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We present efficient methods to interpolate data with a quantum computer to complement uploading tech-
niques and quantum postprocessing. The quantum algorithms make use of the efficient quantum Fourier
transform (QFT) as well as classical signal and imaging processing techniques, and may facilitate quantum
advantages for some relevant families of data. We showcase a QFT interpolation method, a quantum cosine
transform (QCT) interpolation geared towards natural data, and we improve upon them by utilizing a quantum
circuit’s capabilities of processing data in superposition. A circuit for the QCT is presented. We illustrate the
methods on probability distributions and quantum encoded images, and discuss the precision of the resulting

interpolations.
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I. INTRODUCTION

Uploading a large amount of classical data into a quantum
state remains a bottleneck for quantum computation applica-
tions. Quantum states indeed offer a large Hilbert space to
encode classical data, but uploading one element at a time
makes a quantum approach inefficient, no matter its promises
regarding processing power on the uploaded state. New strate-
gies are needed to overcome the initial threshold of uploading
data into a quantum state.

To this end, we present different methods that interpolate
smooth probability distributions and natural data over a larger
space that can alleviate the data uploading effort, dramatically
in some cases. This method build on classical resampling
techniques that employ the Fourier transform to interpolate
band-limited signals. The original amplitude encoded distri-
bution is first Fourier transformed, an ancillary register is
added to the system to zero-pad higher-frequency compo-
nents, and finally, an inverse Fourier transform over the larger
space delivers the interpolated probability distribution. To be
precise, the relevant fact that makes this approach useful when
interpolating classical distributions in a quantum computer is
that the quantum Fourier transform (QFT) is efficient, that is,
it only needs a polynomial number of operations as a function
of the number of qubits involved.

The QFT interpolation scheme was adapted with success
in the context of tensor networks in Ref. [1], and introduced
to enhance the result of solutions of partial differential equa-
tions in a quantum computer in Ref. [2], where the accuracy of
the interpolation is studied. We expand upon this concept with
more diverse efficient quantum transformations and further
utilize superposition to enhance the interpolation algorithms.

These interpolation methods can also be understood as
a discrete-to-discrete instance of the Nyquist-Shannon sam-
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pling theorem. The sampling theorem states that all the
information of a signal with finite bandwidth can be captured
by samples obtained at a finite rate, known as a Nyquist
rate. We incorporate these ideas when discussing the accuracy
of the proposed resampling techniques. The use of Fourier-
like transforms is ubiquitous when reconstructing continuous
signals from samples. The QFT can introduce efficient coun-
terparts to techniques used in classical signal processing. We
present some examples in the context of probability distribu-
tion interpolation and image resampling.

Classical signal processing of natural data has been drawn
towards the discrete cosine transforms (DCT) [3] over the
QFT, since the real-to-real mapping yields better results. This
transformation is also the basis of the widely used JPEG
image compression scheme [4]. We will incorporate these
ideas into the quantum regime in order to improve upon QFT
interpolation for natural data.

In Sec. II we restate the QFT interpolation scheme for
probability distributions and study the accuracy of the method
when specifically applied to quantum states encoding prob-
ability distributions. In Sec. III we detail a quantum DCT
circuit and utilize it in a quantum cosine transform (QCT)
interpolation method for natural images. We discuss the power
of processing data in superposition that quantum computers
allow. In Sec. IV we further exploit quantum superposition
for a more efficient JPEG-inspired quantum interpolation
procedure. We conclude with a discussion on the practical
applicability of the method and future directions.

II. EFFICIENT QFT INTERPOLATION FOR SMOOTH
DISTRIBUTIONS

We showcase here the basic algorithm for interpolating a
quantum-uploaded distribution to higher precision. The algo-
rithm is detailed, then discussed in the context of enhancing
quantum data uploading techniques. Afterwards, we study the
accuracy of the interpolated distribution.

©2022 American Physical Society
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FIG. 1. Full process of interpolating a probability distribution P, using the efficient QFT. (a) Example of a Gaussian distribution P, encoded
in four qubits. (b) Quantum circuit that performs QFT interpolation. Here, U denotes a unitary transformation that uploads the probability
distribution P, into the g quantum register. After an initial QFT of register ¢, a clean ancilla register a is swapped to the first m positions
after go, an operation that can be done virtually by keeping track of qubit position. After applying a CNOT gate to all ancilla qubits controlled
by qo, an inverse QFT is applied to the whole system in order to recover the interpolated probability distribution P,,,, in the larger space.
(c) Interpolation of the initial probability distribution P, using n = 4 qubits (blue squares) and the final result P; over the full n + m = 7 qubit

register (orange dots), normalized to match Py

Given a quantum register g, with individual qubits g; from
0 to n — 1, where a distribution P has been discretized and
encoded into the the amplitudes of the 2" basis states of g,
QFT interpolation proceeds as follows. Apply the QFT to
the quantum register ¢g. In Fourier space, the high-frequency
modes of smooth distributions will be suppressed, or zero in
the case of band-limited signals. Therefore, one can artificially
pad the high-frequency components with quantum states at
zero amplitude and not fundamentally alter the original signal.
This can be achieved on a quantum circuit by adding an
ancillary qubit register a, with qubits a; from 0 to m — 1,
between original qubits gy and ¢g; (the first and second most
significant qubits) and then applying CNOT gates, controlled
by qo, targeting all qubits in the ancilla register a. Finally, an
inverse QFT is applied to the entire quantum system.

The outcome of this circuit is the interpolation from the
initial 2" distribution to a larger 2"t space. Figures 1(a)
and 1(c) showcase the interpolation of the original four-qubit
distribution to a larger seven-qubit space, implemented using
the quantum simulation library QIBO [5,6]. In Fig. 1(b) we
present the QFT interpolation algorithm on a quantum circuit.

The QFT interpolation algorithm for probability distribu-
tions is efficient. That being said, the cost of uploading the
initial distribution into the small space needs to be taken
into account. There are multiple proposals for uploading a
probability distribution into a quantum register, some exact
[7-12] and some training a quantum generator circuit [13—15].
If the cost of the initial uploading is already prohibitive, this
algorithm will only provide a marginal advantage. Still, this
technique opens the door for uploading methods that are ef-
fective for a small number of qubits that can later be enhanced
via QFT interpolation.

We showcase one such case in Appendix A, where we
use the QFT interpolation algorithm to enhance a probability
distribution uploaded in the unary basis [16]. This upload-
ing technique trades practical scalability for a device-friendly
uploading method that is effective for a small number of
amplitudes. After the original distribution is uploaded in unary
using 2" qubits, it is transformed into binary to n qubits,

where the full available 2 Hilbert space is reclaimed via QFT
interpolation.

In the following, we aim to establish the accuracy of the
interpolated distribution when compared to an ideal uploading
of the underlying distribution to the larger space. We study the
effect of this procedure when applied to the amplitudes of a
quantum state.

We will bound the operational distinguishability between
the interpolated quantum state and the ideal one by introduc-
ing their trace distance,

distre(1¥) , 19)) = 3111¥) (¥ — 1) (@1, (D

where ||A|; = TrvAfA. However, we first proceed by an-
alyzing the ¢, norm difference between them. The reason
for this choice is twofold. Quantum states are normal-
ized under their ¢, norm, |||Y)|l,, =1, where [¢) is any
pure quantum state, and the QFT preserves this norm, that
is, [[[) — @) e, = W) — [P)ll¢,, with [¥) = QFT |¢/) and
|®) = QFT |¢). From their £, distance measure we can bound
the trace distance between the two states by employing the
Fuchs—van-de-Graaf inequality [17], which is tight for pure
states [ 18], when we restrict ourselves to states that amplitude-
encode probability distributions, see Appendix B. From here
on out, all norms are assumed to be £, unless stated otherwise.
We aim to upload a target quantum state |Y) into n+ m
qubits by using QFT interpolation on state |v/), originally
uploaded to n qubits, which will be referred to as an n-qubit
band-limited state. An n-qubit band-limited state refers to a
quantum state with any number of qubits that only has 2"
nonzero Fourier components. More precisely, a state with
initial distribution P, discretized over a span Ax,, will only
have nonzero Fourier components within the band 2"/ Ax,,.
Analogous to the Nyquist-Shannon sampling theorem
[19,20], if the target state |1) is n-qubit band limited, the QFT
interpolation technique is able to capture all the information
of the underlying distribution, and the interpolation is perfect.
However, that will not always be the case. Then, the best
possible initial state |y) to interpolate from will be the one
that minimizes || [{) — |IZ)|| = || |W) — ). Classically, the
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best band-limited approximation is realized by a convolution
of the original signal with the sinc function [21], analogous
to applying a low-pass filter to the signal, so that the high fre-
quencies are cut off while the band-limited frequencies remain
intact. This, however, is not as straightforward with quantum
states, as they have to maintain their ¢, norm throughout
the process, and a low-pass filter is not a unitary operation.
Therefore, the optimal distance between states will be

(%) — [ = 20| [Wour) 12
1+ /T = [ [Wou) |12
<20 [Wou) I, )

where |W,,) denotes a quantum state that contains only the
Fourier components of target state |y) outside of the n-qubit
band limit (see Appendix C for the detailed derivation). More
explicitly, we can define both |W,,) and |\Wj,) as

Wou) = D alk) and [Wi) = Y aclk),  (3)

k¢band keband

where, up to normalization factors, a; are the Fourier com-
ponents of the real signal |V), and band denotes the band
limit of the uploaded quantum state |¥). See that we can
rebuild |W) by adding together |W,,) and |Wj,), accounting
for normalization factors.

The distance between the target state and the best possible
interpolation will depend on the £, norm of the Fourier com-
ponents that are filtered out. Using this result, we can bound
the trace distance between the target and interpolated state by

o) I
2 9
< V2 [Wou) II- 4)

That being said, many applications do not have access to
the the filtered distribution, as only the low-resolution values
of the original distribution are available. The interpolated
state will then suffer from aliasing effects, where the Fourier
components of subsampled distributions are mixed with its
own high-frequency modes due to the periodic nature of the
discrete Fourier transform. In other words, the frequency com-
ponents outside the n-qubit band limit |W,,) are added to
the low-frequency components |W;,), creating artifacts in the
interpolated distribution.

The accuracy of the QFT interpolation algorithm will be
worse in this approach, but we can still provide analytical
bounds on the distinguishability due to the effects of aliasing.
Now the distance between the target and interpolated state will
be

distre(9) . 19)) < V21 [Wou) [/ 1

_ 2 W) [P (V1)
N N 5)
<20 [ Wou) 117,

W) = [9))?

where N > 1 is the normalization factor of the target state
|¥) due to the effects of aliasing (refer to Appendix D for
details). Therefore, the upper bound on the trace distance
under aliasing effects remains the same as in Eq. (4).

We have shown how the QFT interpolation algorithm
approaches the target quantum state for a probability distribu-
tion. The smaller the norm of the high-frequency components,

the better the interpolation will be. When the distribution
is n-qubit band limited, that is, || |Woy) || = 0, it captures
all the information of the underlying function and can be
interpolated with as many qubits as needed. Even for non-
band-limited distributions, we show in Fig. 1 that with an
initial uploading of four qubits, a Gaussian distribution can
be interpolated with high fidelity to an exponentially larger
space.

This technique can then be generalized and improved with
more complex transformations for probability distributions
over more dimensions. In order to expand on the effect of
interpolation for multidimensional data, we will display in-
terpolation of images, as it provides a useful tool set and clear
visual representation that general distributions lack. However,
everything can be extended to distributions over multidimen-
sional data, which can yield further benefits for quantum
algorithms that require them.

III. EFFICIENT QCT RESAMPLING
OF NATURAL IMAGES

Interpolation methods, also referred to as resampling, are
very common techniques in image processing. Moreover,
natural images tend to have suppressed high-frequency com-
ponents, and in particular, algorithms designed to process
natural images tend to utilize the DCT [3]. This real-to-real
variant of the Fourier transform is particularly suited for this
type of signal, so much so that some of the most promi-
nent image processing techniques, like the image compression
scheme JPEG [4], use this transformation as the basis of the
algorithm. The field of quantum image processing has expe-
rienced a lot of progress during the recent years [22-26] due
to the efficiency of such transformations in quantum comput-
ing. Therefore, resampling quantum encoded images using a
QCT interpolation algorithm seems a natural step forward to
generalize the technique to more dimensions.

Encoding images into a quantum state is a costly task.
Most algorithms that attempt to upload a classical image
into a quantum state [23,24] inevitably scale with the pixel
count of the image. These encoding techniques quickly be-
come prohibitive for large images needing to be uploaded.
The proposed algorithm can alleviate part of this complexity
by applying QCT interpolation to resample an image in an
efficient way after an initial uploading, showcased using two
examples in Fig. 2. This method also supports other uploading
methods that rely on machine learning or quantum sensing
techniques. This interpolation technique, however, cannot en-
hance the data retrieval process; therefore, quantum imaging
techniques that require the pixel data might still be unfeasible
regardless of improvements in data encoding.

An efficient quantum implementation of the DCT is
needed. In particular, we are interested in the type-II DCT,
defined as

-1
DCT-II: X, = o Y _ x;c0s (
i=0
where «;, are normalization constants fork =0, ...,I — 1.

There have been some works addressing quantum circuits
that implement the DCT: Ref. [27] proposes an efficient
circuit that computes both the DCT and the discrete sine

(2i + 1)k7r>
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FIG. 2. Example of the QCT resampling technique on 512 X 512 pixel input images. (Left) Grayscale image enlarged four times using the
two-dimensional QCT resampling technique. (Right) RGB image enlarged four times using the two-dimensional QCT resampling technique;
ancillary qubits are used to label each color layer. Both quantum interpolation circuits require the same number of gates regardless of the layers

of the image.

transform (DST) in parallel, and Ref. [28] achieves a quadratic
speedup over the classical DCT for data encoded into the
quantum register instead of its amplitudes. However, none
are suitable for this implementation. Therefore, we need in-
troduce a novel method of implementing the type-II DCT
efficiently on a quantum computer. There is a direct mapping
between the DCT-II and a classical Fourier transform on a
larger, symmetric space. Specifically, one needs to upload
the original (real) signal x; into a 4/ space in the following
way. The signal x; is uploaded in the odd-indexed elements
of the state in the first 2/ entries. The inputs from 27 to
4] will mirror the first half. This can be mapped to direct
operations on a quantum computer. Two ancilla qubits are
added to the system, one as the most significant qubit and
the other as the least significant one. A Hadamard gate on the
first ancilla, followed by CNOT gates from that qubit to the rest
of the signal-encoding qubits, will copy the initial signal in
a symmetric way over a 2/ space. The second ancilla qubit
only requires a single X gate in order to encode the symmetric
signal on the odd numbered elements of the quantum state. A
QFT applied on the n + 2 qubit system will yield the desired
transformation, up to an overall scale factor. This transforma-
tion needs only to be inverted before the data is recovered. A
circuit implementing the QCT is illustrated in Fig. 3.

The QCT interpolation algorithm, understood as substitut-
ing the QFT by the QCT in the scheme presented in Sec. II,
can be extended to two, and up to any, dimensions. The image
data that we want to process requires the following amplitude
encoding. For two dimensions, values labeled by {x, y} will be
encoded into the amplitude of the quantum state |x) |y) in the
computational basis of registers g, and g,. If this encoding is
realized, applying the QCT circuit to both g, and g, registers
separately (and simultaneously) achieves the two-dimensional
discrete cosine transform over the data.

A. Grayscale images

The quantum resource needed to encode and interpolate
a grayscale image with 2" x 2" pixels using the proposed
technique is 2n qubits, plus constant ancilla depending on
the uploading method, 2m ancillary qubits used to enlarge
the image to 2" x 2" pixels, and two ancilla qubits for
each dimension the QCT needs to be applied to. An exam-
ple of an interpolated image using this method is displayed
in Fig. 2 (left). A 512 x 512 image (top left) has been en-
larged four times in both axes. This implementation requires
2 x 942 x 2 4+ 4 = 26 qubits, omitting encoding ancillas, to
transform the original image to the enlarged space, and has
been simulated using the quantum simulation library QIBO
using images available in the image processing library SCIKIT-
IMAGE [29].

B. Multilayer images

We highlight a genuinely quantum speedup that arises
when working with multilayer data. By properly encoding the
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FIG. 3. Circuit example that implements a QCT on the quantum
state encoded in register ¢ = qo, . . . , ¢,—1 using two ancilla qubits.
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FIG. 4. Interpolation of a grayscale 512 x 512 pixel image using the JPEG-inspired s = 3-QCT method. (a) Original image embedded in the
larger subspace. (b) Quantum circuit that performs s = 3-QCT interpolation for two-dimensional data. The decomposition of the QCT blocks
are shown in Fig. 3, and the two ancilla needed are implied. The interpolation algorithm for two dimensions can be applied simultaneously,
therefore not incurring extra depth cost. The algorithm is independent of the original system size, as it only acts on the subspace s and the
added ancilla m. (c) Result of the interpolated image using m = 2 ancilla for each of the two dimensions. The original image is shown for scale

in the bigger 2048 x2048 pixel space.

multiple layers, we can process all the quantum data with a
single call to the QCT interpolation algorithm. Starting from
the same encoding technique used for a single image, each
layer [; of the image will be labeled by state |/;) of a new
label quantum register g;, with [log(l/)] qubits, where [ is the
total number of layers. That is, the value of pixel {x, y} of
layer [; will be encoded in the amplitude of the quantum state
|x) [y} |£;). This will require a more complex encoding of the
image, but it will become useful in the following steps.

In this encoding, applying the QCT interpolation algorithm
in the same way as one would for grayscale images, acting
on quantum registers g, and g, only, will perform the in-
terpolation to all layers of the image in superposition at no
extra quantum cost. Since every pixel value is now entangled
with its label, the amplitude interference that makes the QFT
possible (and efficient) will only act on the amplitudes of pixel
states that share the same label state. We showcase an example
in Fig. 2 (right), where we interpolate an RGB image using
two qubits to keep track of the color channel. Since the pixel
dimensions are the same as Fig. 2 (left), the gate count of the
quantum circuit required for interpolation is the same for both
instances.

The speedup provided by acting on all layers in superposi-
tion is made more apparent the more layers, or data instances
sharing the same shape, that are encoded in the proposed way.
Additionally, this kind of speedup can be enhanced when im-
plementing quantum transformations to all subsets within an
image by acting only once in a smaller set of qubits. Beyond
that, this can be extended to other types of data uploaded in
superposition. If the initial cost of uploading data using a label
register is feasible, any quantum processing using a transfor-
mation such as the QFT or QCT can be applied to all members
of the superposition in singular cost. However, we need to
keep in mind that in the case where the data in superposition
needs to then be extracted via measurements, the advantage
that the parallel processing power introduces will be lost.

IV. SUBSPACE-QCT RESAMPLING OF NATURAL IMAGES

The power of parallel QFT computation can be extended
beyond actions on different sets of data encoded in superpo-
sition. Subsets of a single data entry can also be processed in
parallel.

Correlations present in natural data tend to be localized
within short distances. Indeed, natural images are usually built
from large structures (in number of pixels) that do not neces-
sarily correlate with the rest of the picture. The JPEG protocol
for image compression [4] exploits this fact by performing
DCT onto 8 x 8 blocks of the image. This way, the small DCT
only capture short range correlations, and the following steps
of the protocol can be described using 8 x 8 matrices.

A similar procedure can be applied in a quantum circuit.
All the 8 x 8 pixel matrices of the image encoded in the
proposed way are stored in the superposition of the three least
significant qubits. The rest of the system can be understood in
the same way we considered the label register for multilayer
images. Applying a transformation to only the three least
significant qubits, a QCT in this case, achieves in constant gate
count the transformation of all subspaces of the encoded data.

To be precise, this JPEG-inspired interpolation algorithm
using the DCT proceeds as follows. Given an image encoded
into a quantum state in registers |x) |y) |{), perform the QCT
on only the last three qubits of registers |x), and simultane-
ously in only the last three qubits of register |y). Introduce the
ancilla qubits needed for the interpolation after the third least
significant qubit on both registers. Undo the QCT transforma-
tion on the extended space. This achieves image interpolation
at a gate count independent of the original system size. Given
a fixed subspace 2°, s = 3 in the JPEG-inspired procedure,
this algorithm resamples an 2" signal into a 2"*™ space with a
gate count of O[(s + m)?], it no longer depends on the size of
the original image, only on the subspace of interest. A circuit
depicting this algorithm is sketched in Fig. 4(b).
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TABLE I. Comparison of the peak signal-to-noise ratio (PSNR)
and structural SIMilarity (SSIM) of the grayscale camera image,
after different methods of interpolation. The image is downsized to
half its original size (;m = 1) via a classical algorithm using the pixel
area relation of the image implemented in OPENCV. The image is
interpolated to the original size and compared to the base image.
The classical bicubic interpolation scheme yield the best PSNR and
SSIM values, closely followed by the s = 3-QCT. From the quantum
algorithms, the best choice is the JPEG-inspired s = 3-QCT method,
as it provides the best results and is the most efficient option.

m=1 Bicubic QFT n-QCT 3-QCT
PSNR 30.095 27.395 29.930 29.988
SSIM 0.880 0.829 0.871 0.878

This algorithm can be generalized to any subspace s, and
can introduce improvements depending on the underlying
structure of the signal. In particular, an s-QCT with s = n is
equivalent to the full QCT approach presented in the previous
section.

We compare the performance of the presented algorithms
for image interpolation, as the field contains useful metrics
for this type of comparison. A trial image is first downscaled
using the recommended classical algorithm as provided by
the OPENCYV library [30]. Then, the downscaled image is inter-
polated back into its original size, and compared to the base
image. Two metrics are commonly used in order to assess the
accuracy of image interpolation [31]: the peak signal-to-noise
ratio (PSNR) and structural SIMilarity (SSIM) [32], detailed
in Appendix E. The interpolation is performed using four
algorithms: classical bicubic interpolation, QFT interpolation,
QCT interpolation, and s = 3-QCT interpolation.

In Table I we compare the two metrics for the different
interpolation methods. Bicubic interpolation is one of the
go-to methods for classical image interpolation; it uses the
adjacent 4 x 4 pixels to compute each new value. This method
achieves the best results by a slight margin when compared to
the better of the quantum algorithms presented. In particular,
the interpolation incurs a computational cost of O(N,%) [33],
where N, is the number of pixels in the image, exponentially
more expensive than the presented quantum algorithms for
interpolation. Alternatively, the best performing quantum in-
terpolation method is the s = 3-QCT, which is also the least
expensive in terms of computational complexity. By focusing
on small subsets of the image, the algorithm is both faster,
due to processing data in superposition, and more accurate in
reproducing the original data.

By using techniques of classical image processing we have
enhanced the quantum interpolation algorithm, in terms of
both accuracy of reconstruction and complexity. The ideas
presented in the previous sections about computing in su-
perposition have been extended to small subsets of the same
image. By fixing the subspace where the QCT acts on three
qubits, the interpolation algorithm no longer scales with the
size of the original image, allowing for a very efficient cir-
cuit for interpolation of natural data in a quantum computer.
This, however, only pertains to the interpolation part of the
algorithm, as mentioned before; if the uploading or further

processing is prohibitive, this will only marginally aid in the
overall cost of the task.

V. CONCLUSION

We have proposed efficient quantum techniques to in-
terpolate distributions, all exploiting the quantum Fourier
transform. We show that this QFT interpolation technique
achieves favorable results on data with negligible high-
frequency components, as well as in practical examples using
natural images as a first visual example of multidimensional
distributions.

This technique can be used to enhance current upload-
ing algorithms by focusing on smaller scale and accurate
uploading techniques that can then be efficiently resampled
via interpolation algorithms. It can also be extended to any
uploading technique that deals with nonclassical band-limited
quantum signals. Additionally, this interpolation technique
can be used on genuinely quantum states, but the interpolation
will be extended along computational basis states which might
fail to capture correlations that go beyond that.

We have also showcased the power of processing quantum
data in superposition. Encoding different sets of data using
label ancillas allows for a single implementation of a quan-
tum transformation to act on all the encoded data in parallel.
Furthermore, by extending native ideas of natural image pro-
cessing, used in the JPEG procedure for image compression,
we can employ this parallel processing power of a quantum
circuit for a substantial gain. By processing subspaces of an
image simultaneously using quantum superposition, we can
perform interpolation using a number of gates that are con-
stant with the original size of the image.

We would like to further highlight the implementation of
efficient quantum transformations in order to unlock quantum
advantages to other algorithms that might not initially achieve
them due to data uploading costs. After all, at the core of the
efficiency of Shor’s factorization algorithm [34] is the use of
the QFT. Looking into areas where these types of transfor-
mations are extensively used may result in further avenues
where quantum algorithms can be enhanced. Natural image
and signal processing are fields that have evolved around
such transformations, and further work might borrow from
such well understood fields in order to explore interpolation
techniques with even more advanced transformations. Com-
pression techniques that rely on these transformations might
also prove useful.

The code used to simulate the quantum circuits presented
is available online [35].
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APPENDIX A: ENHANCING A UNARY UPLOADING

We illustrate how the QFT resampling algorithm can en-
hance uploading techniques using the amplitude distribution
in the unary basis presented in Ref. [16]. This proposal re-
quires only nearest-neighbor connectivity and employs gates
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FIG. 5. Circuit example that encodes an 8 — to — 3 basis change
from the unary basis to the binary one. The u register depicts the
unary register where 1 is the most significant qubit in unary rep-
resentation. On the left-hand side the labels for the binary qubits n
and the ancilla qubits m are depicted. The final SWAP gates can be
neglected if we keep track of the qubit order and perform classical
reshuffling.

that are well suited for implementation on near-term quantum
devices. The distribution is uploaded in the unary basis where
only one qubit is in state |1) while the others remain at |0},
i.e., [10000),]01000),...,]00001). This, however, reduces
the Hilbert space available for computation and requires linear
depth with the number of amplitudes needed to upload, limit-
ing its usability. While this basis helps with gate application
and control of the device, one would want to exploit the
exponential Hilbert space that qubits support.

In order to reclaim the lost Hilbert space using QFT in-
terpolation, we propose the following. Upload a probability
distribution into the unary basis over a 2" qubit register. Then,
perform a unitary change of basis from unary to binary basis
[36], as detailed in Algorithm 1 and illustrated with a small
example in Fig. 5 for n = 3. After the change of basis, the
quantum state contains n qubits storing the superposition and
2" — n clean ancillas at state |0). This allows the implementa-
tion of the QFT interpolation algorithm using the clean ancilla
register to encode the high-frequency components. Now the
full extent of the available Hilbert space is used to encode the
interpolated probability distribution. Shown in Fig. 6 are the
simulation results of a 16-qubit total QFT interpolation with
unary uploading.

Algorithm 1.Unary to binary encoding.

1 Unary2Binary (n)
2 ¢ <« Circuit(2")

3 Ensure g =0

4 fori < Oton—1do

5 qq < 2n—[—1

6  ¢.add[CNOT(q, qq)]

7 forj <« 1togqg—1do

8 ¢.add[CNOT(q + j, q)]

9 forj < 1togqg— ldo
10 c.add[SWAP(q + j, g + j + qq).controlled_by(q)]
11 g<q+4qq
12 c.add[X(2" — 1)]
13 return
Binary basis in qubits {2" — 2/} with i < n to 1

Pi6
a P4

0.00 4

—4 -2 0 2 4

Encoded state x

FIG. 6. Comparison of a Gaussian probability distribution up-
loaded using the unary basis to 16 qubits P, that is enlarged into
Pys using the QFT interpolation scheme to span the full 2!° Hilbert
space.

APPENDIX B: TRACE DISTANCE FOR PURE STATES
ENCODING REAL PROBABILITY DISTRIBUTIONS

The trace distance for pure quantum states is defined as

distre(1) . 19)) = 311¥) (W1 = 1) (@11

At the same time, for pure quantum states, the Fuchs—van-de-
Graaf inequality is tight, meaning that

) (Wl —19) (@l =2V 1 = [(¥]I)]2

Recall then that the £, norm of the same pure states can be
decomposed as

1Y) — 1) 17 = I1y¥) 117 + 1l 1é) > — 2Re({¥] [$)). (B3)

In particular, when the pure states being considered are am-
plitude encodings of probability distributions, that is, all
amplitudes are real valued, the £, norm can be simplified as

(BI)

(B2)

1) — 1) I* = 2(1 — [(¥] ). (B4)
Therefore, one can substitute the value
. 2
¥l o) = <1 - M) (B5)

in Eq. (B2) in order to recover the trace distance from the ¢,
distance in this particular case. Precisely,

_ 2
disr 1) 160 = 1) — 1 11 - L= g

APPENDIX C: DISTANCE FOR BAND-FILTERED
PURE STATES

The bra-ket notation will be dropped in the derivation
section for clarity.

The band-limited version of target state W can be defined
as

"Ijin

U= ,
Win

(ChH
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where W;, are the components of the target W that fall within
the n-qubit band-limited space. Alternatively, W, are the
components outside of the n-qubit band limit, and W;, +
Woue = W, see Eq. (3).

Therefore, the difference between the target state and the
initial state used in the interpolation is

2
W — U|? = [[Woull* + (1 ) Wi |2 (C2)

Il
Developing the square and using the relation ||Wi,|> +
| Woull> = 1 results in
- Woull? — 1
W — g =22l 2 L (C3)
1- ”"Ijout”2

that will only depend on the norm of the high-frequency
components. By combining the terms into

A% 1- ”"Ijout”2 -1 + ”\I"out”2

W — )2 =2
2
I — [[Woull

(C4

and multiplying both terms in the fraction by
1— ||\I-'0ut||%2 + 1, we reach the simplified form shown

in the main text,

2| Wour I

(1 4+ /1T = [[Woul?)

APPENDIX D: DISTANCE FOR ALIASED PURE STATES

¥ —|? =

(C5)

The derivation of the ¢, distance between the target
and aliased quantum state will proceed similarly to the
band-limited one, with more detail on the normalization
constant N.

The difference now can be written as

W — B2 = | W — L@+ D)

(D1)

where N = | ¥, + @] is the normalization factor of the in-
terpolated state W and @ is the aliasing effect of the off
band-limit components which satisfies || ®|| = || Wy ||. Notice
that N > 1, since

Wi + @7 = 1Win I + P17 = [ Winll? + [ Wou I = 1,
(D2)
due to ¥;, and W, composing to reconstruct W, which is a
normalized quantum state.
The norm outside the band limit remains the same, leaving

2

N (D3)

- , 1 1
IV =W = [Woull” + | | 1 = = JWou — @

The second term can be decomposed, making the distance
then

B 1\2 1
W — F 1> = Woull* + (1 - ﬁ) | Win 1> + ﬁ”q’”2

1\1
_2(1 _ N)ﬁRe«w ).

(D4)

In order to get rid of the last term, we recall that the norm N
of the aliased state is

N? = ||Win + D = [Win > + | P)* + 2Re((¥in| D)),
(D5)
and since [|Winl®> + [ D] = [Winll® + | Woull> = 1, we can
substitute
2Re((W;y| |@)) = N? — 1 (D6)

into Eq. (D4) to reach
7012 2 1\ 2
[V —WI” = [[Woull” + l—ﬁ (1 = [[Wou )

1 5 1\, 1
+m”\yout” - l—ﬁ N —l)ﬁ- (D7)

This equation simplifies to the form shown in the main text,

20| Woull> (N —1)?

v — J| =
N N

(D8)

APPENDIX E: PSNR AND SSIM FOR IMAGE
INTERPOLATION

The PSNR between the original image f and the interpola-
tion result g is defined as

PSNR(f, g) = 10log,, [255*/MSE(f, ©)],  (E1)

with the mean squared error (MSE) being

1

MSE(f. ¢) = Nl

M

N
> (i — &) (E2)

1 j=l1

L

for M x N images. The higher the PSNR value, the closer the
images are in terms of numerical value. Generally, one aims
at a PSNR of 30 or above.

The SSIM index is another image quality metric that
is correlated with how humans perceive images. It com-
pares three metrics—the luminance [, the contrast ