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In a breakthrough work, Bravyi, Gosset, and König (BGK) [Science 362, 308 (2018)] unconditionally proved
that constant-depth quantum circuits are more powerful than their classical counterparts. Their result is equivalent
to saying that a particular family of constant-depth quantum circuits takes classical circuits at least �(log n)
depth to “simulate,” in a certain sense. In our paper, we formalize their sense of simulation, which we call
“possibilistic simulation” or “p-simulation,” and construct explicit classical circuits that can p-simulate any
depth-d quantum circuit with Clifford and t T -gates in depth O(d + t ). Our classical circuits use {NOT, AND, OR}
gates of fan-in �2.
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I. INTRODUCTION

Quantum computation is widely believed to provide ad-
vantages over classical computation. Popular science articles
sometimes explain the advantage by some notion of quan-
tum parallelism. Indeed, it is true that a quantum computer
can efficiently operate, “in parallel,” upon a quantum wave
function encompassing exponentially many classical states.
Unfortunately, the class of efficient operations (standard quan-
tum gates for example) is restrictive. Moreover, any quantum
computation must finish with a measurement that collapses
the quantum wave function to just one classical state. Even
ignoring noise, these caveats mean it is not obvious if quantum
computation holds any actual advantage.

Academically, the belief in quantum advantage is more cor-
rectly supported by evidence of quantum-classical separations
in query, time, and circuit complexity.

In circuit complexity, one early result is Ref. [1], which
showed that quantum circuits can compute in constant depth
the parity of all input bits assuming the controlled-multi-
NOT gate, c-X ⊗n, can be implemented in constant depth
(also see the later work, Ref. [2]). Separation is therefore
provably achieved because parity is provably uncomputable
by constant-depth classical circuits [3]. More precisely, the
separation is against classical AC0 circuits, where gates are
restricted to {NOT, AND, OR} of arbitrary fan-in and fan-out
and where circuit size, i.e., the number of gates, is restricted
to be polynomial [4]. However, as the c-X ⊗n gate acts on all
n qubits, it is unreasonable to assume it can be implemented
in constant depth. Only recently, in a breakthrough work
by Bravyi, Gosset, and König [5] (henceforth BGK), were
such unreasonable assumptions removed in achieving a circuit
complexity separation. Indeed, their separation was achieved
by a quantum circuit with gates in {H, cc-Z, c-S†}. What is
particularly satisfying is that BGK proved their separation via
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Ref. [6] from quantum foundations, which can be viewed as
extending fundamental Bell-type inequalities to a multiparty,
bounded-locality setting. One can already catch a glimpse of
the connection between circuits and foundations by noting
that the BGK quantum circuit applies c-S† gates followed by
H gates just before a computational basis measurement. But
this is the same as a controlled changing of measurement basis
from X to Y , a technique commonly used in optimal quantum
strategies of nonlocal games such as Clauser-Horne-Shimony-
Holt (CHSH) [7] or Greenberger-Horne-Zeilinger (GHZ) [8].

Notwithstanding the buildup of evidence in favor of quan-
tum advantage, substantial efforts have also been devoted to
the time-efficient classical simulation of quantum computa-
tion. In this arena, the most celebrated result is arguably the
Gottesman-Knill theorem which says that quantum Clifford
circuits on n qubits, whereby |0n〉 is evolved by L Clifford
gates, i.e., {H, S, c-X } [9] and followed by M Pauli-observable
measurements, can be efficiently simulated in time O[(L +
M )n3] [10–12].

One main motivation for studying simulations is to
understand quantum advantages better. For example, the
Gottesman-Knill theorem means that entanglement is in-
sufficient for time-complexity quantum advantages because
Clifford circuits can generate entanglement [13].

Currently, there are two well-established notions of sim-
ulating a given quantum circuit [14–16]: strong and weak.
Strong simulators approximate the probability of a particular
output, while weak simulators approximately sample from the
output distribution.

