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Setting the minimal-time bound for a quantum system to evolve between two distinguishable states, the
quantum speed limit (QSL) characterizes the latent capability in speeding up of the system. It has found
applications in determining the quantum superiority in many quantum technologies. However, previous results
showed that such a speedup capability is generally destroyed by the environment induced decoherence in the
Born-Markovian approximate dynamics. We here propose a scheme to recover the speedup capability in a
dissipative continuous-variable system within the exact non-Markovian framework. It is found that the formation
of a bound state in the energy spectrum of the total system consisting of the system and its environment can be
used to restore the QSL to its noiseless performance. Giving an intrinsic mechanism in preserving the QSL, our
scheme supplies a guideline to speed up certain quantum tasks in practical continuous-variable systems.
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I. INTRODUCTION

The quantum speed limit (QSL) quantifies the maximal
speed at which a quantum system evolves under the constraint
of quantum mechanics. Mandelstam and Tamm showed that,
for a unitary dynamics governed by a Hamiltonian Ĥ , the min-
imal evolution time between two orthogonal states is τMT =
π h̄/(2�H ) with (�H )2 ≡ 〈Ĥ2〉 − 〈Ĥ〉2 being the energy
fluctuation [1,2]. This result provides a physical explanation to
Heisenberg’s energy-time uncertainty relation [1,3–5]. Later,
Margolus and Levitin provided an alternative QSL time in
terms of the energy difference τML = π h̄/(2〈Ĥ〉) [6,7]. Sun
and Zheng derived a distinct QSL bound via the gauge in-
variant distance [8]. The above three independent bounds are
summarized in a unified form for both Hermitian and non-
Hermitian quantum systems [9].

Recently, much effort has been devoted to generalizing the
concept of QSL from closed systems to open systems [10–15].
Deffner and Lutz derived a Margolus-Levitin–type bound on
the minimal evolution time of open quantum systems [10].
A generalized geometric interpretation for the Margolus-
Levitin–like QSL was provided by Ref. [16]. From the
application perspective, the QSL in open quantum systems is
closely related to the greatest efficiency of charging power
in quantum batteries [17–19], the minimum operation time
of quantum gates [20,21], the entropy production rate of
nonequilibrium quantum thermodynamics [22–27], as well
as the quantum Fisher information in noisy quantum metrol-
ogy [16,28–32]. Thus, how to establish a unified QSL bound,
which is valid for both unitary and nonunitary evolutions, is
of importance. Using the information geometric formalism is
a possible solution [5,8,9,16,33,34]. Starting from a geomet-
ric perspective, Refs. [35,36] reported QSL bounds, which
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outperform the traditional bounds for both closed and open
systems. As already shown in Refs. [8,9,37], the QSL can be
used to quantify the potential capability of speeding up for
quantum systems. Such a speedup potency plays a leading role
in quantum control [5,38].

However, due to the decoherence induced by the inevitable
system-environment interaction, the potency of quantum
speedup generally vanishes in the Born-Markovian approx-
imate decoherence dynamics [11–14,37,39–42]. How to
preserve such a capacity is of importance in the protocol of
quantum technology and quantum control. On the other hand,
most of the existing studies of the QSL in open quantum sys-
tems have focused on the discrete-variable case [10–14,37,41–
43]. Very few studies concentrate on the continuous-variable
case, especially in the non-Markovian dynamics. In this paper,
we investigate the QSL in a dissipative continuous-variable
system beyond the traditional paradigm of Born-Markovian
approximation treatment. A bound-state based mechanism to
realize a controllable QSL time in the noisy environment is
revealed.

The paper is organized as follows. The QSL for a Gaus-
sian continuous-variable system being applicable in both the
closed and open systems is derived in Sec. II. The non-
Markovian decoherence effect on the QSL time is investigated
in Sec. III. A mechanism to recover the ideal speedup capacity
of the continuous-variable system under the non-Markovian
noise is uncovered. In Sec. IV, we make a comparison of
our scheme with the previous characterization schemes to the
QSL in order to exhibit the universality of our result. Finally,
a discussion and a summary are made in Sec. V.

II. QSL IN A GAUSSIAN SYSTEM

The QSL can be obtained from the viewpoint of the
information geometry as follows. By introducing any kind
of geodesic measure L = L(�τ , �0) quantifying the lower
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distance bound between two quantum states �τ and �0, an
inequality is accordingly built as L � � ≡ ∫ √

d�2. Here,
d�2 denotes the squared infinitesimal length between �τ and
�τ + d�τ , which is regarded as the metric [15,44], and thus �

is the length of the actual evolution path. Via introducing the
time-averaged evolution speed v̄ = �/τ , the QSL time is geo-
metrically described as τQSL ≡ L/v̄, which implies τQSL/τ =
L/� [5,15,16]. This result indicates that τQSL/τ characterizes
the extent of the actual evolution path deviating from the
geodesic path [8,9,37]. If τQSL/τ = 1, the length of the actual
evolution path saturates the geodesic one and there is no more
space for speeding up. In contrast, the quantum system has a
potential speedup capacity as long as τQSL/τ < 1. The smaller
the value of τQSL/τ is, the more speedup capability the system
may possess. Therefore, τQSL/τ is physically a characteriza-
tion of the latent capability in speeding up of the quantum
system. It has been found that such a capability has important
applications in quantum technologies [5,17–21,38]. It should
be emphasized that the QSL bound considered in our paper
is completely different from the so-called quantum brachis-
tochrone problem [45–47]. The quantum brachistochrone
problem commonly aims at designing an optimally controlled
time-dependent Hamiltonian such that the shortest evolution
time from a given initial state to a final one is achieved under
a set of given constraints. It belongs to the research field of
quantum optimal control. In this paper, we concentrate on an
autonomous time-independent open system.

The Bures angle [5,11,48]

LB ≡ arccosTr(
√√

�0�τ

√
�0) (1)

is widely used to measure the geodesic length between �0

and �τ . The corresponding metric known as the so-called
Fisher-Rao metric relates to the famous quantum Fisher in-
formation as d�2 = 1

4FQdt2 [5,11,16,49]. Here, the quantum
Fisher information FQ is defined by FQ = Tr(�t L̂2) with L̂
determined by �̇t = (L̂�t + �t L̂)/2. Then, the averaged speed
v̄ and the QSL time τQSL are derived as [5,11,16,50,51]

v̄ = 1

2τ

∫ τ

0
dt

√
FQ, (2)

τQSL = LB

v̄
= LB

�
τ. (3)

It is found that LB and FQ naturally reduce to π/2 and
4(〈ψ |Ĥ2|ψ〉 − 〈ψ |Ĥ |ψ〉2), respectively, in the special case of
the pure states under the unitary evolution, i.e., �0 = |ψ〉〈ψ |
and �τ = |ψ⊥〉〈ψ⊥| with 〈ψ |ψ⊥〉 = 0. Then, τQSL recovers
the well-known Mandelstam-Tamm bound.

Here, we consider a single-mode continuous-variable
system consisting of a pair of annihilation and creation
operators Â = {â, â†}. The characteristic function of the sys-
tem is defined as χ (ξ ) ≡ Tr[�t D̂(ξ )] [52,53], where D̂(ξ ) =
exp(Â†Kξ ), with K = Diag(1,−1) and ξ = (ξ, ξ ∗)T, is the
Weyl displacement operator. If the characteristic function
has a Gaussian form χ (ξ ) = exp(− 1

4ξ †σξ − id†Kξ ), then
such a continuous-variable system is called a Gaussian sys-
tem. Its characteristic function is fully determined by the
displacement vector dt with d j

t = Tr(�t Â j ) and the covari-
ance matrix σt with σ

i j
t = Tr(�t {Âi − di, Â†

j − d∗
j }). For a

Gaussian continuous-variable system, the Bures angle reads
LB = arccos

√
F . Here, F is the quantum fidelity and is cal-

culated by using the displacement vectors and the covariance
matrices as [53–55]

F = 2 exp[−(d0 − dt )†(σ0 + σt )−1(d0 − dt )]
√

� + √
� −

√
(
√

� + √
�)2 − 

, (4)

where  = Det(σ0 + σt ), � = Det(1 + Kσ0Kσt ), and � =
Det(σ0 + K )Det(σt + K ). On the other hand, the quantum
Fisher information with respect to the evolution time for a
Gaussian system is calculated by [56]

FQ = 1
2 Vec[σ̇t ]

†M−1Vec[σ̇t ] + 2ḋ†
t σ−1

t ḋt , (5)

where Vec[·] denotes the vectorization of a given matrix and
M = σ ∗

t ⊗ σt − K ⊗ K . From these results, as long as dt and
σt are known, the QSL in a Gaussian continuous-variable
system is fully determined.

