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Entanglement measures for two-particle quantum histories

Danko Georgiev *

Institute for Advanced Study, 30 Vasilaki Papadopulu Str., Varna 9010, Bulgaria

Eliahu Cohen †

Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel

(Received 10 October 2022; accepted 14 December 2022; published 26 December 2022)

Quantum entanglement is a key resource, which grants quantum systems the ability to accomplish tasks
that are classically impossible. Here, we apply Feynman’s sum-over-histories formalism to interacting bipartite
quantum systems and introduce entanglement measures for bipartite quantum histories. Based on the Schmidt
decomposition of the matrix comprised of the Feynman propagator complex coefficients, we prove that bipartite
quantum histories are entangled if and only if the Schmidt rank of this matrix is larger than 1. The proposed
approach highlights the utility of using a separable basis for constructing the bipartite quantum histories and
allows for quantification of their entanglement from the complete set of experimentally measured sequential
weak values. We then illustrate the nonclassical nature of entangled histories with the use of Hardy’s overlapping
interferometers and explain why local hidden variable theories are unable to correctly reproduce all observable
quantum outcomes. Our theoretical results elucidate how the composite tensor product structure of multipartite
quantum systems is naturally extended across time and clarify the difference between quantum histories viewed
as projection operators in the history Hilbert space and those viewed as chain operators and propagators in the
standard Hilbert space.
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I. INTRODUCTION

Quantum entanglement is a remarkable physical prop-
erty of composite quantum systems, first conceptualized by
Schrödinger in 1935, such that it allows for the realization
of physical situations in which the best possible knowledge
of the composite system does not include the best possi-
ble knowledge of its constituent parts [1–3]. Although the
possibility of quantum entanglement was initially met with
skepticism [4], it is now well confirmed by experiments [5–7]
and is utilized routinely in cutting-edge quantum applications
including quantum computing [8,9], quantum teleportation
[10,11], quantum superdense coding [12], quantum erasure
[13], quantum random number generation [14], and quantum
cryptography [15]. Because these quantum tasks cannot be
accomplished by classical systems, quantum entanglement is
regarded as a valuable physical resource that is worth pro-
ducing and whose practical value can be precisely quantified
[16–18].

For pure bipartite quantum states |�(t )〉AB given at a single
time t in a composite Hilbert space H = HA ⊗ HB, quantifi-
cation of quantum entanglement is achieved by the Schmidt
decomposition of the state [19–22], which provides a set
of non-negative singular values λ1 � λ2 � · · · � λs � 0 re-
ferred to as Schmidt coefficients that can be then used for
the construction of various entanglement measures [23–29].
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In the presence of quantum dynamics, however, the quantum
entanglement in the system can change in time due to the
quantum interaction Hamiltonian that governs the physical
interactions between the component subsystems [30]. As a
result, the individual quantum histories for the component
subsystems may entangle and it is not immediately clear
how this entanglement between the quantum histories can be
quantified. In fact, in many experimental setups it is custom-
ary to prepare a separable initial quantum state, |�(0)〉AB =
|�(0)〉A ⊗ |�(0)〉B, which is then dynamically evolved and
eventually subjected to a final quantum measurement. Be-
cause individual quantum histories may start or end with
separable states, and the quantum entanglement may also
dynamically evolve at intermediate times, it is desirable to
have a general procedure that quantifies the overall entan-
glement of quantum histories. Our work on the problem is
motivated by a growing interest in the concept, including the
recent theoretical development of the “entangled histories”
formalism, which focuses on time factorization and allows
for experimental tests of entangled quantum histories in time
[31–35]. The entangled histories formalism was developed
to enable reconstruction of the past evolution of a quantum
system from measurements in the present [31,32]. The result-
ing quantum-entangled histories exhibit nonclassical features
such as superposition of time evolutions and violation of Bell-
type inequalities, indicating that the measurement outcomes
produced by single quantum systems are not predetermined,
but contextual on the entire set of commuting quantum
observables that are simultaneously measured [33–35]. Entan-
glement in time alone, however, does not grant single quantum
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systems the capacity to produce nonlocal correlations between
spacelike separated regions. Instead, one must allow for quan-
tum interactions between multiple subsystems and exploit the
resulting spatial entanglement. In this work, we extend the
entangled quantum histories formalism to multiple interacting
quantum subsystems and provide quantitative entanglement
measures for the bipartite case.

For quantification of entanglement in a complete set of
bipartite quantum histories, which start from a preselected
initial state and end with a postselected final state, we have
applied Feynman’s sum-over-histories formalism to describe
the dynamics of the composite system. Then, we have gener-
alized the standard Schmidt decomposition of quantum states
at a single time to Schmidt decomposition of complete sets
of Feynman propagators for multitime quantum histories and
used the resulting Schmidt coefficients for the calculation
of entanglement measures of these histories. A convenient
feature of this approach is that it avoids the use of entangled
projectors in the construction of the quantum history projec-
tion operators in history Hilbert space and does not require
the computation of inner products between pairs of quantum
history chain operators in standard Hilbert space.

The organization of the subsequent sections is as follows:
In Sec. II, we introduce the main definitions for quantum
history projective operators in the history Hilbert space, with
corresponding chain operators and Feynman propagators in
the standard Hilbert space. Then, we elaborate on the con-
struction of a Feynman propagator complex coefficient matrix
from which can be determined the Schmidt coefficients for
the calculation of different entanglement measures includ-
ing the entanglement entropy, entanglement robustness, and
concurrence. The possibility of experimental measurement of
sequential weak values, instead of Feynman propagators, is
also considered. In Sec. III, we describe Hardy’s interfer-
ometer and use it as a test bed in Sec. IV to highlight the
differences between classical histories and quantum histories.
In Sec. V, we provide a graphical illustration of entangled
quantum histories and explicitly compute their concurrence.
Finally, in Sec. VI, we show how entangled quantum histo-
ries can be used for experimental demonstration of quantum
nonlocality for spacelike separated quantum measurement
outcomes. We conclude this work with a brief discussion on
the utility of the quantum history formalism for the description
of optical applications. Prospects for future research are also
presented.

II. ENTANGLEMENT OF QUANTUM HISTORIES

For the analysis of entangled quantum histories, we will
need to introduce three types of related, but mathemati-
cally distinct, objects: quantum history projection operators in
history Hilbert space, as well as quantum history chain oper-
ators and corresponding Feynman propagators in the standard
Hilbert space.

