < κp and gp � gc, the ground state, i.e., the vacuum state,
is mostly populated. Thus, we can assume that C0 ∼ 1. Also,
we can approximately solve Eq. (B7) using a perturbation
method by discarding higher-order terms [47] and have

Ċ0(t ) = −iE0C0(t ),

Ċ1(t ) = −i(E1 − iκp)C1(t ) + √
2κp,e1αinC0(t ),

Ċ2(t ) = −i(E2 − 2iκp)C2(t ) + √
4κp,e1αinC1(t ). (B8)

The probe cavity is initially in a vacuum state, i.e., C0(0) =
1 and C1(0) = C2(0) = 0. Hence, the solution of zero-photon
amplitude can be solved as

C0(t ) = e−iE0t . (B9)

The solution of the single-photon amplitude in Eq. (B8) be-
comes

Ċ1(t ) = −i(E1 − iκp)C1(t ) + √
2κp,e1αine−iE0t . (B10)

By introducing a slowly varying single-photon amplitude

C1(t ) = c1(t )e−i(E1−iκp)t ,

C1(0) = c1(0) (B11)

to solve Eq. (B10), we obtain

Ċ1(t ) = ċ1(t )e−i(E1−iκp)t − i(E1 − iκp)c1(t )e−i(E1−iκp)t .

(B12)
Substituting Eqs. (B12) and (B11) into Eq. (B10), we have

ċ1(t ) = √
2κp,e1αinei(E1−E0−iκp)t . (B13)

Integrating both sides of Eq. (B13), the solution is

c1(t ) = c1(0) + √
2κp,e1αin

1

i(E1 − E0 − iκp)

× [ei(E1−E0−iκp)t − 1] (B14)

and Eq. (B11) becomes

C1(t ) = c1(0)e−i(E1−iκp)t + √
2κp,e1αin

1

i(E1 − E0 − iκp)

× [e−iE0t − e−i(E1−iκp)t ]. (B15)

According to the initial condition C1(0) = 0 = c1(0), we can
obtain

C1(t ) =
√

2κp,e1αin

i(E1 − E0 − iκp)
[e−iE0t − e−i(E1−iκp)t ]. (B16)

Now we derive the two-photon amplitude in Eqs. (B8).
Substituting Eq. (B16) into Eqs. (B8), we get

Ċ2(t ) = − i(E2 − 2iκp)C2(t )

+
√

8κp,e1α
2
in

i(E1 − E0 − iκp)
[e−iE0t − e−i(E1−iκp)t ]. (B17)

Similarly, we introduce slowly varying two-photon amplitude

C2(t ) = c2(t )e−i(E2−2iκp)t ,

C2(0) = c2(0) (B18)

and obtain

ċ2(t ) =
√

8κp,e1α
2
in

i(E1 − E0 − iκp)
[ei(E2−E0−2iκp)t − ei(E2−E1−iκp)t ].

(B19)
Integrating both sides of Eq. (B19), we have

c2(t ) = c2(0) +
√

8κp,e1α
2
in

i(E1 − E0 − iκp)

×
[

ei(E2−E0−2iκp)t − 1

i(E2 − E0 − 2iκp)
− ei(E2−E1−iκp)t − 1

i(E2 − E1 − iκp)

]
,

(B20a)

C2(t ) = c2(0)e−i(E2−2iκp)t

+
√

8κp,e1α
2
in

i(E1 − E0 − iκp)

e−iE0t − e−i(E2−2iκp)t

i(E2 − E0 − 2iκp)

−
√

8κp,e1α
2
in

i(E1 − E0 − iκp)

e−i(E1−iκp)t − e−i(E2−2iκp)t

i(E2 − E1 − iκp)
.

(B20b)

According to the initial condition c2(0) = 0, we can obtain

C2(t ) =
√

8κp,e1α
2
in

i(E1 − E0 − iκp)

[
e−iE0t − e−i(E2−2iκp)t

i(E2 − E0 − 2iκp)

]
. (B21)

Therefore, for the infinite-time limit t → ∞, we have

C0(∞) ≡ C0 = 1,

C1(∞) ≡ C1 =
√

2κp,e1αin

i(�p + δωVIC − iκp)
,

C2(∞) ≡ C2 =
√

κp,e1αin

i(�p + δωVIC + ηVIC − iκp)
C1. (B22)

From Eqs. (B22) we can easily obtain the photon-number
fluctuation of the probe field

�Na =
√

〈(â†â)2〉 − 〈â†â〉2

≈ |C1| =
√

2κp,e1α
2
in

(�p + δωVIC)2 + κ2
p

. (B23)

The statistical properties of the outgoing photon can be
evaluated with the steady-state second-order correlation func-
tion at zero delay

g(2)(0) = 〈â†
out(t )â†

out(t )âout(t )âout(t )〉SS

〈â†
out(t )âout(t )〉2

SS

, (B24)
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where âout = √
2κp,e2â [46]. Therefore, we have

g(2)(0) = 〈â†
out(t )â†

out(t )âout(t )âout(t )〉SS

〈â†
out(t )âout(t )〉2

SS

= 〈â†(t )â†(t )â(t )â(t )〉SS

〈â†(t )â(t )〉2
SS

. (B25)

This means that the output photon mode has the same sta-
tistical properties as that in the probe cavity. When t → ∞,
substituting Eqs. (B22) and (B3) into Eq. (B25), we obtain

g(2)(0) ≈ 2|C2|2
|C1|4 = (�p + δωVIC)2 + κ2

p

(�p + δωVIC + ηVIC)2 + κ2
p

, (B26)

where δωVIC can be neglected in the case of two-photon
resonance in which �21 = �23. When the probe frequency
resonates with the cavity, i.e., �p = 0, we get

g(2)(0) ≈ 2|C2|2
|C1|4 = κ2

p

η2
VIC + κ2

p

. (B27)

The second-order correlation function g(2)(0) measures the
statistical properties of the quantum average of the system.
Thus, for the CFC configuration, we can replace the quantum
nonlinear coefficient ηVIC by ηCFC = 〈η̂CFC〉 to obtain the ap-
proximate function

g(2)(0) ≈ (�p + δωCFC)2 + κ2
p

(�p + δωCFC + ηCFC)2 + κ2
p

. (B28)

Now we calculate the fluctuation �G of the second-order
correlation operator [3,41] Ĝ = â†

outâ
†
outâoutâout in the case of

�p = 0. In the VIC configuration, we have

�GVIC =
√〈

Ĝ2
VIC

〉 − 〈ĜVIC〉2

= (2κp,e2)2
√

〈(â†â†ââ)2〉 − 〈â†â†ââ〉2

≈ 2(2κp,e2)2|C2|

≈ 8
√

2κp,e1κ
2
p,e2α

2
in

κp

√
η2

VIC + κ2
p

. (B29)

For a strong nonlinearity, i.e., ηVIC 	 κp, Eq. (B29) becomes

�GVIC ≈ 8
√

2κp,e1κ
2
p,e2α

2
in

κpηVIC
. (B30)

Similarly, we can obtain the fluctuation

�GCFC ≈ 8
√

2κp,e1κ
2
p,e2α

2
in

κpηCFC
(B31)

for the CFC configuration. Substituting Eqs. (A24) into

Eq. (B31), we get

�GCFC ≈ 8
√

2κp,e1κ
2
p,e2α

2
in

η̄CFCκp
+ 8

√
2κp,e1κ

2
p,e2α

2
in

η̄CFCκp

(
�Nc

Nc

)2

.

(B32)
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