Let us first consider the QSL of a quantum harmonic
oscillator in the ideal case of a unitary evolution governed
by Ĥs = ω0â†â. The initial state is chosen as a coherent
state, namely, �s(0) = D̂(α)|0〉〈0|D̂(α)†. It is readily de-
rived that dt = (αe−iω0t , α∗eiω0t )T and σt = 1, which lead to
F = e−2|α|2[1−cos(ω0τ )] and FQ = 4|α|2ω2

0. Thus, we have v̄ =
|α|ω0, which is a time-independent constant, and thus

τQSL

τ
= arccos e−|α|2[1−cos(ω0τ )]

|α|ω0τ
. (6)

Equation (6) reveals that the QSL time behaves as τQSL/τ ∝
τ−1 with the actual evolution time τ . It means τQSL/τ ap-
proaches to zero in the large-τ regime. Such a result implies
that the harmonic oscillator has an infinite speedup capability
in this noiseless case.

III. QSL IN A NOISY ENVIRONMENT

Next, we consider a more practical situation in which the
harmonic oscillator is coupled to a dissipative bosonic envi-
ronment and experiences a decoherence. The Hamiltonian of
the total system reads

Ĥ =Ĥs +
∑

k

ωkb̂†
kb̂k +

∑
k

(gkâ†b̂k + H.c.), (7)

where b̂k denotes the annihilation operator of the kth environ-
mental mode with frequency ωk , and the parameter gk is the
coupling strength between the harmonic oscillator and the kth
environmental mode. The coupling strength is further char-
acterized by the spectral density J (ω) ≡ ∑

k |gk|2δ(ω − ωk ).
We consider that J (ω) explicitly takes the following Ohmic-
family form:

J (ω) = ηωsω1−s
c e−ω/ωc , (8)

where η is a dimensionless coupling constant, ωc is a cutoff
frequency, and s is the so-called Ohmicity parameter. Depend-
ing on the value of s, the environment can be classified into
the sub-Ohmic for 0 < s < 1, the Ohmic for s = 1, and the
super-Ohmic for s > 1.

Considering the environment is initially prepared in its vac-
uum state and using Feynman-Vernon’s influence functional
method to partially trace out the degrees of freedom of the
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dissipative environment, we obtain an exact non-Markovian
master equation for the harmonic oscillator as [57–59]

�̇t = −i[�(t )â†â, �t ] + γ (t )(2â�t â
† − {â†â, �t }), (9)

where �(t ) = −Im[u̇(t )/u(t )] is the renormalized frequency
and γ (t ) = −Re[u̇(t )/u(t )] is the decay rate induced by the
dissipative environment. The time-dependent coefficient u(t )
is determined by

u̇(t ) + iω0u(t ) +
∫ t

0
dτμ(t − τ )u(τ ) = 0, (10)

with u(0) = 1 and μ(t ) ≡ ∫ ∞
0 dωJ (ω)e−iωt .

In order to compare with that of the noiseless ideal case, we
still choose that the quantum harmonic oscillator is initially in
a coherent state. Then, solving the master equation (9), we
calculate the exact expressions of the displacement vector and
the covariance matrix as dt = [αu(t ), α∗u(t )∗]T and σt = 1.
With the above expressions at hand, the time-averaged speed
v̄ and the geodesic distance LB in the noise case are straight-
forwardly computed:

v̄ = 1

τ

∫ τ

0
dt |αu̇(t )|, (11)

LB = arccos
√

e−|α[1−u(τ )]|2 . (12)