Definition 1: Quantum history projection operators. Given
a quantum system residing in n-dimensional Hilbert space
H, quantum histories are constructed with the use of k
temporal resolutions of the identity operator Î given by
complete sets of projection operators {P̂ (t1 )

1 , P̂ (t1 )
2 , . . . , P̂ (t1 )

n },
{P̂ (t2 )

1 , P̂ (t2 )
2 , . . . , P̂ (t2 )

n }, ..., {P̂ (tk )
1 , P̂ (tk )

2 , . . . , P̂ (tk )
n } that span

the Hilbert space of the system at each time point t1, t2, . . . , tk .
The superscripts denoting different times are written in paren-
theses in order to remind that these are not powers and
to indicate that projectors with the same subscript but with
different superscript do not have to be equal; namely, the
resolution of identity can be performed in different bases at
different time points. Next, we associate k distinct indices
each enumerating the n projectors at the corresponding time
point, namely, i1 ∈ {1, 2, . . . , n}, i2 ∈ {1, 2, . . . , n}, . . . , ik ∈
{1, 2, . . . , n}, so that we can handle simultaneously k sums:∑n

i1=1 P̂
(t1 )
i1

= Î1,
∑n

i2=1 P̂
(t2 )
i2

= Î2, ...,
∑n

ik=1 P̂
(tk )
ik

= Îk . If we
employ the symbol � to denote tensor products at dif-
ferent times, we can write each quantum history as a
one-dimensional projection operator,

Q̂α = Q̂i1,i2,...,ik = P̂ (tk )
ik

� · · · � P̂ (t2 )
i2

� P̂ (t1 )
i1

, (1)

in history Hilbert space H̆ = Hk � · · · � H2 � H1, where Hk

is a copy of the standard Hilbert space of the physical system
at time tk , and the single index α ∈ {1, 2, . . . , nk} is in one-to-
one correspondence with each instantiation of the multi-index
{i1, i2, . . . , ik} using the explicit mapping

α = 1 + (i1 − 1)n0 + (i2 − 1)n1 + · · · + (ik − 1)nk−1. (2)

The introduction of the single index α will be very useful
in subsequent derivations because we can efficiently perform
Feynman summation using a single sum rather than multi-
ple k sums. The result after summing over all nk orthogonal
quantum histories that span the history Hilbert space H̆ is the
identity history [36]

nk∑
α=1

Q̂α =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1

Q̂i1,i2,...,ik

= Îk � · · · � Î2 � Î1. (3)

Definition 2: Quantum histories with preselected and post-
selected quantum states. The introduction of a complete set of
quantum histories from a preselected initial state |ψi〉 at t0 to
a postselected final state |ψ f 〉 at tk+1 is performed with the
insertion of initial projector P̂0 = |ψi〉〈ψi| and final projector
P̂k+1 = |ψ f 〉〈ψ f |,

Q̂α = P̂ (tk+1)
k+1 � P̂ (tk )

ik
� · · · � P̂ (t2 )

i2
� P̂ (t1 )

i1
� P̂ (t0 )

0 , (4)

such that the sum over all histories gives

nk∑
α=1

Q̂α = P̂k+1 � Îk � · · · � Î2 � Î1 � P̂0, (5)

where we have dropped redundant time superscripts. It is
noteworthy that the superscript-subscript notation stacks in-
formation about multi-index instantiation vertically rather
than horizontally in order to keep short the expressions
for quantum histories, e.g., P̂ (t2 )

3 ≡ P̂ (t2 )
i2=3 ≡ P̂i2=3. When the

multi-index is not instantiated, however, we can use the
one-to-one correspondence between the indices and the time
points, i1 ↔ t1, i2 ↔ t2, . . . , ik ↔ tk , in order to drop the su-
perscript, e.g., P̂ (t2 )

i2
≡ P̂i2 .

Definition 3: Quantum history chain operators. To each
quantum history Q̂α = P̂k+1 � P̂ik � · · · � P̂i2 � P̂i1 � P̂0 in
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history Hilbert space H̆, there is a corresponding chain opera-
tor K̂α in standard Hilbert space H obtained from replacement
of the time tensor symbols � with the corresponding time
evolution operators T̂ as follows:

K̂α = P̂k+1T̂ (tk+1, tk ) · · · P̂i2 T̂ (t2, t1)P̂i1 T̂ (t1, t0)P̂0. (6)

Because the time-evolution operators T̂ depend on the
concrete quantum Hamiltonian Ĥ of the dynamic quantum
system, it follows that the chain operators cannot be in gen-
eral reused for different experimental setups described with
different quantum Hamiltonians. In contrast, the same sets
of quantum history projection operators {Q̂α}nk

α=1 in history
Hilbert space H̆ can be applied to different experimental
setups with different quantum Hamiltonians as long as the
n-dimensional Hilbert space of the system at each time point
is identical.

Definition 4: Quantum history propagators. The Feynman
propagator ψα describing the flow of quantum probability
amplitudes along a particular quantum history Q̂α in a phys-
ical system, which is preselected in an initial quantum state
|ψi〉 at t0 and postselected in a final quantum state |ψ f 〉 at
tk+1, is given by the inner product involving the history chain
operator [36]

ψα = 〈ψ f |K̂α|ψi〉. (7)

Definition 5: Quantum histories of bipartite systems. For
bipartite quantum systems, we construct a complete set of sep-
arable quantum histories in composite history Hilbert space
H̆A⊗B using standard tensor products ⊗ of local projection
operators for each of the two systems A and B at each time
point:

Q̂ = (P̂Ak ⊗ P̂Bk ) � · · · � (P̂A2 ⊗ P̂B2 ) � (P̂A1 ⊗ P̂B1 ). (8)

Rearranging the tensor products allows for equivalent formu-
lation in terms of the quantum histories for each component
subsystem. Thus, alternatively we can also write

Q̂ = (P̂Ak � P̂A2 � · · · � P̂A1 )

⊗ (P̂Bk � P̂B2 � · · · � P̂B1 )

= Q̂A ⊗ Q̂B. (9)

Definition 6: Schmidt decomposition based on bipartite
Feynman propagators. The history Hilbert space H̆A for the
system A and the history Hilbert space H̆B for the system
B will each have nk orthogonal local quantum histories, re-
sulting in n2k orthogonal separable quantum histories for the
composite history Hilbert space H̆A⊗B. The rearrangement of
the tensor product of the separable bipartite quantum history
into Q̂A ⊗ Q̂B allows for the introduction of a single index
α ∈ {1, . . . nk} instead of the multiple index {A1, A2, . . . , Ak}
and single index β ∈ {1, . . . nk} instead of the multiple index
{B1, B2, . . . , Bk}. Consequently, there will be n2k orthogo-
nal composite quantum histories Q̂α,β = Q̂α ⊗ Q̂β for which
can be computed the bipartite Feynman propagators ψα,β =
〈ψ f |K̂α,β |ψi〉. This allows the construction of the propagator

complex coefficient matrix

Ĉ = (
ψα,β

) =

⎛
⎜⎜⎝

ψ1,1 ψ1,2 . . . ψ1,nk

ψ2,1 ψ2,2 . . . ψ2,nk

...
...

