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Optimization of Richardson extrapolation for quantum error mitigation
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Quantum error mitigation is a key concept for the development of practical applications based on current
noisy intermediate-scale quantum devices. One of the most promising methods is Richardson extrapolation to
the zero noise limit. While its main idea is rather simple, the full potential of Richardson extrapolation has
not been completely uncovered yet. We give an in-depth analysis of the relevant parameters of Richardson
extrapolation and propose an optimized protocol for its implementation. This protocol allows for a precise control
of the increase in statistical uncertainty and lays the foundation for a significant improvement of the mitigation
performance achieved by increasing the number of nodes. Furthermore, we present a set of nodes that, on
average, outperforms the linear, exponential, or Chebyshev nodes frequently used for Richardson extrapolation
without requiring any additional resources.
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I. INTRODUCTION

One of the main challenges for the development of quan-
tum computers (QCs) is their high sensitivity to errors and
noise. While fault tolerance can be theoretically achieved via
quantum error correction (QEC) [1–5], its practical imple-
mentation comes with a large hardware overhead [6–8] that
is out of reach for near-term quantum processors. For the
time being, a temporary but precious alternative to QEC is
represented by quantum error mitigation (QEM), a collection
of techniques which can reduce the impact of errors at the
cost of performing extra measurements and postprocessing
of the data [9–11]. Differently from QEC, QEM has been
successfully implemented in numerous experiments [12–15]
and represents a key resource for the realization of practical
applications in the present noisy intermediate-scale quantum
era [16].

To date, a wide spectrum of QEM schemes have been
proposed, each one with its own advantages and tradeoffs.
Importantly, different techniques can be efficiently combined
in order to achieve an even better performance [17–19].
Error mitigation schemes include probabilistic error cancel-
lation [9,11], subspace expansion [20], symmetry verification
[21–23], purification [24,25], and zero noise extrapolation
[9–11]. The latter is one of the most popular approaches
and relies on the possibility to tune the noise level λ of
the quantum circuit above the smallest achievable value λ0.
By repeatedly running the circuit at different boosted noise
strengths λi � λ0, we can thus sample the noisy expectation
value of a given observable as a function of λ and then try to
estimate its zero noise limit. This operation can be done either
by fitting the collected data points with a specific function,
typically a single- or multiexponential [11,17], or by per-
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forming a Richardson-like extrapolation [9,26]. The second
approach has the advantage that it does not require specific
assumptions on the λ dependence of the expectation values
and can be used on a variety of noise models. Its effectiveness,
however, depends nontrivially on the choice of the different
boosted noise strengths λi [27,28].

In this paper, we perform a careful and in-depth analysis
of the Richardson method for QEM, highlighting its most
important parameters, and propose an optimized implemen-
tation. With previous methods, the set of noise levels has been
determined by a trial and error procedure that terminates once
an acceptably small statistical uncertainty is reached. Since
for a fixed equidistant spacing of the noise levels the variance
grows exponentially with their number [29], this was only
feasible for no more than four noise levels, strongly limiting
the mitigation capabilities of Richardson extrapolation. We
resolve this issue by demonstrating that the statistical uncer-
tainty can in fact be precisely controlled independently of
the number of noise levels. This allows us to significantly
improve the mitigation performance, especially for a large
sampling budget. Moreover, we find a specific spacing of the
noise levels λi (inspired by the Chebyshev nodes introduced
in Ref. [30]) that minimizes, on average, the error on the zero
noise estimation. These discoveries nicely complement the
current literature, which mainly focuses on the linear spacing
of the λi and a small number of noise levels [9,18]. We numer-
ically verify our predictions on different error models, ranging
from purely Markovian noise to non-Markovian noise, which
can play a significant role in present-day quantum devices
[31–33].

The paper is organized as follows. In Sec. II, we briefly
review the Richardson approach to QEM. In Sec. III, we
carefully discuss the three main parameters which charac-
terize the extrapolation scheme and propose our optimized
protocol, which we numerically validate in Sec. IV. We draw
conclusions in Sec. V and move some technical details to the
Appendices.
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II. RICHARDSON EXTRAPOLATION

Assume that ρλ is the output state of an imperfect QC,
where λ is the dimensionless noise parameter that indicates
the level of noise in the QC. For this state the expectation value
of an observable A is given by

Eλ = tr(ρλA). (1)

Since the QC is imperfect, the noise level λ cannot be de-
creased below some finite value λ0 > 0 and the limit

lim
λ→0

Eλ = E∗ (2)

cannot be accessed experimentally. However, the noise param-
eter λ can be artificially increased, e.g., by rescaling coupling
parameters [9], inserting identities into the circuit that are sub-
ject to the same noise [29,34–36], or gate Trotterization [37].
Finding the best way to change the noise levels is an active
research area [37] and depends on the precise implementation
of the quantum computer. In the following, we assume that
we can arbitrarily choose the noise parameter λ = λ0x where
x ∈ [1,∞).