We consider the QSL of the system relaxing to its steady
state by choosing τ sufficiently large. The QSL time derived
under such a condition reflects the equilibration efficiency of
the dissipative harmonic oscillator. The controllability of this
equilibration efficiency is vital in suppressing the detrimental
effect of the decoherence in practical quantum technologies.
If the system-environment coupling is weak and the charac-
teristic time scale of the environmental correlation function is
much smaller than that of the system, one can safely apply the
Born-Markovian approximation to Eq. (10). Under such a cir-
cumstance, one calculates [58,59] uMA(t ) � e−{κ+i[ω0+�(ω0 )]}t ,
where κ = πJ (ω0) is the Markovian decay coefficient and
�(ω0) = P

∫ ∞
0 dω J (ω)

ω0−ω
is the environmentally induced fre-

quency shift. With the approximate expression of uMA(t ) at
hand, we find, under the Born-Markovian approximation, v̄ =
|α|

√
κ2 + ω2

0(1 − e−κτ )/(κτ ) and

lim
τ→∞

τQSL

τ
= κ arccos e− 1

2 |α|2

|α|
√

κ2 + ω2
0

, (13)

where we have dropped the contributions from the frequency
shift term �(ω0). Equation (13) reduces to the one of the
noiseless case in the limit κ → 0. We here choose a large τ ,
which means we focus on the QSL time from the initial co-
herent state to the equilibrium state. In this limit, we find that
v̄ reduces to zero and τQSL/τ evolves to a time-independent
value. This result implies that the speedup potency of the
system is destroyed by the Born-Markovian decoherence. A
similar result was also reported in several previous refer-
ences [34,39,40,60].

Going beyond the Born-Markovian approximation, the re-
sults of v̄ and τQSL/τ are obtainable by numerically solving
Eq. (10). However, via analyzing the long-time behavior of
u(τ ), we calculate their analytically asymptotic forms in the

limit τ → ∞, which shall help us to build up a more clear
physical picture on our results. To this aim, we apply a
Laplace transform to u(τ ) and find ũ(z) ≡ ∫ ∞

0 dτu(τ )e−zτ =
[z + iω0 + ∫ ∞

0 dω J (ω)
z+iω ]−1. The solution of u(τ ) is immedi-

ately obtained by applying an inverse Laplace transform to
ũ(z), which is exactly done by finding the poles of ũ(z) from
the following transcendental equation:

y(� ) ≡ ω0 −
∫ ∞

0
dω

J (ω)

ω − �
= �, (14)

with � = iz. It is necessary to point out that the root
of the above equation is just the eigenenergy of Ĥ in
the single-excitation subspace. To be more specific, we
express the single-excitation eigenstate as |�〉 = (xâ† +∑

k ykb̂†
k )|0, {0k}〉. Substituting it into Ĥ |�〉 = E |�〉, one

finds the energy eigenequation as E − ω0 − ∑
k g2

k/(ωk −
E ) = 0, which retrieves Eq. (14) via simply replacing E by � .
This result implies that, although the subspaces with arbitrary
excitation number are involved in the reduced dynamics, the
dynamics of u(τ ) is essentially determined by the single-
excitation energy spectrum characteristic of Ĥ . Because y(� )
is a monotonically decreasing function in the regime � < 0,
Eq. (14) potentially has one isolated root Eb in this regime pro-
vided y(0) < 0. While y(� ) is not well analytic in the regime
� > 0, Eq. (14) has infinite roots in this regime and forms a
continuous energy band. We call the eigenstate corresponding
to the isolated eigenenergy Eb the bound state. Then, after
applying the inverse Laplace transform and using the residue
theorem, we obtain [58,59]

u(τ ) = Ze−iEbτ +
∫ ∞

0

J (ω)e−iωτ dω

[ω − ω0 − �(ω)]2 + [2πJ (ω)]2
,

where the first term with Z ≡ [1 + ∫ ∞
0

J (ω)dω

(Eb−ω)2 ]−1 is con-
tributed from the potentially formed bound-state energy Eb,
and the second term is from the band energy which approaches
to zero in the long-time regime due to out-of-phase interfer-
ence. Thus, if the bound state is absent, then we have u(∞) =
0, which leads to a complete decoherence, while if the bound
state with energy Eb is formed then we have u(∞) � Ze−iEbτ ,
which implies a dissipationless dynamics. The condition of
forming the bound state for the Ohmic-family spectral density
is evaluated via y(0) < 0 as ω0 − ηωc�(s) < 0, where �(s) is
Euler’s gamma function.