In our paper, we extract from recent Refs. [5,17–21] an-
other notion of simulation. We say a (nonuniform) classical
circuit simulates a quantum circuit if, over all inputs, the
output of the classical circuit is a possible (i.e., occurring with
nonzero probability) output of the quantum circuit. We call
this “possibilistic simulation” or “p-simulation.” Then, BGK’s
result can be phrased as an unconditional �(log n) lower
bound on (even nonuniform) classical circuits that p-simulate
certain constant-depth quantum circuits.
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It is known that p-simulating (classically controlled) Clif-
ford circuits, such as those appearing in BGK, is in the
complexity class ⊕L ⊂ NC2 [12,21]. This means that there
exists an O(log2 n)-depth uniform classical circuit that p-
simulates the BGK quantum circuits.

In comparison, our main result is the construction of
nonuniform classical circuits that can p-simulate any depth-d
quantum circuit with Clifford and t T -gates in depth O(d + t )
(Theorem 1). We consider Clifford and T -gates as they are
universal for quantum computation.

II. POSSIBILISTIC SIMULATION

In this section, we give our formal definition of p-
simulation, as extracted from Refs. [5,17–20].

Definition 1. We make the following definitions for circuits
with n input lines and m output lines.

(i) A relation on the Cartesian product {0, 1}n × {0, 1}m is
a subset R ⊆ {0, 1}n × {0, 1}m.

(ii) A quantum circuit Q on n input qubit lines and mea-
sured on m output qubit lines in the computational basis
defines a relation R(Q) ⊆ {0, 1}n × {0, 1}m by

(x, y) ∈ R(Q) ⇐⇒ 〈y|Q|x〉 �= 0. (1)

(iii) Let C : {0, 1}n → {0, 1}m be a classical circuit, and R
be a relation on {0, 1}n × {0, 1}m. We say C p-simulates R if

[x,C(x)] ∈ R, for all x ∈ {0, 1}n. (2)

In our paper, we follow BGK in restricting our classical
circuits to having gates in the standard set {NOT, AND, OR}
({¬,∧,∨}) of fan-in �2 but arbitrary fan-out. A gate’s fan-in
(fan-out) is its number of input (output) lines. The cost of our
simulator stated in Theorem 1 does require the gates to have
arbitrary fan-out, as we briefly explain following Theorem
1. Also following BGK, we allow quantum circuits to use
additional all-zero “advice” bit-string inputs.

Definition 2. Let Q and C be quantum and classical circuits,
respectively. We say C p-simulates Q if C p-simulates R(Q).

For example, we can set m = n = 1, and verify that C = 0
and C = NOT p-simulates Q = H (Hadamard gate) and Q =
X (Pauli X gate), respectively.

We note that the above definition of p-simulation can be
generalized to the bounded-error and average-case setting—
see Sec. V.

III. p-SIMULATOR CONSTRUCTION

In this section, we construct a p-simulator by explicitly
constructing its classical circuit. We then analyze the cost of
this p-simulator in terms of its circuit depth and size to prove
the main result of this paper, Theorem 1.

We assume for simplicity that m = n and that the quantum
circuit takes no advice. It is simple to generalize this construc-
tion when these conditions do not hold.

We first construct classical circuits that p-simulate Clifford
circuits and then extend to Clifford+T circuits. The correct-
ness of our constructions should be self-evident.

Clifford. Let Q be a Clifford circuit. First, we can write an
n-bit input |x〉 = |x1 . . . xn〉 as |x〉 = X x1

1 · · · X xn
n |0n〉.

TABLE I. Elementary commutation relations. For tidiness, we
write E for c-X2 in this table only. The same commutation relations
hold (up to global minus signs irrelevant for p-simulation) when
there is the same exponent e ∈ {0, 1} on the Pauli operator of the
left-hand side and the Pauli operator(s) of the right-hand side. For
example, the top left equation gives HX e = ZeH for e ∈ {0, 1}.

HX = ZH HY = −Y H HZ = XH ,
SX = Y S SY = −XS SZ = ZS,
EX1 = X1X2E EY1 = Y1X2E EZ1 = Z1E ,
EX2 = X2E EY2 = Z1Y2E EZ2 = Z1Z2E

Now, we may use the commutation relations listed in Table
I to commute all X xi

i past the Clifford circuit Q and just be-
fore (computational basis) measurements. Note that Q would
remain unchanged. Moreover, we may without loss of gen-
erality assume that the resulting x-dependent gates on qubit
i ∈ [n] are of the form X a(i)·x

i for some a(i) ∈ {0, 1}n, where
the dot means the inner product mod 2. The “without loss of
generality” is with respect to our definition of p-simulation
because just before (computational basis) measurements, Y
can be replaced by X , and Z by identity. Note that the X gate
is the same as the classical NOT gate and we use the latter
notation in the following.

Now, to p-simulate Q, simply precompute an n-bit string
s in the support of Q |0n〉, which can be done efficiently by
Gottesman-Knill. It is important to note that the precomputa-
tion only helps construct the classical circuit which we first
and foremost want to show exists, so, in principle, it does not
matter if precomputation is inefficient as will be the case later.
Then s defines a classical circuit C which, on input x ∈ {0, 1}n,
outputs the n-bit string:

C(x) :=
(

n∏
i=1

NOTa(i)·x
i

)
s = [NOTsi (a(i) · x)]n

i=1. (3)

Writing | · | for the Hamming weight, it is clear that
a(i)x can be computed in parallel, across i ∈ [n], in
depth O(log maxi |a(i)|) by an XOR binary tree of size
O(

∑n
i=1 |a(i)|) = O(n maxi |a(i)|). XOR can be replaced by

its optimal decomposition into four standard gates, i.e.,
XOR(x, y) = (x ∨ y) ∧ ¬(x ∧ y). s can be incorporated in
depth 1 via at most n NOT gates. Therefore, C can have a depth
O(log maxi |a(i)|) and size O(n maxi |a(i)|). This completes the
description of our construction in the Clifford case.

Clifford+T . Let Q̃ be a quantum circuit with Clifford gates
and t T -gates. We may replace each T -gate by a (postselected)

FIG. 1. The T -gadget postselected on |0〉. |A〉 is the so-called
magic state 1√

2
(|0〉 + eiπ/4 |1〉). |0〉 〈0| is the postselection projector

onto |0〉 and can be performed just before measuring the original
qubit. If we had postselected on |1〉, we would implement T † instead
(up to a global phase).
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FIG. 2. Quantum circuit identities used to define quantities in our
construction as illustrated by an example with n = 2, t = 1. Note that
the removal of the global

√
2 factor is also without loss of generality.

T -gadget, as shown in Fig. 1. Such a replacement gives a
Clifford circuit Q on n + t qubits.

Q has original input |x〉 on the top n qubit lines and magic
state inputs |A⊗t 〉 on the bottom t qubit lines. Just before mea-
surements of the top n qubit lines, Q is postselected for |0t 〉 in
the bottom t qubit lines. This construction is standard [22].

As in the Clifford case, we again write |x〉 = |x1 . . . xn〉 as
|x〉 = X x1

1 · · · X xn
n |0n〉 and commute all X xi

i past the Clifford
circuit Q. This results (again without loss of generality) in Q
followed by X a(i)·x

i on qubit i ∈ [n + t], for some a(i) ∈ {0, 1}n.
Next, we precompute the state |ψ〉 := Q |0n〉 |A⊗t 〉. Note

that this precomputation is inefficient in general and is the
reason why our circuit construction is nonuniform. In contrast
to the Clifford case, it is believed that this precomputation
cannot be done efficiently, as else we can efficiently strongly
simulate quantum computation. From |ψ〉, we precompute
the 2t states |ψz〉 := (In ⊗ 〈z|) |ψ〉 where z ∈ {0, 1}t . |ψz〉 are
necessarily nonzero n-qubit states equal to the output of Q̃ but
with a z-indicated subset of T -gates replaced by T †. Let s(z)
be an n-bit string in the support of |ψz〉. s(z) defines a classical
circuit Cz which, on input x ∈ {0, 1}n, outputs the n-bit string,

Cz(x) :=
(

n∏
i=1

NOTa(i)x
i

)
s(z) = [

NOT
s(z)i
i (a(i)x)

]n

i=1, (4)

where a(i)x can again be computed in depth O(log maxi |a(i)|).
Up to this point, we have only used the T -gadget and commu-
tation to define quantities.