The idea behind Richardson extrapolation is to sample
Eλ0 (x) := Eλ at n + 1 distinct nodes x0, . . . , xn ∈ [1,∞) and
to find the unique n polynomial that fits these samples.
This polynomial approximation of Eλ0 (x) can be evaluated at
x = 0, which gives an estimate Rn of the noiseless expectation
value E∗. For simplicity, we assume that 1 = x0 < x1 < · · · <

xn.
This result of the extrapolation Rn can be directly calcu-

lated as a linear combination of the samples Eλ0 (x j ):

Rn =
n∑

j=0

Eλ0 (x j )γ j, (3)

where the factors

γ j =
∏
k �= j

xk

xk − x j
(4)

are the Lagrange polynomials at x = 0. They have the prop-
erty that

∑n
j=0 γ j = 1 and

∑n
j=0 γ jxk

j = 0 for k = 1, . . . , n. If
we write Eλ0 (x) as

Eλ0 (x) = E∗ +
∞∑

k=1

akλ
k
0xk (5)

for some constant coefficients ak , then the mitigated result
reads

Rn = E∗ +
∞∑

k=n+1

akλ
k
0

n∑
j=0

γ jx
k
j . (6)

Compared to the result without mitigation R0 = Eλ0 (1), which
corresponds to n = 0, Richardson extrapolation eliminates
a1, . . . , an as well as the first n orders of λ0. Therefore, if
λ0 is sufficiently small then Richardson extrapolation is a
promising candidate for QEM.

A general formula for the bias Bias[R̂n] = Rn − E∗ of this
estimate comes from the theory of polynomial approximation.
If Eλ0 (x) is n + 1 times continuously differentiable on [0, xn]

then there exists a ξ ∈ [0, xn] such that

Bias[R̂n] = (−1)nE (n+1)
λ0

(ξ )
Cn

(n + 1)!
. (7)

E (n+1)
λ0

(x) denotes the (n + 1)th derivative of Eλ0 (x) and Cn =∏n
j=0 x j (see, e.g., Refs. [30,38,39]).
Besides the error due to noise, additional sampling er-

rors must be considered whenever a quantum-mechanical
measurement is conducted. If for the noise level λ0x j the
observable A is measured Nj times, then the sample mean
Êλ0 (x j ) has a variance of

Var[Êλ0 (x j )] = σ 2
j

Nj
(8)

where σ j =
√

tr(ρλ0x j A
2) − Eλ0 (x j )2 . The σ j’s depend on the

observable A as well as on the expected value Eλ0 (x j ) and the
density matrix ρλ0x j of the quantum state. They are unknown
quantities before the experiment has been conducted, but it
is reasonable to assume the σ j to be of the same order of
magnitude. For simplicity, we assume that σ j = σ = const for
all j in the following.
Since the result of Richardson extrapolation Rn is a linear
combination of all Eλ0 (x j ), the corresponding estimator R̂n is
thus also affected by sampling errors:

Var[R̂n] =
n∑

j=0

γ 2
j

σ 2

Nj
. (9)

As we will see later, this leads to an increase in variance
compared to the unmitigated result with the same number of
measurements Var[R̂0] = σ 2∑n

j=0 Nj
.

In conclusion, Richardson extrapolation is able to reduce
the bias of the estimate of E∗, however, only at the cost
of increasing its variance. An example that illustrates these
effects is shown in Fig. 1.

If we choose a linear spacing of the nodes

x j = 1 + j, (10)

then Var[R̂n] grows exponentially with n in the limit n → ∞
[29]. This poses the following questions.

(1) Is there a way to reduce this increase in Var[R̂n]?
(2) Is there a scaling method for x j that optimizes the

tradeoff between bias and variance?
(3) Is there an optimal n?
In the following section, we investigate these questions and

how to efficiently execute this mitigation technique, i.e., how
to choose the free parameters n, {Nj} j=0,...,n and {x j} j=0,...,n.
For a fixed variance we search for those parameters that, given
the same computational resources, minimize the bias of the
estimator R̂n.