In the absence of the bound state, it is natural to expect a
consistent result with that under the Born-Markovian approx-
imation because u(τ ) approaches zero eventually. In contrast,
with the long-time expression of u(∞) � Ze−iEbτ in the pres-
ence of the bound state, we find v̄ � |αZEb| and

τQSL

τ
= arccos e− 1

2 |α|2[1+Z2−2Z cos(Ebτ )]

|αZEb|τ . (15)

We see from Eq. (15) that, in the limit τ → ∞, v̄ approaches
to a nonzero value, while τQSL/τ reduces to zero in the form of
τ−1. These results are verified by exact numerical simulations
(see Fig. 1) and are completely different from those under
the Born-Markovian case [34,39,40]. Compared to that of
the noiseless ideal case, recovering the relation τQSL/τ ∝ τ−1

means the potency of quantum speedup is fully retrieved.
In Fig. 2, we plot the long-time steady-state v̄ and τQSL/τ
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FIG. 1. (a) Energy spectrum of Ĥ in the single-excitation sub-
space. Exact non-Markovian result of the average speed (b) and the
QSL time (c) with different η and ω0t . The red circles highlight
the positions of the threshold coupling strength η = 0.1 at which
the bound state occurs. Other parameters are |α| = 10, s = 1, and
ωc = 10ω0.

as functions of η and ωc/ω0. It confirms that there exists
a threshold from no-speedup to speedup regimes matching
well with the position of forming the bound state. Our result
implies that the time-averaged quantum speed and the QSL
time are controllable via engineering the energy spectrum of
the whole oscillator-environment system.

IV. COMPARISONS WITH PREVIOUS STUDIES

In several previous articles [34,39,40], the Wigner func-
tion and the Wasserstein distance are used to calculate the
QSL time in Gaussian continuous-variable systems. As dis-
played in Refs. [34,39,40], within the framework of the
Wigner representation, the geodesic length between two
Wigner distributions, Wτ (ζ ) and W0(ζ ) with ζ = (x, p)T =
( ξ+ξ∗√

2
,

ξ−ξ∗√
2i

)T being the quadrature vector, is quantified by
using the Wasserstein-2 distance as

LW = ‖Wτ (ζ ) − W0(ζ )‖2

≡
{∫

dζ |Wτ (ζ ) − W0(ζ )|2
} 1

2

. (16)

FIG. 2. (a) Steady-state average speed (red rectangles) and QSL
time (blue circles) as a function of η (a) and ωc/ω0 (b) when ω0τ =
400. The green solid lines are obtained from the analytical result
v̄2 � |α|2Z2E 2

b . Other parameters are chosen as |α| = 10 and s = 1.

FIG. 3. (a) The QSL time 102τQSL/τ (blue dot-dashed line) and
102τW

QSL/τ (red solid line) are plotted as a function of ω0τ in the
absence of a bound state when η = 0.06. (b) The same as (a), but in
the presence of a bound state with η = 0.12. Other parameters are
chosen as |α| = 10 and s = 1.

Then the averaged evolution speed v̄W and the QSL time τW
QSL

in the Wigner space are established as [34]

v̄W = 1

τ

∫ τ

0
dt‖Ẇt (ζ )‖2, (17)

τW
QSL = LW

v̄W
. (18)

The above formalism was further generalized to the
Wasserstein-p-distance cases with p = 1, 2 and +∞, but
computing these Wasserstein distances is rather compli-
cated [34].

For our dissipative harmonic oscillator system, the exact
expression of the Wigner function is given by [59,61]

Wt (ζ ) = e− 1
2 (ζ−d̃t )Tσ̃−1

t (ζ−d̃t )

π
√|Detσ̃t |

, (19)

where d̃t = (
√

2Re[αu(t )],
√

2Im[αu(t )])T and σ̃t = 1
2σt .

With the above expression at hand, we find

v̄W = 2√
πτ

∫ τ

0
dt |αu̇(t )|, (20)

LW = 2√
π

{1 − e−2|α|2{[Reu(τ )−1]2+[Imu(τ )−1]2}} 1
2 . (21)

It is immediately observed that Eq. (20) matches Eq. (11)
except for a trivial prefactor 2/

√
π . Moreover, in the limit

τ → ∞, we find that τW
QSL/τ approaches to a nonzero constant

in the absence of the bound state, and τW
QSL/τ ∝ τ−1 in the

presence of the bound state (see Fig. 3). This conclusion is
completely consistent with that of τQSL obtained in Sec. III.
It demonstrates that our bound-state-based QSL-controlling
scheme is universal to different definitions of QSL time.

Next, we compare the tightness of τQSL and τW
QSL. Based on

our numerical simulations, τQSL is not always tighter than τW
QSL

during the whole relaxation process. However, as displayed
in Fig. 3, the value of τQSL is larger than τW

QSL in the large-
τ regime irrespective of whether the bound state is formed
or not. These results mean that the QSL considered in this
paper can be tighter than the previous one derived by using
the Wigner function and Wasserstein-2 distance. Furthermore,
it is noted that, although both our paper and the ones in
Refs. [34,39,40] provide a computable way to obtain the QSL

062438-4



QUANTUM SPEED LIMIT OF A NOISY … PHYSICAL REVIEW A 106, 062438 (2022)

time in Gaussian continuous-variable systems, the QSL for-
mulation in our paper is strictly established in the differential
geometry, which is more rigorous in the mathematical sense.
In fact, the Fisher-Rao metric employed by us is a contrac-
tive Riemannian metric on the set of density operators. As
discussed in Ref. [16], such a peculiar mathematical property
may help us to find the tightest bound on the QSL time.

V. DISCUSSION AND SUMMARY

It is necessary to emphasize that our bound-state based
QSL-controlling scheme is independent of the choice of the
spectral density. Although only the Ohmic-family form is
considered in this paper, our result is straightforwardly gen-
eralizable to other cases without difficulties. The bound-state
effect, which generally appears in the non-Markovian regime,
is the crucial ingredient in our scheme of achieving a steerable
QSL. How to generate the bound state is the main point
in realizing our control scheme from an experimental per-
spective. Fortunately, thanks to the rapid development in the
state-of-the-art technique of quantum optics experiments, the
bound state and its dynamical effect have been observed in
circuit quantum electrodynamics architecture [62] and matter-
wave systems [63]. With the help of the reservoir engineering
technique, the primary parameters in the spectral density J (ω)
are experimentally controllable. The spectral density of a
quantum emitter acting as an open system coupling to the
surface-plasmon polariton as an environment is adjustable by
changing the distance between them [64,65]. For a reservoir
consisting of ultracold atomic gas, the Ohmicity parameter
s is tunable from the sub-Ohmic to the super-Ohmic forms
by increasing the scattering length of the gas via Feshbach
resonances [66]. These experimental achievements provide a

strong support to our theoretical investigations. As a final re-
mark, our present paper is completely different from Ref. [43].
We here investigate the QSL time derived by the Fisher-Rao
metric of a continuous-variable system. However, Ref. [43]
considered the Fubini-Study-metric-based QSL of a dissipa-
tive two-level system. From the technical point of view, we
need an exact expression of the deterministic quantum master
equation to obtain the QSL. In contrast, Ref. [43] proposed
a scheme to calculate the QSL time via solving the stochastic
Schrödinger equation governed by an effective non-Hermitian
Hamiltonian. Thus, neither the conclusions nor the methodol-
ogy of Ref. [43] is directly applicable to our present paper.

In summary, by making use of an exact non-Markovian
treatment, we investigate the time-averaged evolution speed
and the QSL time in an open continuous-variable quantum
system. It is revealed that the formation of a bound state in
the energy spectrum of the whole system-environment system
in the single-excitation subspace is beneficial for recovering
the speedup potency of an open system, which is generally
destroyed under the Born-Markovian approximation. Com-
pared with the previous studies [34,39,40], our result provides
a tighter QSL time in the dissipative continuous-variable
quantum systems. Being experimentally realizable in realis-
tic platforms, our bound-state based QSL-controlling scheme
opens an avenue to control the QSL of open system via engi-
neering the energy-spectrum characteristic of the total system
consisting of the open system and its environment.
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