In Fig. 2, we give an example with n = 2, t = 1, and where
the quantities defined are (or can be)

a(1) = 000, a(2) = a(3) = 010, (5)

|ψ〉 = 1
2 (|000〉 + |110〉 + eiπ/4 |001〉 + eiπ/4 |111〉), (6)

|ψ0〉 , |ψ1〉 ∝ |00〉 + |11〉 , (7)

s(0) = 00, s(1) = 11. (8)

In order to describe the classical p-simulation circuit C, let
A ∈ F t×n

2 denote the t × n matrix with entries Ai j = a(n+i)
j ∈

F2 = {0, 1} for all i ∈ [t], j ∈ [n]. Let rank(A) and image(A)

denote the rank and image of A, respectively. Note that
|image(A)| = 2rank(A).

We proceed to describe C. C takes as input x ∈ {0, 1}n and
consists of three consecutive stages.

In stage 1, we compute the 2rank(A) n-bit strings
Cz(x), for all z ∈ image(A), in depth O(log maxi |a(i)|)
using O(

∑n
i=1 |a(i)| + n2rank(A) ) = O[n(maxi |a(i)| + 2rank(A) )]

gates. In the gate count, the term
∑n

i=1 |a(i)| is due to comput-
ing the string c := (a(i)x)n

i=1 and the term n2rank(A) is due to
applying up to n NOT gates, more precisely {NOT

s(z)i
i }n

i=1, to c
for each z ∈ image(A) [cf. Eq. ( 4)].

In stage 2, we compute the t-bit string,

z(x) :=
⎛
⎝ n+t∏

i=n+1

NOTa(i)x
i

⎞
⎠0t = (a(n+i)x)t

i=1, (9)

in depth O(log maxi |a(i)|) using O(
∑t

i=1 |a(n+i)|) =
O(t maxi |a(i)|) gates. Note that z(x) = Ax ∈ image(A).

In stage 3, we implement a simple switching circuit [23].
(This construction may be better understood after first ex-
amining the proof of Proposition 2.) More specifically, we
compute the n-bit output string y := Cz(x)(x) in two serial
steps:

(i) Compute a 2rank(A)-bit string f of Hamming weight
1, where f j = δa( j),z(x) and a( j) is the ( j + 1)th t-bit
string in image(A) (under any fixed enumeration) for j ∈
{0, . . . , 2rank(A) − 1}, in depth O(log t ) using O(t2rank(A) ) gates
via the formula

f j =
t∧

k=1

[NOTa( j)k⊕1 z(x)k], (10)

where we used the fact that δu,v = NOTu⊕1 v for any two bits
u, v ∈ {0, 1}.

(ii) Compute the n-bit string y in depth O[rank(A)] using
O(n2rank(A) ) gates via the formula

yi =
2rank(A)−1∨

j=0

[[Ca( j)(x)]i ∧ f j]. (11)

We illustrate our overall circuit in the case n = t =
rank(A) = 2 in Fig. 3. This completes the description of our
construction.

We now analyze the circuit depth and size of our construc-
tion to obtain the main result of this paper.

Theorem 1. Any n-qubit quantum circuit Q of depth d
with Clifford, t T -gates, and associated A matrix can be p-
simulated by a classical circuit C of

depth = O[d + log(t ) + rank(A)] = O(d + t ),

size = O[(n + t ) (2rank(A) + n)] = O[(n + t )(2t + n)],

that consists of {NOT, AND, OR} gates of fan-in �2 and arbi-
trary fan-out.

Proof. Define C by our construction applied to Q. The
depth and size of C can be analyzed as follows.

In Eqs. (4) and (9), we have

|a(i)| = min[O(2d ), n], for all i ∈ [n + t], (12)
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FIG. 3. Illustration of our construction with n = t = rank(A) = 2 and input x, showing how stages 1–3 fit together in series. Circles are
single bits and squares are gates. The notations z(x), Cz(x), and f j are defined in Eq. ( 9), Eq. ( 4), and the description of stage 3, respectively.
z(x), Cz(x) are (t = 2)-bit and (n = 2)-bit strings, respectively, on which a subscript i denotes the ith bit. Note that each gate has fan-in �2.

because Q has depth d with Clifford gates of fan-in �2,
and the Hamming of weight of a(i) ∈ {0, 1}n is at most n.
So stages 1 and 2 can be implemented by a circuit of depth
O(d ) and size O[n(n + t + 2rank(A) )]. As discussed, stage 3
can be implemented by a circuit of depth O[log(t ) + rank(A)]
and size O[(n + t )2rank(A)]. Now, note that rank(A) � t
because A is a t × n matrix. Therefore, C has over-
all depth O[d + log(t ) + rank(A)] = O(d + t ) and overall
size

O[(n + t )n + n2rank(A) + (n + t )2rank(A)]

= O[(n + t ) (2rank(A) + n)]

= O[(n + t )(2t + n)], (13)

as required. �
The cost of our p-simulator in Theorem 1 does require the

gates to have arbitrary fan-out as assumed in its statement.
However, it can be seen that if the fan-out is bounded by a
constant, then the theorem still holds but with an additional
depth of

O[rank(A) + log(n) + log(t )], (14)

and an additional size of

O[(n + t )(2rank(A) + n)]. (15)

These additional costs are due to additional gates used to
fan out (i.e., copy) variables at each of the three stages of our
construction. The details are as follows.

Stage 1. For each i ∈ [n], we use O(log n) depth and O(n)
gates to make n copies of input variable xi. Similarly, for
each i ∈ [n], we use O[log(2rank(A) )] = O[rank(A)] depth and
O(2rank(A) ) gates to make 2rank(A) copies of a(i)x. Therefore,
over all i ∈ [n], these copying steps of stage 1 cost a depth of
O[rank(A) + log n] and size of O[n(2rank(A) + n)].

Stage 2. For each i ∈ [n], we use O(log t ) depth and O(t )
gates to make t copies of input variable xi. Therefore, over all

i ∈ [n], this copying step of stage 2 costs a depth of O(log t )
and size of O(nt ).

Stage 3. Step (i): For each k ∈ [t], we use O(log 2rank(A) ) =
O[rank(A)] depth and O(2rank(A) ) gates to make 2rank(A) copies
of z(x)k . Step (ii): For each j ∈ {0, . . . , 2rank(A) − 1}, we
use O(log n) depth and O(n) gates to make n copies of f j .
Therefore, over all k ∈ [t] and j ∈ {0, . . . , 2rank(A) − 1}, these
copying steps of stage 3 cost a depth of O[rank(A) + log n]
and size of O(t2rank(A) + n2rank(A) ).

Adding together the additional depths and additional sizes
in each of the three stages gives Eqs. (14) and (15), respec-
tively.