III. OPTIMIZED QEM PROTOCOL

In the literature, it has been noted that the numbers of mea-
surements Nj for a given noise level λ0x j should be adjusted
according to their weights γ j in Eq. (9) [18,28]. This is also
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FIG. 1. Example for Richardson extrapolation with n = 3 for
a noisy expectation value which decays exponentially Eλ = E∗e−λ

and has units according to E∗. The black diamond is the result
without mitigation R0 and the red square is the mitigated result R3,
both obtained with the same sampling budget. The colored interval
indicates the standard deviation of the extrapolation using Lagrange
polynomials. The error bars are the standard deviations of the sam-
ples Eλ0 (x j ) adjusted according to Eqs. (8) and (11). The nodes lie
equidistant.

the starting point of our analysis in Sec. III A. After that, in
Sec. III B, we turn to the spacing of the nodes x j . Different
strategies have been considered before, including equidistant
and exponential nodes as well as nodes based on the extrema
of the Chebyshev polynomials of the first kind. We compare
these spacing methods to a new set of nodes which we show
to be the optimal ansatz for QEM. In Sec. III C, we then focus
on the number of nodes n. We show that, for certain noise
functions and a proper choice of the nodes, increasing n can
substantially improve mitigation. The complete procedure is
summarized in Sec. III D.

A. Number of measurements Nj and measurement overhead �

A first simple step for the optimization of Richardson ex-
trapolation is to reduce Var[R̂n] by adjusting Nj while keeping
the total sampling budget

∑n
j=0 Nj = Ntot constant [18,28].

Whenever noninteger values for Nj appear in the following
they should be rounded to the next nearest integer. A simple
calculation shows that Var[R̂n] is minimized by

Nj = Ntot
|γ j |∑n

k=0 |γk| . (11)

Defining � = ∑n
j=0 |γ j | and Neff = Ntot/�

2 the minimized
variance of R̂n can be written as

Var[R̂n] = σ 2

Ntot
�2 = σ 2

Neff
. (12)

This way the estimator R̂n that uses Ntot measurements has
the same variance as the sample mean of a single expecta-
tion value that is measured Neff times. �2 � 1 is therefore
the minimal overhead in measurements required to com-
pensate for Richardson extrapolation. An example for this
procedure is given in Fig. 1, where the standard deviation of

each sample Eλ0 (x j ) is adjusted according to Eq. (11). In this
case, the nodes are chosen such that � = 5.

The quantities Ntot and Neff can be chosen freely at the
beginning of an experiment. The first one is the sampling
budget of the experiment while the second determines the
variance of the estimator R̂n. The sampling overhead is thus
given by �2 = Ntot

Neff
. As we will see later, this overhead has a

major influence on the range of noise that can be mitigated.
After that, the nodes {x j} j=0,...,n must be chosen in such a
way that

∑n
j=0 |γ j | = �. For each spacing method, the nodes

usually only depend on x1 [compare, e.g., Eqs. (15)–(18)]. It
is therefore possible to first choose a spacing method and then
numerically solve this equation to get the value of x1 that leads
to the chosen �. Importantly, this can be done independently
of n. The variance Var[R̂n] is therefore independent of the
number of nodes n and it is not necessary to restrict consider-
ations to small n.

Typically, a total sampling budget of the order 105 to 106

[12,40,41] or even up to 1010 measurements [19] is considered
in the literature. If, for example, we have a budget of Ntot =
106 measurements and choose Neff = 1024 then the sampling
overhead is about �2 = 322.

Now, we can compare different spacing methods in a fair
way, i.e., for the same sampling budget Ntot as well as the same
variance σ 2/Neff of the estimator R̂n of E∗. This way, we can
search for those nodes that minimize the bias of R̂n.

B. Spacing of the nodes xj

Taking a closer look at the bias in Eq. (7) and the variance
in Eq. (12), we observe that the quantities that depend on the
spacing of the nodes and can be optimized are

Cn =
n∏

j=0

x j (13)

and

� =
n∑

j=0

|γ j | =
n∑

j=0

∣∣∣∣∣∣
∏
k �= j

xk

xk − x j

∣∣∣∣∣∣. (14)

Note that E (n+1)
λ0

(ξ ) depends on the nodes as well. There-
fore, if Eλ0 (x) was known, an optimal set of nodes could be
constructed for this specific noise function. However, in this
case there would be no need for Richardson extrapolation
and we would directly fit Eλ0 (x) to the samples. Therefore,
we assume Eλ0 (x) to be unknown and try to find the nodes
that are intrinsically best suited for Richardson extrapolation
independent of the noise function.

If all x j are small, then Cn and the bias are small; however,
at the same time, all x j lie close together such that � and the
variance get large. In contrast, if all x j are far apart, then �

is close to 1 but Cn gets large. The aim of this section is to
determine nodes that find the best compromise between these
effects.

In the literature the equidistant (linear, L), exponential (E ),
and Chebyshev nodes are frequently used. The latter requires
a word of caution, as the expression Chebyshev nodes or
points has been used both for the zeros and the extrema of the
Chebyshev polynomials of the first kind. While the zeros are
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FIG. 2. Comparison of the different spacing methods for n = 5
and � = 10. The scaling methods are tilted Chebyshev (T), extremal
Chebyshev (C), exponential (E), and equidistant (L).

well suited for interpolation [30,42], we are more interested
in extrapolation and therefore focus on the extrema (C). The
different spacing methods read

xL
j = 1 + j(x1 − 1), (15)

xE
j = x j

1, (16)

xC
j = 1 + sin2

( j
n

π
2

)
sin2

(
1
n

π
2

) (x1 − 1), (17)

where j = 0, . . . , n.
Note, that, in contrast to Eq. (10), Eq. (15) has a vari-

able distance between two neighboring nodes. By choosing
Neff and adjusting this distance to �2 = Ntot

Neff
as discussed in

Sec. III A, the problem of variances increasing exponentially
with n is resolved.

From Ref. [28], we know that xC
j minimize xn for a given �.

However, they do not minimize the whole product Cn which
is why we look at the following optimization problem.

For constant � = ∑n
j=0 |γ j | and x0 = 1 find the nodes

x0, . . . , xn that minimize Cn. This optimization problem is
solved by the nodes

xT
j = 1 + sin2

( j
n+1

π
2

)
sin2

(
1

n+1
π
2

) (x1 − 1). (18)

A proof is outlined in Appendix A.
This result resembles the (extremal) Chebyshev nodes

where n is increased by 1 and the last node is left out. This
asymmetry makes sense since the goal is to extrapolate to
the left and precision to the right is subordinate. We call the
nodes tilted Chebyshev nodes (T ). Figure 2 provides a visual
comparison between the different spacing methods.

As a numerical verification of this result, we plot (n+1)!
Cn

for
different spacing methods and numbers of nodes over � in
Fig. 3. The larger this ratio, the smaller is the bias of R̂n and
the better the result of Richardson extrapolation. From this
plot, we observe that the tilted Chebyshev nodes indeed lead
to a lower Cn and consequently a higher ratio (n+1)!

Cn
than the

other methods. While for n � 3 all scaling methods perform
similarly, the tilted Chebyshev nodes perform best for larger n.
For example for n = 7 they lead to a Cn that is about 1.25, 2,
and 35 times smaller than that of the (extremal) Chebyshev,
exponential, and linear nodes, respectively. Remember that

FIG. 3. The ratio (n+1)!
Cn

for different values of � and n for the
spacing methods xT

j , xC
j , xE

j , and xL
j .

this result is independent of the noise model and the improve-
ment does not require any additional resources.

Since we have determined Nj and x j , the last remain-
ing parameter of Richardson extrapolation is the number of
nodes n.

C. Number of nodes n

While the variance Var[R̂n] is independent of the number of
nodes, the bias Bias[R̂n] is not. It depends on E (n+1)

λ0
(ξ ) as well

as on Cn
(n+1)! [see Eq. (7)]. Without knowing the whole function

Eλ0 (x), we cannot predict the derivative E (n+1)
λ0

(ξ ) and thus
cannot identify the best value for n.

Useful insight for the choice of n can be gained with the
(strong) assumption that all E (n+1)

λ0
(ξ ) are approximately the

same for all spacing methods and all n. In this case, the n
dependence of the bias is completely determined by Cn

(n+1)! .
For a given spacing method, this quantity can be analyzed as
a function of n and �. The results for the discussed spacing
methods are shown in Fig. 3, where we plot the ratio (n+1)!

Cn
.

Given the assumption that |E (n+1)
λ0

(ξ )| is approximately
constant, Fig. 3 could be used to determine the optimal n̂
once � is chosen. However, different derivatives have dif-
ferent properties in reality and ξ can be very different for
different n such that the meaning of this optimal n̂ should not
be overestimated. For example, if |E (n+1)

λ0
(ξ )| decreases with

n then this favors larger n � n̂. While there is no optimal n in
general, Fig. 3 might be able to suggest an interval from which
we choose n in order to minimize the bias.

In practice, there might be additional factors limiting the
choice of n. For example, if � is small then n should not
be chosen too large; otherwise, xn can get exceedingly large.
Furthermore, this can lead to very low measurement numbers
Nj which can be avoided for example by decreasing n or
setting a lower bound on Nj . In contrast, if n is too small
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while � is large then the x j lie close to each other, which
makes the procedure susceptible to errors in the amplification
factors x j .

In the next section we summarize the procedure before
turning to numerical simulations of examples.

D. Summary of the procedure

We describe above that the relevant parameters of Richard-
son extrapolation are Neff , the overhead �2, and the number of
nodes n. Since the spacing method cannot always be chosen
at will we also include it into this list. We now summarize our
protocol for Richardson extrapolation.

(1) Define a variance Var[R̂n] = σ 2/Neff that is acceptable
and choose Neff accordingly.

(2) Choose �2 depending on the sampling budget (Ntot =
Neff�

2). The larger, the better [43].
(3) Determine the spacing of the nodes. As discussed in

Sec. III B, the tilted Chebyshev nodes most likely lead to the
best extrapolation result.

(4) Pick a value for n. Given � and the spacing method,
n̂ is the n maximizing (n+1)!

Cn
in Fig. 3 and can be viewed as

guide for a good choice of n. If Eλ0 (x) and its derivatives vary
a lot, then n ≈ n̂ should be a good choice whereas if it has
a small slope or is an exponential decay n should be chosen
larger n � n̂.

Once these choices have been made, the procedure is
straightforward. First, numerically solve � = ∑n

j=0 |γ j | for
x1. Use this to calculate the nodes x j , γ j , and Nj . Mea-
sure Eλ0 (x j ) each Nj times and calculate the estimate Rn =∑n

j=0 γ jEλ0 (x j ) of E∗. This estimate has a statistical error
(standard deviation) of σ/

√
Neff . This procedure is schemati-

cally represented in Fig. 4.

IV. EXAMPLES

In this section, we test the procedure for Richardson
extrapolation on different noise models and investigate the
dependency on n. First, we focus on Markovian noise and
in a second step address non-Markovian noise. All estima-
tors in this section have a variance of σ 2/Neff . Note that
the following figures focus on the bias and do not show the
variance.

Markovian noise (M) can emerge for example when the
quantum state interacts with a bath and the bath correlation
functions decay much faster than typical time scales of the
system [44]. It typically leads to an exponential decay of the
expectation value [18]:

EM
λ0

(x) = E∗e−λ0x. (19)

For � = 8 and 64 and n = 5, |Bias[R̂n]| is plotted over λ0

in Fig. 5. We can see that the bias depends most notably on
the overhead �2. It can therefore make sense to use more
measurements and increase �2 in order to reduce the bias.
Furthermore, we can see that for n = 5 the equidistant spacing
performs significantly worse than the other methods in accor-
dance with the general results presented in Sec. III.

In order to investigate the dependency on n, we fix λ0 =
0.4 and plot the resulting estimate for different n in Fig. 6.

No. 
no. 

FIG. 4. Schematic representation of the procedure for Richard-
son extrapolation.

Remember that, for a given choice of �, each data point is cal-
culated using the same sampling budget Ntot , independently of
n. We can observe that the bias can be significantly reduced by
increasing n for all spacing methods except for the equidistant
nodes.

For this noise model, increasing n reduces the error by
more than an order of magnitude. Interestingly, this is the case
even if λ0 � 1 (which is not shown here), such that this effect
is not solely caused by a decrease of |E (n+1)

λ0
(ξ )| with n. It

seems that increasing n is advantageous for any noise strength
if the noise is given by an exponential decay. In practice, the
limitations mentioned in Sec. III C render n 	 10 impractical
for many QEM applications.

If we know the explicit form of the noise function, we
can directly fit it to the data points and there is no need
for Richardson extrapolation. In the case that the noise
is purely Markovian and can be approximated by a sin-
gle or multiexponential decay, this has been done, e.g., in
Refs. [11,17]. Another idea is to use Richardson extrapola-
tion on the data points ln Eλ0 (x j ) for an estimate of ln E∗
(assuming limλ→∞ Eλ = 0) which is equivalent to a poly-
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FIG. 5. Richardson extrapolation used on the Markovian noise
model in Eq. (19). The bias is shown over the minimal noise strength
λ0 for � = 8 and 64 and n = 5. The spacing methods are tilted
Chebyshev (blue, solid), extremal Chebyshev (yellow, dashed), expo-
nential (green, dotted), and equidistant (red, dot-dashed). The black
solid line shows the result without mitigation |Bias[R̂0]|. The y axis
is in units of E∗. For the figures, we assume E∗ to be nonzero and
positive.

exponential extrapolation [29]. However, if the noise is a
combination of different functions or is unknown altogether,
then an important advantage of Richardson extrapolation is
that polynomials are flexible enough to fit different kinds of
functions.

To test this we now introduce non-Markovian (NM) noise
components to the noise function. Therefore, we use the

FIG. 6. Comparison of the bias of Richardson extrapolation on
Markovian noise for fixed λ0 = 0.4 and different n. The overhead
in measurements is �2 = 42, 322, and 2562, respectively. Note that
the smaller the bias the better the QEM protocol works. The dif-
ferent spacing methods are tilted Chebyshev (blue, up-triangle),
extremal Chebyshev (yellow, diamond), exponential (green, down-
triangle), and equidistant (red, circle). The black square for n =
0 is the bias without mitigation |Bias[R̂0]|. The y axis is in
units of E∗.

FIG. 7. Comparison of the bias of Richardson extrapolation on
the noise model in Eq. (20) with η = 0.1 and λ0 = 0.4 for different
n. The overhead in measurements is �2 = 42, 322, and 2562, respec-
tively. Note that the smaller the bias the better the QEM protocol
works. The different spacing methods are tilted Chebyshev (blue,
up-triangle), extremal Chebyshev (yellow, diamond), exponential
(green, down-triangle), and equidistant (red, circle). The black square
for n = 0 is the bias without mitigation |Bias[R̂0]|. The y axis is in
units of E∗.

following model:

ENM
λ0

(x) = E∗ e−(1−η)λ0x

cos(2)

[
cos(ηλ0x) cos(ω)

+ ηλ0x

ω
sin(ηλ0x) sin(ω)

]
(20)

where ω =
√

4 + (ηλ0x)2. The non-Markovian part of this
noise stems from the coupling of a single-qubit system to an
environment consisting of one qubit. The parameter η can be
used to interpolate between purely Markovian noise (η = 0)
and highly non-Markovian noise (η = 1). A more detailed
description of this noise model can be found in Appendix B.

In Fig. 7, we consider the presence of a small non-
Markovian component, η = 0.1, and plot the bias of R̂n over
n. In this case, the error mitigation behaves similarly to the
purely Markovian case in Fig. 6. In particular, for all spacing
methods except the equidistant nodes, the bias can be reduced
significantly by increasing n. For these simple Markovian or
near-Markovian noise models it seems that there is no disad-
vantage when increasing n.

In Fig. 8, we focus on the tilted Chebyshev nodes and
investigate how mitigation for different n changes when inter-
polating between Markovian and non-Markovian noise. For
η ≈ 0, n = 9 (dashed lines) clearly leads to a lower bias than
n = 4 (solid lines). For η → 1 this is not true anymore, espe-
cially for small �. For the highly non-Markovian noise model,
the derivatives |E (n+1)

λ0
(ξ )| do not decrease (on average) when

increasing n. From the considerations in Sec. III C we there-
fore expect the mitigation result to worsen when n 	 n̂ which
is what can be observed in the plot. This confirms that, for a
simple noise model, n should be chosen larger than n̂ whereas
for more complex noise n should be chosen in proximity
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FIG. 8. The bias of mitigation for different levels of non-
Markovianity. The noise is purely Markovian for η = 0 and highly
non-Markovian for η = 1. There are three different values for �—4
(purple), 32 (brown), and 256 (blue)—and two for n: 4 (solid) and
9 (dashed). The black solid line is the result without mitigation
|Bias[R̂0]|. The dotted green line is the fake-node approach with
S(x) = x2 for � = 4 and n = 9. For some η, there is a transition
between over- and underestimation of the true expectation value E∗

which is why we see “dips,” where the bias briefly becomes zero.
The y axis is in units of E∗.

to n̂. The full dependency of the bias on n for the highly
non-Markovian case η = 0.9 is shown in Appendix C.

Finally, we want to briefly comment on the idea of fake
nodes introduced in Ref. [45]. From the Runge problem [27],
it is well known that equidistant nodes are not well suited
for interpolation. However, if specific hardware requirements
force the nodes to be equidistant, their limitations can be
bypassed by mapping them to so called fake nodes x̃ j = S(x j )
for some invertible S(x) with S(0) = 0 and S(1) = 1 and
performing Richardson extrapolation of Eλ0 [S−1(x̃)] on these
fake nodes. By choosing for example the zeros of the Cheby-
shev polynomials as fake nodes the limitations of equidistant
nodes can be avoided. While this proved to be effective for
the interpolation of the Runge function, the map to the tilted
Chebyshev nodes of the same � does not provide a benefit
for the Richardson extrapolation of Eqs. (19) and (20). How-
ever, the same formalism can be used in a different way to
improve the mitigation result in the completely non-
Markovian case η = 1. Since then the function ENM

λ0
(x) is an

even function in x, it makes sense to use only even polynomi-
als for extrapolation. This idea has been mentioned in Ref. [9]
and can be achieved by choosing S(x) = x2, for which ENM

λ0
(x)

is approximated in the space spanned by {1, x2, x4, . . . , x2n}
instead of {1, x, x2, . . . , xn}. An example for this with n = 9 is
plotted in Fig. 8. There the fake nodes x̃ j are the tilted Cheby-
shev nodes with � = 4 and the corresponding real nodes are
x j = √

x̃ j .

V. CONCLUSION

The goal of quantum error mitigation is to find an estimator
of a noiseless expectation value from noisy observations. This
estimator should have small bias and variance for as few

computational resources as possible. We analyze the interplay
of these three factors in the case of Richardson extrapolation.
It is a common perception that Richardson extrapolation is
limited by its substantial increase in variance, especially if the
number of nodes is increased. We propose a protocol in which
the variance is independent of the number of nodes and can
be tuned precisely. This allows us to increase the number of
nodes n, which in turn can reduce the bias of the zero noise es-
timate significantly, especially for large sampling overheads.
Furthermore, we show that equidistant nodes are not a good
choice for Richardson extrapolation and propose the tilted
Chebyshev nodes, which optimize the tradeoff between bias
and variance and outperform other choices, especially for
large n.
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APPENDIX A: TILTED CHEBYSHEV NODES

The optimization problem described in Sec. III B is
formalized as

minimize
x0,...,xn∈[1,∞)

Cn (A1)

subject to
n∑

j=0

|γ j | = � (A2)

and x0 = 1. (A3)

It can be solved using Lagrange multipliers μ and μ0. The
solution has to satisfy

∇
[

Cn − μ

(
n∑

j=0

|γ j | − �

)
− μ0(x0 − 1)

]
= 0 (A4)

where ∇ is the gradient with respect to (x0, . . . , xn, μ, μ0)T .
Performing the derivatives, this leads to

Cn = μ0x0δk,0 + μϕk (A5)

for k = 0, . . . , n, where δk,0 is the Kronecker delta and

ϕk :=
∑
j �=k

1

x j − xk
[(−1) jx jγ j + (−1)kxkγk]. (A6)

Notice that γ j = (−1) j |γ j |. Summing this expression over
k = 0, . . . , n, this leads to

n∑
k=0

Cn = (n + 1)Cn = μ0 (A7)

due to the antisymmetry under exchange of j ↔ k and thus

μϕk =
{−nCn if k = 0

Cn else. (A8)
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What is left to do is to show that Eq. (18), i.e.,

x j = 1 + sin2
( j

n+1
π
2

)
sin2

(
1

n+1
π
2

) (x1 − 1), (A9)

solves this system of equations Eq. (A8). In order to do so the
following equations are useful:

α := π

2(n + 1)
, (A10)

1

xm − x j
= 1

x1 − 1

sin2(α)

sin2(mα) − sin2( jα)
(A11)

= 1

x1 − 1

sin2(α)

sin((m − j)α) sin((m + j)α)
,

γ0

Cn
=

(
n∏

l=0

sin2(α)

sin2(lα)

1

x1 − 1

)
, (A12)

x jγ j

Cn
= x j

Cn

∏
m �= j

xm

xm − x j

=
∏
m �= j

(x1 − 1)−1 sin2(α)

sin[(m − j)α] sin[(m + j)α]
. (A13)

In the last product, the sine appears in the denominator 2n
times. The symmetries sin(x) = − sin(−x) as well as sin[(n +
1 + k)α] = sin[(n + 1 − k)α] can be used to bring all argu-
ments into the interval [0, π/2], which leads to an overall sign
of (−1) j . Then each argument lα with l = 1, . . . , n appears
exactly twice except for l = 2 j, n + 1 − j (only once), and
j (three times). Additionally, l = n + 1 appears once. This
leads to

x jγ j

Cn
= (−1) j γ0

Cn

sin[(n + 1 − j)α] sin(2 jα)

sin[(n + 1)α] sin( jα)
(A14)

= (−1) j γ0

Cn
[2 cos2( jα) − δ j,0] (A15)

such that for arbitrary j

x jγ j = (−1) jx0γ0[2 cos2( jα) − δ j,0] (A16)

Inserting all of this into ϕk , this gives

ϕk = sin2(α)
x0γ0

x1 − 1
�k, (A17)

where �k := ∑
j �=k

2 cos2( jα)+2 cos2(kα)−δk,0−δ j,0

sin2( jα)−sin2(kα)
. A last step is to

show that

�k =
{

2n(n + 1) if k = 0
−2(n + 1) else. (A18)

This last step has not been achieved analytically for arbi-
trary n. Only for k = 0 a proof can be found for example in
Ref. [46] Chap. 9, Art. 69. However, for a given n this formula
can be easily checked numerically, which we have done for
n � 1000. For the purpose of zero noise extrapolation, we do
not expect n to exceed 15. Therefore for n � 1000 and the
Lagrange multiplier

μ = −Cn(x1 − 1)

2 sin2(α)x0γ0(n + 1)
(A19)

we get

Cn = −μ

n
ϕ0 = μϕk �=0. (A20)

This proves that Eq. (A9) solves Eq. (A8) and is thus a
candidate for a minimum or a maximum of the optimiza-
tion problem [Eqs. (A1)–(A3)]. Compared to other spacing
methods, this choice has a lower Cn such that it is reason-
able to assume that the tilted Chebyshev nodes are indeed
a minimum of the optimization problem. It should be noted
that there might be other minima (that respect the ordering
x0 < · · · < xn) leading to a lower minimum of Cn.

APPENDIX B: NON-MARKOVIAN NOISE MODEL

The non-Markovian noise model was derived using the
following toy model. The system consists of a single qubit
that is subjected to depolarization noise of strength λM =
(1 − η)λ and at the same time coupled to a second qubit,
which simulates a highly non-Markovian environment, via the
Hamiltonian H = Z ⊗ I + λNMX ⊗ X + I ⊗ Z . Here λNM =
ηλ is the non-Markovian coupling strength and I , X , and Z
denote the identity and the x- and z-Pauli matrices, respec-
tively. The dynamics of the two-qubit state ρλ is given by the
equation

∂

∂t
ρλ(t ) = −i[H, ρλ] + λM

(
tr2(ρλ)

2
− ρλ

)
. (B1)

We used the initial condition ρλ0 (0) = I+X
2 ⊗ I

2 . After time τ

the expectation value ENM
λ (τ ) = tr[ρλ(τ )A] of the observable

A = X ⊗ I is given by

ENM
λ (τ ) = e−τλM

[
cos(τλNM) cos(τω)

+ λNM

ω
sin(τλNM) sin(τω)

]
(B2)

FIG. 9. Comparison of the bias of Richardson extrapolation on
the noise model in Eq. (20) with η = 0.9 and λ0 = 0.4 for different
n. The overhead in measurements is �2 = 42, 322, and 2562, respec-
tively. The different spacing methods are tilted Chebyshev (blue,
up-triangle), extremal Chebyshev (yellow, diamond), exponential
(green, down-triangle), and equidistant (red, circle). The black square
for n = 0 is the bias without mitigation |Bias[R̂0]|. The y axis is in
units of E∗.
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where ω = √
4 + λNM. For simplicity we chose τ = 1, which

results in the noise model in Eq. (20).

APPENDIX C: HIGHLY NON-MARKOVIAN NOISE

In the highly non-Markovian case, the mitigation behavior
can be more complex than for purely Markovian noise. In
Sec. IV, we demonstrated that in this case the mitigation result
does not necessarily improve with larger n. Analogously to
Figs. 6 and 7, we plot the bias of R̂n over n in Fig. 9, this time
for a highly non-Markovian noise η = 0.9.

For this noise function, the mitigation is more chaotic and a
small change in one of the parameters n or λ0 can have a large
influence on the mitigation result. We can see that, for small
�, the mitigation result worsens for larger n. For � = 4 this is
the case once n > 3 and for � = 32 for n > 6. This confirms
that, for a complex noise model, n should not be chosen too
large. From Fig. 3 we can estimate that n̂ for � = 4, 32, and
256 are n̂ = 1, 2–3, and 5–6, respectively. For this specific
noise model it seems that n ≈ 2n̂ is a good choice for n. The
parameter �, on the other hand, should still be chosen as large
as possible. The larger �, the larger n can be chosen and the
more noise can be mitigated with Richardson extrapolation.
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