. . .
...

ψnk ,1 ψnk ,2 . . . ψnk ,nk

⎞
⎟⎟⎠ (10)

which can undergo singular value decomposition, Ĉ = Û �̂V̂ †

such that Û and V̂ † are unitary matrices, and �̂ is a diagonal
matrix with non-negative singular values sorted in descending
order, λ1 � λ2 � · · · λs � 0.

If the final postselected state occurs with unit probability,
the singular values are referred to as Schmidt coefficients [29].
The squared Schmidt coefficients sum to unity,

∑
i λ

2
i = 1,

and can be obtained as eigenvalues of the following positive-
semidefinite Hermitian matrices:

ĈĈ† = Û �̂V̂ †V̂ �̂Û † = Û �̂2Û †, (11)

Ĉ†Ĉ = V̂ �̂Û †Û �̂V̂ † = V̂ �̂2V̂ †. (12)

For the analysis of postselected states that occur with less
than unit probability, the propagator complex coefficient ma-
trix can be normalized using the square root of Tr(ĈĈ†), or
more conveniently one can determine the squared Schmidt
coefficients from

C̃ = ĈĈ†

Tr(ĈĈ†)
. (13)

Due to the construction of the composite history Hilbert space
H̆A⊗B using mutually orthogonal quantum history projection
operators

Tr[(Q̂α ⊗ Q̂β ) · (Q̂α′ ⊗ Q̂β ′ )] = δα,α′δβ,β ′ , (14)

the Feynman propagators ψα,β for each quantum history give
directly the quantum probabilities |ψα,β |2 for observing the
corresponding quantum histories with sequential strong mea-
surements. This allows for simple expression of the composite
quantum history state vector |�) in H̆A⊗B using the Feynman
propagators as

|�) =
∑

α

∑
β

ψα,β |rα ) ⊗ |r′
β ), (15)

where |rα ) and |r′
β ) are the rays corresponding to the local

quantum history projectors Q̂α = |rα )(rα| and Q̂β = |r′
β )(r′

β |,
respectively, for subsystems A and B.

Introducing the matrix reshaping operation (row by row)
into a column vector [22],

res
(
X̂

) = (x1,1, x1,2, . . . , x1,n, . . . , xn,1, xn,2, . . . , xn,n)T ,

(16)

it follows that the composite quantum history state vector |�)
is obtained from the reshaped Feynman propagator complex
coefficient matrix |�) = res(Ĉ). Using the following matrix
reshaping property [22,37],

res(X̂Ŷ Ẑ ) = (X̂ ⊗ ẐT )res(Ŷ ), (17)

applied to (15), we obtain

|�) = res(Û �̂V̂ †) = (Û ⊗ V̂ ∗)res(�̂). (18)
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Since Û and V̂ ∗ are local unitary operators, the action of
their tensor product preserves the basis separability during
the change of the original basis |rα ), |r′

β ) into Schmidt basis
|α̃s) = Û |rs), |β̃s) = V̂ ∗|r′

s) as follows:

|�) = (Û ⊗ V̂ ∗)
∑

α

∑
β

λα,βδα,β |rα ) ⊗ |r′
β )

=
∑

s

λs[Û |rs)] ⊗ [V̂ ∗|r′
s)]

=
∑

s

λs|α̃s) ⊗ |β̃s). (19)

Definition 7: Schmidt rank. The Schmidt rank of a particu-
lar Schmidt decomposition is the number of nonzero Schmidt
coefficients [22].

Theorem 1: Entanglement of quantum histories. The
Schmidt rank provides a discrete (binary) criterion for entan-
glement; namely, the quantum histories are entangled if and
only if the Schmidt rank of the propagator complex coefficient
matrix Ĉ is larger than 1.

Proof. If the Schmidt rank of |�) is 1, then its Schmidt
decomposition (19) contains only a single nonzero Schmidt
coefficient λ1 = 1, λ2 = λ3 = · · · = λs = 0. Thus, the com-
posite quantum history state vector |�) is separable, |�) =
1 |α̃1) ⊗ |β̃1), and hence not entangled.

Conversely, if |�) is separable, then its Schmidt rank is 1.
Indeed, from the definition of separability, it follows that |�)
can be written as |α̃) ⊗ |β̃ ) for some separable basis. In this
basis, the matrix Ĉ is already diagonal and one can observe
that there is only a single nonzero Schmidt coefficient λ1 = 1.
Because the Schmidt coefficients are unique, the change of
basis for expressing the state |�) will not increase the number
of nonzero Schmidt coefficients. Therefore, if the Schmidt
rank is greater than 1, then |�) is necessarily entangled. �

Weak measurement is a fruitful technique, which can ex-
tract information about the properties of a quantum state
without collapsing the state into eigenvectors of the measured
operator [38–40]. This is done by creating a weak coupling
between the dynamically evolving quantum system and a
measurement device whose pointer is usually prepared with
an initial Gaussian wave function centered at zero:

φ(x) = (2πσ 2)−
1
4 e− x2

4σ2 . (20)

If the weak interaction Hamiltonian between the measured
system and the measuring device is

Ĥint = gδ(t − t1) P̂i1 ⊗ p̂, (21)

where g is the weak-coupling parameter, P̂i1 is a projection
operator (observable) for the measured system, and p̂ = h̄k̂
is the pointer momentum conjugate to the position x̂, it is
possible to extract the weak value [36]

(P̂i1 )w = 〈ψ f |T̂ (t2, t1)P̂i1 T̂ (t1, t0)|ψi〉
〈ψ f |T̂ (t2, t1)T̂ (t1, t0)|ψi〉

(22)

using strong projective measurement of the position x̂ or
the wave number k̂ of the meter pointer after the quantum
system of interest is postselected in the desired final state
|ψ f 〉. The expectation (average) values of the latter quantities

approximate to first order in g the real and imaginary parts
of the weak value, Re[(P̂i1 )w] ≈ g−1〈x̂〉 and Im[(P̂i1 )w] ≈
2σ 2g−1〈k̂〉 [41–43].