Additional p-simulation techniques. We can also refine
and extend Theorem 1 by thinking more carefully about our
construction. First, we may choose s(z) more carefully such
that the size of the set {s(z)|z ∈ image(A)} is minimized.
Second, Pauli-T commutation relations, namely T Z = ZT ,
T X ∝ (X + Y )T , and TY ∝ (X − Y )T , instead of the T -
gadget, sometimes suffice to handle a T -gate, which removes
its constant-depth contribution. Third, the only property of the
T -gate that is used is that it can be applied by state injection
into a Clifford circuit. Since this property holds for any gate
that is in the set G consisting of diagonal gates [24] and gates
in the third level of the Clifford hierarchy [25], Theorem 1
extends to circuits composed of G gates and Clifford gates,
i.e., t could count the number of gates the circuit has in G
(that are not Clifford) and the theorem would still hold. Since
an arbitrary single-qubit gate can be decomposed into three
Z-rotation gates (which are diagonal) and two Hadamard gates
(see Problem 8.1 in Ref. [26]), Theorem 1 also extends to
circuits composed of single-qubit gates and Clifford gates. In
fact, since an arbitrary constant-qubit gate can be decomposed
into a constant number of single-qubit gates and controlled-
NOT (CNOT) gates (see Sec. 4.5.2 in Ref. [11]), Theorem 1
also extends to circuits composed of constant-qubit gates and
Clifford gates.
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IV. COMPARISON TO STRONG AND WEAK SIMULATORS

There are two preexisting notions of simulation, strong
simulation and weak simulation. Following the notation of
Definition 1 with m = n, a strong simulation of a quantum
circuit Q (with a fixed input) is an (approximate) evaluation
of the probability of obtaining a given output bit string y ∈
{0, 1}n when Q is measured in the computational basis at the
end of the computation. A weak simulation of Q is an (ap-
proximate) sample of y ∈ {0, 1}n from the distribution arising
from measuring Q in the computational basis at the end of the
computation. A strong simulator of a family F of quantum
circuits is a classical algorithm that takes as input a (classical
description of) quantum circuit Q ∈ F and y ∈ {0, 1}n and
performs a strong simulation of (Q, y). A weak simulator of F
is a classical algorithm that takes as input a circuit Q ∈ F and
performs a weak simulation of Q. For more details about these
definitions, see, e.g., Sec. 2 in Ref. [14], Sec. 2 in Ref. [15], or
Sec. 8.1 in Ref. [16]. For a recent review of strong and weak
simulators, see Sec. III in Ref. [27].

We now argue that existing results on strong and weak
simulators do not imply our result on p-simulation, Theorem
1. Our argument is also intended to elucidate the differences
between p-simulation and strong and weak simulation.

We first consider using a strong simulator for p-simulation.
We claim that even if it cost zero depth and size for the strong
simulator to evaluate the probability prob(y) of measuring
y for each y ∈ {0, 1}n, it would still cost depth �(n) and
size �(2n) for the strong simulator to output a y that has
prob(y) �= 0. We show the claim by the following argument.
For a quantum circuit Q, we define the family of 2n quantum
circuits FQ := {Qx|x ∈ {0, 1}n}, where Qx is Q but with the
input x hardwired at the beginning of Q using Pauli X gates.
To use a strong simulator A to p-simulate Q, we should apply
it to the family FQ and each y ∈ {0, 1}n. Now, we set Q to be a
quantum circuit that for an input x outputs x with probability
1 (Q does not necessarily have to be the identity circuit and
could be complicated). For a given Qx, we may without loss
of generality assume that we have used A to compute prob(y)
for all y ∈ {0, 1}n, since we assumed this costs zero depth
and size. Then, the computation remaining is to output x ∈
{0, 1}n given a 2n-bit string [prob(0n), . . . , prob(1n)], where
prob(x) = 1 and prob(y) = 0 for all y ∈ {0, 1}n with y �= x.
In other words, the computation remaining is the computation
of the function idx : {0, 1}[2n] → {0, 1}n, where the input z is
promised to have Hamming weight 1, and the output f (z)
equals the i ∈ [2n] such that zi = 1. Our initial claim then
follows from the following:

Proposition 1. Let idx be defined as above. Then, any
classical circuit C with fan-in �2 that computes idx must have
depth �(n) and size �(2n).

Proof. We first establish the size lower bound. Consider
the 2n/2 input bit pairs (z1, z2), (z3, z4), . . . , (z2n−1, z2n ). We
claim that within each pair there must exist at least one bit
that is the input to a gate in C. Suppose for contradiction that
neither zi nor zi+1 is input to a gate, then the output of C is in-
dependent of zi and zi+1. Therefore, the outputs of C on inputs
z(i) and z(i+1) are the same, where z( j) denotes the 2n-bit string
of Hamming weight 1 with exactly one 1 at position j. This
is a contradiction since idx(z(i) ) = i �= i + 1 = idx(z(i+1)) and

C computes idx. Hence the claim. Therefore, there are at least
2n/2 inputs to gates in C. But each gate in C takes at most 2
inputs by the fan-in condition. Therefore, C must have at least
2n/4 gates.

Now, we establish the depth lower bound. Suppose C has
depth d , then C has at most O(n2d ) gates, where the n arises
from C having n-bit output and the 2d arises from C having
fan-in �2. Therefore cn2d � 2n/4 for some constant c. Hence
d � �(n). �

Therefore, using a strong simulator for p-simulation is
worse than using our classical p-simulator except when d +
t = �(n) (see Theorem 1).

We note that some strong simulators have the extra ability
to evaluate certain marginal probabilities of the output y,
meaning that they can evaluate the probability that certain
subsets of bits of y take given values. These strong simulators
can be used as weak simulators (see Lemma 1 in Ref. [15]).
Also see Ref. [28] for another approach for reducing the weak
to strong simulation that does not involve evaluating marginal
probabilities.

We now consider using a weak simulator for p-simulation.
Observe that an exact weak simulator for the circuit family FQ

defined above is a p-simulator for Q since a sample output by
the exact weak simulator must occur with nonzero probabil-
ity. Therefore, p-simulation is strictly easier than exact weak
simulation.

The weak simulators most comparable to our p-simulator
are those in Refs. [22,24,29] that weakly simulate Clifford+T
circuits by exploiting stabilizer decompositions. Indeed, our
construction is inspired by Ref. [22]. However, we note the
weak simulators in Refs. [22,24,29] only sample from a dis-
tribution that is ε-close to the output distribution of Q and
run in time �(1/εr ) for some r > 0. As ε cannot be set to
zero, these weak simulators are necessarily nonexact and so
are incomparable to our p-simulator: They might output a
sample that is output by Q with zero probability, something
our p-simulator never does.

Aside from the issue of exact sampling, another issue is
that weak simulators are typically costed in terms of time
complexity rather than circuit depth or size complexity. The
time complexity of the weak simulators in Refs. [22,24,29]
take the form O[poly(n, g) + poly(t )2βt ], where n is the num-
ber of qubits, g is the number of one- or two-qubit Clifford
gates, t is the number of T -gates, and 0 < β < 1. Since a
computation taking time T can be implemented by a circuit of
size O[T log(T )] (see proof of Theorem 6.6 in Ref. [3]), this
means that these weak simulators can be implemented using
circuits of size Õ[poly(n, g) + poly(t )2βt ], where the tilde
hides logarithmic factors. The dominant term is 2βt which
is better than the dominant term in the size cost of our p-
simulator, i.e., 2t , since β < 1. In addition, these circuits have
the advantage of being efficiently computable (see Remark 6.7
in Ref. [3]), which is not the case for our p-simulator circuit.

However, the size of a circuit says little about its depth.
Indeed, it is not obvious how to deduce the depth bound
in Theorem 1 even with t = 0 by considering a Gottesman-
Knill simulator, i.e., an exact weak simulator that operates
according to the proof of the Gottesman-Knill theorem in
Refs. [11,12]. While a Gottesman-Knill simulator can update
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each of the n stabilizers in parallel, updating the sign of each
after, say, a Hadamard layer H⊗n, uses depth O(log n). Worse
still, measurement in the standard basis, i.e., measurement
of n Pauli observables Zi for i ∈ [n], uses sequential depth
O(n) and does not seem easily parallelizable. This issue is
addressed with some work in Ref. [21] (Appendix C of arXiv
version), where the authors show that exact weak simulation
of (even classically controlled) Clifford circuits of any depth is
in ⊕L ⊂ NC2, and so can be implemented by classical circuits
of depth O(log2 n). Nevertheless, it is still unclear how to
recover the depth bound in Theorem 1 by considering weak
simulators when t > 0.

When t � n/β, the weak simulators in Refs. [22,24,29]
become essentially trivial because a weak simulator that op-
erates simply by storing and updating the quantum state
as a length-2n vector has a comparable time complexity of
O[(g + t )2n] [30].

A similar phenomenon occurs with our p-simulator. When
t � n, the depth and size of our p-simulator (as stated in
Theorem 1) become essentially trivial because any function
f : {0, 1}n → {0, 1}n can be computed by a simple circuit
of comparable depth and size. The last fact can be seen by
considering a circuit similar to stage 3 of our p-simulator. For
completeness, we prove it below.

Proposition 2. Let f : {0, 1}n → {0, 1}n be an arbitrary
function. Then, there is a classical circuit C with fan-in �2
of depth O(n) and size O(n2n) that computes f .

Proof. Let x ∈ {0, 1}n be the input to f . The circuit C
computes f (x) in two serial steps. In the first step, C computes
the 2n bits { fz|z ∈ {0, 1}n}, defined by fz = 1 if and only if
z = x, using the formula

fz =
n∧

i=1

(NOTzi⊕1 xi ), (16)

where we used the fact that δu,v = NOTu⊕1 v for any two bits
u, v ∈ {0, 1}. This takes depth O(log n) and size O(n2n). In the
second step, C computes the output y ∈ {0, 1}n by the formula

yi =
∨

z∈{0,1}n

[ f (z)]i ∧ fz. (17)

This takes depth O(n) and size (n2n).
Adding together the depths and sizes in the first and second

steps gives the result. �
Unfortunately, the above observation means our p-

simulator gives a trivial result if applied to p-simulate the
BGK quantum circuit (see Fig. 1 of the arXiv version of
Ref. [5]). Indeed, in the BGK quantum circuit, there are �(n2)
cc-Z gates and �(n) c-S gates. If we decompose each cc-Z and
c-S gate into a constant number of T and Clifford gates, then

we obtain a p-simulator of the BGK quantum circuits with
depth �(n2). This is very inefficient because, as we noted at
the beginning, there exists a p-simulator of depth O(log2 n).

V. CONCLUSION

In p-simulation, we have defined a natural framework that
precisely captures an alternative type of quantum advantage
that has recently come to light [5,17–20]. We found how T
gates are necessary for advantage according to Theorem 1.
In particular, we find that Clifford quantum circuits do not
yield a quantum advantage and that BGK’s use of (classically)
controlled-Clifford gates is vital. More generally, our paper
helps motivate and preclude different candidate quantum cir-
cuits that exhibit advantage.

Our work raises at least two interesting questions:
(1) Can a p-simulator of Clifford+T circuits have depth

scaling as tα and size scaling as 2αt for some constant 0 <

α < 1, where t is the number of T gates? One approach
may be to consider the (approximate) stabilizer decomposi-
tion [22,24,31] of the state |A⊗t 〉. This approach has improved
the time complexity of strong and weak simulators from scal-
ing with 2t to scaling with 2βt for some constant 0 < β < 1.

(2) Can we reduce the depth and size of our p-simulator if
we generalize the definition of p-simulation to the bounded-
error and average-case setting? In this setting, we generalize
the condition in Eq. ( 2) to

prob{[x,C(x)] ∈ R} � 1 − δ, (18)

where δ ∈ (0, 1) and the probability is over some probability
distribution over the input x and the randomness in the clas-
sical circuit C. In particular, it would be interesting to see if
there exist more efficient p-simulators (under the generalized
definition) when x is distributed according to the hard proba-
bility distributions described in, for example, Refs. [5,17–19].
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