Sequential weak values generalize the notion of weak value
to a sequence of multitime observables. For quantum histories,
we consider the special case when the observables are multi-
time projection operators,

(Qα′ )w = (
P̂ik , . . . , P̂i2 , P̂i1

)
w

= ψα′∑
α ψα

. (23)

If each observable is weakly coupled to its own measuring
device with a Gaussian pointer, then sequential weak values
can be extracted by measuring the expectation values of var-
ious product combinations of pointer positions and momenta
as described elsewhere [43]. For our purposes, it is sufficient
to note that sequential weak values are given by Feynman
propagator ratios and can be experimentally determined using
weak measurements [44,45].

Definition 8: Sequential weak value of bipartite quantum
histories. The sequential weak value (Qα′,β ′ )w of the pro-
jection operators generating the particular bipartite quantum
history Q̂α′,β ′ is given by the ratio of the Feynman propagator
ψα′,β ′ and the sum over all quantum histories that start from
the same initial state and end with the same final state [36]:

(Qα′,β ′ )w = ψα′,β ′∑
α,β ψα,β

. (24)

If the histories contain only a single intermediate time point,
the sequential weak values reduce to weak values.

Theorem 2: Schmidt decomposition based on sequential
weak values. The Schmidt coefficients for quantification of
entanglement of quantum histories can be determined from
the complex sequential weak value matrix after normalization:

M̂ = (Qα,β )w =

⎛
⎜⎜⎝

(Q1,1)w (Q1,2)w · · · (Q1,nk )w
(Q2,1)w (Q2,2)w · · · (Q2,nk )w

...
...

. . .
...

(Qnk ,1)w (Qnk ,2)w · · · (Qnk ,nk )w

⎞
⎟⎟⎠.

(25)

Proof. The Feynman propagator complex coefficient ma-
trix Ĉ differs from M̂ by a pure phase and a multiplicative
constant |∑α′,β ′ ψα′,β ′ |. The pure phase is eliminated when
the Hermitian matrix M̂M̂† is generated, whereas the multi-
plicative constant is taken care of during the normalization,

M̃ = M̂M̂†

Tr(M̂M̂†)
. (26)

Therefore, the eigenvalues of M̃ are exactly the squared
Schmidt coefficients λ2

1 � λ2
2 � · · · � λ2

s � 0. �
Definition 9: Concurrence. Concurrence provides a con-

tinuous quantitative measure of entanglement based on the
sum of the fourth powers of the Schmidt coefficients [29,46],

C =
√√√√2

(
1 −

∑
s

λ4
s

)
=

√
2[1 − Tr(C̃2)], (27)
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FIG. 1. Hardy’s interferometer is constructed from two partially
overlapping Mach-Zehnder interferometers, (a) one of which con-
tains an electron and (b) the other contains a positron [51]. Possible
particle trajectories are indicated with solid lines. Beam splitters
are indicated with white bars, whereas mirrors are indicated with
black bars.

where n = min[dim(H̆A), dim(H̆B)] is the dimension of the
smaller history Hilbert space of the systems A or B.

Definition 10: Entanglement entropy. The entanglement
entropy is defined as the Shannon entropy [47] of the squared
Schmidt coefficients [23]:

S = −
∑

s

λ2
s ln λ2

s . (28)

Definition 11: Entanglement robustness. The entangle-
ment robustness is given by the difference between the
squared sum of the Schmidt coefficients and the sum of the
squared Schmidt coefficients [48]:

R =
(∑

s

λs

)2

−
∑

s

λ2
s =

(∑
s

λs

)2

− 1. (29)

Next, we will elaborate on the construction of the Feynman
propagator complex coefficient matrix Ĉ and will compute
concurrence for different postselections in Hardy’s interfer-
ometer. This choice of entanglement measure is motivated by
the manifestation of concurrence in the form of two-particle
visibility [49] and its intimate involvement in quantum com-
plementarity relations [50]. It is worth noting, however, that
the Schmidt coefficients λs, which are obtained through
singular value decomposition of the Feynman propagator
complex coefficient matrix Ĉ, also contain all the neces-
sary information for the calculation of a large number of
other quantum-information-theoretic entanglement measures
[27–29].

III. QUANTUM DYNAMICS OF THE COMPOSITE STATE
IN HARDY’S INTERFEROMETER

Hardy proposed in 1992 an interferometric experiment
with an electron and a positron in order to test the predictions
of quantum mechanics versus the predictions of local hidden
variable theories [51].

Suppose that at time t0 we have an electron at position
a0 and a positron at position b0, both of which are aimed at
the corresponding beam splitters in the overlapping Mach-
Zehnder interferometers (Fig. 1). Employing the formalism of
second quantization [52], we will introduce electron creation
â† and annihilation â operators or positron creation b̂† and
annihilation b̂ operators that act on the vacuum ket state |0〉 or
the vacuum bra state 〈0| to produce corresponding Fock states.
Thus, the initial composite quantum state is

|�0〉 = â†
0b̂†

0|0〉 = |a0〉|b0〉. (30)

At time t1, the action of the beam splitters is given by

â†
0|0〉 → 1√

2
(â†

1 + iâ†
2)|0〉, (31)

b̂†
0|0〉 → 1√

2
(b̂†

1 + ib̂†
2)|0〉. (32)

The time-evolution operator is

T̂ (t1, t0) = 1
2 (â†

1 + iâ†
2)(b̂†

1 + ib̂†
2)|0〉〈0|â0b̂0. (33)

Because the collision of electron and positron leads to their
annihilation and production of photons [53] that will not
be registered by the final particle detectors, we will take
â†

2b̂†
2|0〉 = â†

4b̂†
4|0〉 = 0 with resulting 1

4 drop of total proba-
bility for particle detection.

Straightforward algebraic calculation gives the resulting
composite quantum state at t1 as

|�1〉 = 1
2 (â†

1b̂†
1 + iâ†

1b̂†
2 + iâ†

2b̂†
1)|0〉, (34)

which evolves after the mirror reflections

â†
1|0〉 → iâ†

3|0〉, (35)

â†
2|0〉 → iâ†

4|0〉, (36)

b̂†
1|0〉 → ib̂†

3|0〉, (37)

b̂†
2|0〉 → ib̂†

4|0〉, (38)

with time-evolution operator

T̂ (t2, t1) = −â†
3b̂†

3|0〉〈0|â1b̂1 − â†
3b̂†

4|0〉〈0|â1b̂2

− â†
4b̂†

3|0〉〈0|â2b̂1 − â†
4b̂†

4|0〉〈0|â2b̂2 (39)

into

|�2〉 = − 1
2 (â†

3b̂†
3 + iâ†

3b̂†
4 + iâ†

4b̂†
3)|0〉. (40)

Finally, at t3 after the action of the final beam splitters,

â†
3|0〉 → 1√

2
(iâ†

5 + â†
6)|0〉, (41)

â†
4|0〉 → 1√

2
(â†

5 + iâ†
6)|0〉, (42)

b̂†
3|0〉 → 1√

2
(ib̂†

5 + b̂†
6)|0〉, (43)

b̂†
4|0〉 → 1√

2
(b̂†

5 + ib̂†
6)|0〉, (44)

with time-evolution operator
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T̂ (t3, t2) = 1
2 (iâ†

5 + â†
6)(ib̂†

5 + b̂†
6)|0〉〈0|â3b̂3 + 1

2 (iâ†
5 + â†

6)(b̂†
5 + ib̂†

6)|0〉〈0|â3b̂4

+ 1
2 (â†

5 + iâ†
6)(ib̂†

5 + b̂†
6)|0〉〈0|â4b̂3 + 1

2 (â†
5 + iâ†

6)(b̂†
5 + ib̂†

6)|0〉〈0|â4b̂4, (45)

the particles arrive at the detectors in the composite state,

|�3〉 = − 1
4 [(iâ†

5 + â†
6)(ib̂†

5 + b̂†
6) + i(iâ†

5 + â†
6)(b̂†

5 + ib̂†
6) + i(â†

5 + iâ†
6)(ib̂†

5 + b̂†
6)]|0〉

= 1
4 [(â†

5b̂†
5 − iâ†

6b̂†
5 − iâ†

5b̂†
6 − â†

6b̂†
6) + (â†

5b̂†
5 − iâ†

6b̂†
5 + iâ†

5b̂†
6 + â†

6b̂†
6) + (â†

5b̂†
5 + iâ†

6b̂†
5 − iâ†

5b̂†
6 + â†

6b̂†
6)]|0〉

= 1
4 (3â†

5b̂†
5 − iâ†

6b̂†
5 − iâ†

5b̂†
6 + â†

6b̂†
6)|0〉. (46)

The quantum probabilities of simultaneous detection of an electron and a positron at the four particle detectors are P(a5, b5) =
9

16 , P(a5, b6) = 1
16 , P(a6, b5) = 1

16 , and P(a6, b6) = 1
16 . The sum of probabilities for detection of an electron and a positron at

the end of the experiment is 3
4 because the electron and positron annihilate inside the interferometer in 1

4 of all cases.

IV. CLASSICAL HISTORIES ARE UNABLE TO REPRODUCE THE
QUANTUM OUTCOMES

The probability for the electron to arrive at a5 or a6, when the positron is detected at b3 or b4, can be computed using the Born
rule applied on the final composite state vector:∣∣� (a)

3

〉 = − 1√
8

[(iâ†
5 + â†

6)b̂†
3 + i(iâ†

5 + â†
6)b̂†

4 + i(â†
5 + iâ†

6)b̂†
3]|0〉

= − 1√
8

[iâ†
5b̂†

3 + â†
6b̂†

3 − â†
5b̂†

4 + iâ†
6b̂†

4 + iâ†
5b̂†

3 − â†
6b̂†

3]|0〉

= − 1√
8

[2iâ†
5b̂†

3 − â†
5b̂†

4 + iâ†
6b̂†

4]|0〉. (47)

The probabilities of simultaneous detection of the electron at the final detectors and the positron inside the interferometer arms
is P(a5, b3) = 1

2 , P(a5, b4) = P(a6, b4) = 1
8 , and P(a6, b3) = 0. This implies that the conditional probabilities [54] for positron

detection at b3 or b4 given electron postselection at a6 are

P(b4|a6) = P(a6, b4)

P(a6, b4) + P(a6, b3)
= 1, (48)

P(b3|a6) = P(a6, b3)

P(a6, b4) + P(a6, b3)
= 0. (49)

Similarly, the probability for the positron to arrive at b5 or b6, when the electron is detected at a3 or a4, can be computed using
the Born rule applied on the final composite state vector:∣∣� (b)

3

〉 = − 1√
8

[â†
3(ib̂†

5 + b̂†
6) + iâ†

3(b̂†
5 + ib̂†

6) + iâ†
4(ib̂†

5 + b̂†
6)]|0〉

= − 1√
8

[iâ†
3b̂†

5 + â†
3b̂†

6 + iâ†
3b̂†

5 − â†
3b̂†

6 − â†
4b̂†

5 + iâ†
4b̂†

6]|0〉

= − 1√
8

[2iâ†
3b̂†

5 − â†
4b̂†

5 + iâ†
4b̂†

6]|0〉. (50)

The probabilities of simultaneous detection of the positron
at the final detectors and the electron inside the interferom-
eter arms is P(a3, b5) = 1

2 , P(a4, b5) = P(a4, b6) = 1
8 , and

P(a3, b6) = 0. This implies that the conditional probabilities
for electron detection at a3 or a4 given positron postselection
at b6 are

P(a4|b6) = P(a4, b6)

P(a4, b6) + P(a3, b6)
= 1, (51)

P(a3|b6) = P(a3, b6)

P(a4, b6) + P(a3, b6)
= 0. (52)

Now, if one conjectures that the electron and the positron
could have traveled along a single classical path along one
of two alternative arms in the corresponding interferometers,
a contradiction will occur as follows: From the electron detec-
tion at a6 one uses P(b4|a6) = 1 to infer that the positron has
certainly passed along path b4. Similarly, from the positron
detection at b6 one uses P(a4|b6) = 1 to infer that the electron
has certainly passed along path a4. However, the collision of
the electron and positron at the crossing of arms a4 and b4

leads to zero probability of particle detection at a6 and b6:

P(a6, b6|a4, b4) = 0. (53)
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FIG. 2. Illustration of the four possible composite quantum histories, which lead to electron emerging at a6 and positron emerging at b6,
together with the corresponding Feynman propagators ψα,β . Due to electron-positron annihilation, one of the histories has zero Feynman
propagator, which leaves a set of three nonzero quantum histories in quantum-entangled superposition.

Arriving at a contradiction proves that the conjecture of quan-
tum particles moving along single classical paths is false.
Indeed, next we will show that the predictions of quantum
mechanics arise exactly because the quantum histories can be
entangled.

V. ILLUSTRATION OF ENTANGLED QUANTUM
HISTORIES

Quantum analysis of Hardy’s interferometer from the ini-
tial (preselected) state |a0〉|b0〉 to the final (postselected) state
|a6〉|b6〉 reveals a four-dimensional composite quantum his-
tory Hilbert space H̆A⊗B, where individual systems explore
two-dimensional quantum history Hilbert spaces H̆A and H̆B.
In order to ease the notation, we will compress the projectors
as follows:

P̂ (aib j ) := â†
i b̂†

j |0〉〈0|âib̂ j = |ai〉|b j〉〈ai|〈b j |. (54)

Then, the four composite quantum histories are

Q̂1,1 = P̂ (a6b6) � P̂ (a3b3) � P̂ (a1b1) � P̂ (a0b0), (55)

Q̂1,2 = P̂ (a6b6) � P̂ (a3b4) � P̂ (a1b2) � P̂ (a0b0), (56)

Q̂2,1 = P̂ (a6b6) � P̂ (a4b3) � P̂ (a2b1) � P̂ (a0b0), (57)

Q̂2,2 = P̂ (a6b6) � P̂ (a4b4) � P̂ (a2b2) � P̂ (a0b0). (58)

The Feynman propagators ψα,β = 〈a6|〈b6|K̂α,β |a0〉|b0〉, in
which K̂α,β is the chain operator corresponding to the quan-
tum history Q̂α,β , can be arranged in the propagator complex

coefficient matrix as follows (Fig. 2):

Ĉ =
(

ψ1,1 ψ1,2

ψ2,1 ψ2,2

)
= 1

4

(−1 1
1 0

)
. (59)

Because we are interested in the postselected outcome, nor-
malization can be easily performed at the stage of computing
the Hermitian matrix ĈĈ† where we use the fact that the
squared Schmidt coefficients sum to unity:

C̃ = ĈĈ†

Tr
(
ĈĈ†

) = 1

3

(
2 −1

−1 1

)
. (60)

The two eigenvalues expressed as squared Schmidt coeffi-
cients are

λ2
1 = 1

6 (3 +
√

5), (61)

λ2
2 = 1

6 (3 −
√

5). (62)

The amount of quantum entanglement quantified with the use
of concurrence is

C =
√

2[1 − Tr(C̃2)] = 2
3 . (63)

Entanglement of the quantum histories arriving at |a6〉|b6〉
has been experimentally observed in an optical version of
Hardy’s setup [55,56] using measurement of the correspond-
ing weak values [57], which can be arranged in the following
weak-value matrix:

M̂ =
(

(Q1,1)w (Q1,2)w
(Q2,1)w (Q2,2)w

)
=

(−1 1
1 0

)
. (64)
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FIG. 3. Illustration of the four possible composite quantum histories, which lead to electron emerging at a6 and positron emerging at b5,
together with the corresponding Feynman propagators ψα,β . Due to electron-positron annihilation, one of the histories has zero Feynman
propagator, which leaves a set of three nonzero quantum histories in quantum-entangled superposition.

After normalization, the weak-value matrix reproduces the
Schmidt coefficients (61) and (62) obtained from Ĉ. Thus,
the technique of weak measurements [39] is able to pro-
vide a bridge between the theoretical description of entangled
histories in terms of propagators and their experimental regis-
tration in terms of weak values.

Quantum entanglement can be similarly quantified for the
other three final postselected states (besides |a6〉|b6〉), all of
which have concurrence of 2

3 .
For final (postselected) state |a6〉|b5〉, the quantum histo-

ries end with the final projector P̂ (a6b5) and the propagator
complex coefficient matrix is (Fig. 3)

Ĉ =
(

ψ1,1 ψ1,2

ψ2,1 ψ2,2

)
= 1

4

(−i −i
i 0

)
. (65)

For final (postselected) state |a5〉|b6〉, the quantum histo-
ries end with the final projector P̂ (a5b6) and the propagator
complex coefficient matrix is (Fig. 4)

Ĉ =
(

ψ1,1 ψ1,2

ψ2,1 ψ2,2

)
= 1

4

(−i i
−i 0

)
. (66)

For final (postselected) state |a5〉|b5〉, the propagator com-
plex coefficient matrix is (Fig. 5)

Ĉ =
(

ψ1,1 ψ1,2

ψ2,1 ψ2,2

)
= 1

4

(
1 1
1 0

)
. (67)

The previous four 2 × 2 propagator complex coefficient
matrices can be combined in a single 4 × 4 propagator
complex coefficient matrix in which all four pairs of final

electron-positron outcomes are present using the mapping
1 ≡ 1 � 5, 2 ≡ 2 � 5, 3 ≡ 1 � 6, 4 ≡ 2 � 6 for the single
indices α and β:

Ĉ =

⎛
⎜⎜⎝
ψ1,1 ψ1,2 ψ1,3 ψ1,4

ψ2,1 ψ2,2 ψ2,3 ψ2,4

ψ3,1 ψ3,2 ψ3,3 ψ3,4

ψ4,1 ψ4,2 ψ4,3 ψ4,4

⎞
⎟⎟⎠ = 1

4

⎛
⎜⎜⎝

1 1 −i i
1 0 −i 0
−i −i −1 1
i 0 1 0

⎞
⎟⎟⎠.

(68)

Computing the concurrence from the combined 4 × 4 propa-
gator complex coefficient matrix also gives C = 2

3 , which was
found for each of the individual 2 × 2 propagator complex
coefficient matrices.

The treatment of Hardy’s interferometer is comparatively
simple because the discretization of the setup is suggested
by the particular places and times at which the particles
meet the beam splitters, mirrors, and detectors. Although
formally the Hilbert space H of the composite system is
7 × 7 = 49 dimensional, the composite quantum state vec-
tor is sparsely populated in the position basis with at most
2 × 2 = 4 nonzero quantum probability amplitudes at each
time point. This effectively reduces the dimensionality of the
Hilbert space of each subsystem to n = 2 and greatly simpli-
fies the computation of the Feynman propagator matrix. For
more general setups, however, it may not be evident what time
steps to consider and the dimensionality of the Hilbert space
may not be trivial to decide. In such cases, a possible heuristic
course of action would be to run customized numerical sim-
ulations with finer and finer coarse-graining of the position
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FIG. 4. Illustration of the four possible composite quantum histories, which lead to electron emerging at a5 and positron emerging at b6,
together with the corresponding Feynman propagators ψα,β . Due to electron-positron annihilation, one of the histories has zero Feynman
propagator, which leaves a set of three nonzero quantum histories in quantum-entangled superposition.
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together with the corresponding Feynman propagators ψα,β . Due to electron-positron annihilation, one of the histories has zero Feynman
propagator, which leaves a set of three nonzero quantum histories in quantum-entangled superposition.
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space to see if the obtained computational results converge
towards a single outcome.

VI. ENTANGLED QUANTUM HISTORIES SUPPORT
QUANTUM NONLOCALITY

Having shown that quantum systems avoid classical para-
doxes by having access to propagation along entangled
quantum histories, we proceed to show that entangled quan-
tum histories can be used for experimental demonstration of
quantum nonlocality. For that purpose, we can use all previous
derivations for Hardy’s interferometer, and supplement them
with the additional assumption that two spacelike separated
agents, Alice and Bob, are able to use their free will to either
keep or remove the final beam splitter for the electron or the
positron, respectively. The spacelike separation is ensured by
placing the final beam splitters far away and locating the final
detectors a5, a6, b5, and b6 very close to the beam splitters so
that there is not enough time for a light signal to inform the
opposite party what their setting of the final beam splitter is.

Case 1. Under the enforcement of spacelike separation,
when both Alice and Bob keep the final beam splitters, from
(46) we know that the final quantum state is∣∣� (A+B+ )

3

〉 = 1
4 (3â†

5b̂†
5 − iâ†

6b̂†
5 − iâ†

5b̂†
6 + â†

6b̂†
6)|0〉. (69)

The quantum probabilities for joint detections are P(a5, b5) =
9

16 , P(a5, b6) = 1
16 , P(a6, b5) = 1

16 , and P(a6, b6) = 1
16 . The

unconditional probabilities for single-particle detection are
P(a5) = 5

8 , P(a6) = 1
8 , P(b5) = 5

8 , and P(b6) = 1
8 .

Case 2. When Alice keeps the final beam splitter for the
electron, while Bob removes the final beam splitter for the
positron, the outcomes are obtained from updating the state
(47) using b̂†

3|0〉 → b̂†
6|0〉 and b̂†

4|0〉 → b̂†
5|0〉 as follows:

∣∣� (A+B− )
3

〉 = − 1√
8

[2iâ†
5b̂†

6 − â†
5b̂†

5 + iâ†
6b̂†

5]|0〉. (70)

In this case, the quantum probabilities for joint detec-
tions are P(a5, b5) = 1

8 , P(a5, b6) = 1
2 , P(a6, b5) = 1

8 , and
P(a6, b6) = 0. The unconditional probabilities for single-
particle detection are P(a5) = 5

8 , P(a6) = 1
8 , P(b5) = 1

4 , and
P(b6) = 1

2 .
Case 3. Similarly, when Alice removes the final beam

splitter for the electron, while Bob keeps the final beam split-
ter for the positron, the outcomes are obtained from updating
the state (50) using â†

3|0〉 → â†
6|0〉 and â†

4|0〉 → â†
5|0〉 as

follows:

∣∣� (A−B+ )
3

〉 = − 1√
8

[2iâ†
6b̂†

5 − â†
5b̂†

5 + iâ†
5b̂†

6]|0〉. (71)

In this case, the quantum probabilities for joint detec-
tions are P(a5, b5) = 1

8 , P(a5, b6) = 1
8 , P(a6, b5) = 1

2 , and
P(a6, b6) = 0. The unconditional probabilities for single-
particle detection are P(a5) = 1

4 , P(a6) = 1
2 , P(b5) = 5

8 , and
P(b6) = 1

8 .
Case 4. Finally, we will need to compute the probabilities

for joint detection when both Alice and Bob remove their
final beam splitters. The outcomes are obtained from updating
the state (40) using â†

3|0〉 → â†
6|0〉, â†

4|0〉 → â†
5|0〉, b̂†

3|0〉 →

b̂†
6|0〉, and b̂†

4|0〉 → b̂†
5|0〉 as follows:∣∣� (A−B− )

3

〉 = − 1
2 (â†

6b̂†
6 + iâ†

6b̂†
5 + iâ†

5b̂†
6)|0〉. (72)

In this case, the quantum probabilities for joint detections are
P(a5, b5) = 0, P(a5, b6) = 1

4 , P(a6, b5) = 1
4 , and P(a6, b6) =

1
4 . The unconditional probabilities for single-particle detection
are P(a5) = 1

4 , P(a6) = 1
2 , P(b5) = 1

4 , and P(b6) = 1
2 .

Now, if one conjectures that the electron and the positron
could have produced their arrival at their corresponding par-
ticle detectors a6 and b6 without taking into consideration
the setting of the distant spacelike separated beam splitter,
a contradiction will occur as follows: Consider the most
general local strategy that the electron and positron could
employ by taking into consideration only the local setting
of the corresponding final beam splitter together with the
past interferometer arm from which they come in order to
accommodate the correct 1

4 probability of electron-positron
annihilation. There will be four non-negative probability
weights x±

1 , x±
2 for the electron to go to detector a6 depending

on the interferometer arm 1,2 and the beam-splitter setting ±.
Similarly, there will be four non-negative probability weights
y±

1 , y±
2 for the positron to go to detector b6. The joint prob-

ability of arrival at a6 and b6 for the local model should
match the quantum probability P(a6, b6) for all four possible
beam-splitter settings, namely,

1
4 (x+

1 y+
1 + x+

1 y+
2 + x+

2 y+
1 ) �= 0, (73)

1
4 (x+

1 y−
1 + x+

1 y−
2 + x+

2 y−
1 ) = 0, (74)

1
4 (x−

1 y+
1 + x−

1 y+
2 + x−

2 y+
1 ) = 0, (75)

1
4 (x−

1 y−
1 + x−

1 y−
2 + x−

2 y−
1 ) �= 0. (76)

Further, since the unconditional quantum probabilities are
P(a6) �= 0 and P(b6) �= 0 for all four possible beam-splitter
settings, we also should have

x+
1 + x+

2 �= 0, (77)

x−
1 + x−

2 �= 0, (78)

y+
1 + y+

2 �= 0, (79)

y−
1 + y−

2 �= 0. (80)

To show that the system of equations (73)–(80) does not have
a solution, one can derive a contradiction in multiple ways.
One of the shortest derivations is to substitute (80) in (74) to
get x+

1 = 0. Similarly, substitute (78) in (75) to get y+
1 = 0.

Then, the joint substitution of x+
1 = y+

1 = 0 in (73) leads to
the contradiction 0 �= 0, which implies that there exists no
local hidden variable model that is able to reproduce the
experimental results from Hardy’s interferometer. Because the
mathematical proof does not use the actual numerical values
of the probabilities, but only cares to distinguish between zero
and nonzero probabilities, the demonstration of quantum non-
locality by this approach is often referred to as Bell’s theorem
without inequalities [58,59].

Quantum nonlocality manifested in the observable cor-
relations of spacelike separated quantum measurements
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cannot be used for superluminal communication because the
unconditional probabilities for each local outcome remain
unaffected by the distant choice of measurement basis [60].
Indeed, pairwise comparison of the four cases in Hardy’s
interferometer verifies that the unconditional quantum prob-
abilities for different measurement outcomes a5, a6, b5, or b6

are affected only by the local setting of the final beam splitter,
but remain unchanged by the setting of the other spacelike
separated final beam splitter.

VII. CONCLUSION

In this work, we have elaborated on three related but
mathematically distinct objects that describe the notion of
quantum history in different contexts. First, we have clarified
the fact that in the context of the history Hilbert space H̆,
the bipartite quantum histories are constructed as mutually
orthogonal projection operators Tr[Q̂α,β · Q̂α′,β ′] = δαα′δββ ′ .
Employing only local projection operators for each subsys-
tem at each time point ensures that the resulting bipartite
quantum history projection operators, which span the his-
tory Hilbert space, are separable (not entangled), Q̂α,β =
Q̂α ⊗ Q̂β , and hence suitable for Schmidt decomposition
of the quantum history state vector |�). Second, we have
revealed that quantum entanglement is generated by the
quantum Hamiltonian Ĥ acting on the composite quantum
state |�〉 in the standard Hilbert space H. If the quantum
Hamiltonian Ĥ is explicitly given, it can be used for the
calculation of time-development operators T̂ that replace
the time tensor product symbols � in Q̂α,β for the forma-
tion of corresponding quantum history chain operators K̂α,β

in standard Hilbert space. Due to the presence of time-
development operators, the chain operators K̂α,β of different
quantum histories are no longer guaranteed to be mutu-
ally orthogonal. Feynman’s sum-over-histories formulation is
extremely helpful in situations when the time-development
operators are already known, because it is not necessary
to reconstruct the quantum Hamiltonian in order to com-
pute the Feynman propagators. Third, by fixing the final
postselected state of the composite system, say, |�k+1〉, we
have shown that one computes the quantum history Feyn-
man propagator ψα,β using the inner product involving the
corresponding chain operator 〈�k+1|K̂α,β |�0〉 and then uses
the information obtained from all quantum history propaga-
tors to determine the possible entanglement of the quantum
histories.

There are several contributions in our theoretical approach
including the realization that neither entangled projectors in
the history Hilbert space nor inner products between pairs
of quantum history chain operators in the standard Hilbert
space are required for quantification of entanglement of bi-
partite quantum histories. Instead, we have demonstrated that
the singular value decomposition of the propagator complex
coefficient matrix Ĉ contains all the information necessary for
answering the question whether a complete set of bipartite
quantum histories is entangled or not. In fact, the standard
Schmidt decomposition of a bipartite state vector |�(t )〉 at a
single time point t could be viewed as a special (trivial) case
of Schmidt decomposition of quantum history state vector |�)
that possesses only a single time point.

From the Schmidt coefficients obtained in the decompo-
sition of the propagator complex coefficient matrix Ĉ, one
is able to compute a number of entanglement measures, in-
cluding entanglement entropy S , entanglement robustness R,
and concurrence C. Although in Hardy’s overlapping inter-
ferometers, it is relatively easy to perform the singular value
decomposition for the extraction of the Schmidt coefficients,
this task becomes very expensive computationally for large
history Hilbert spaces. Fortunately, for the quantitative eval-
uation of concurrence there is a computational workaround
proposed by Gudder [27,29]; namely, rather than performing
singular value decomposition one can directly compute the
trace of the matrix C̃2 and plug it into (27). This establishes
the computational ease of concurrence over other entan-
glement measures for witnessing entanglement of quantum
histories.

Entanglement of quantum histories is a robust prediction
of the standard quantum formalism, which holds a great
explanatory power with regard to occurrence of classically
inexplicable experimental results in quantum foundations.
Previous works on “entangled histories” have explored the
possible nonfactorizability of quantum histories in time for
single quantum systems and have shown how entanglement in
time can be utilized for experimental testing and verification
of quantum contextuality [31–35]. Motivated by the additional
opportunities provided by quantum system composition, here
we have investigated the possible entanglement of bipartite
quantum histories and quantified the amount of quantum en-
tanglement that can be utilized for experimental testing and
verification of quantum nonlocality between spacelike sepa-
rated agents.

Because our approach makes an extensive use of Feynman
propagators, it is well suited for the analysis and design of
optical applications comprised of, e.g., optical fibers con-
nected to quantum controllers. Straightforward description of
such optical setups is aided by the repetitive use of known
time-development operators with substantial effective dimen-
sional reduction of the constructed history Hilbert space. The
accessibility of different Feynman propagators through mea-
surable weak values also provides potentially useful means for
calibration of engineered optical quantum devices and direct
verification of their physical mechanism of action.

The prospects for future research include possible ex-
tension of the quantum history formalism to multipartite
quantum systems and exploration of different generalizations
of Schmidt decomposition that go beyond simple considera-
tion of the set of all bipartitions. Another interesting research
avenue would be to consider the constraints on entanglement
of quantum histories imposed by the presence of indistin-
guishable particles.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
constructive comments. E.C. was supported by the Israeli In-
novation Authority under Projects No. 70002 and No. 73795,
by the Pazy Foundation, by the Israeli Ministry of Science
and Technology, and by the Quantum Science and Technology
Program of the Israeli Council of Higher Education.

062437-11



DANKO GEORGIEV AND ELIAHU COHEN PHYSICAL REVIEW A 106, 062437 (2022)

[1] E. Schrödinger, Naturwissenschaften 23, 807 (1935).
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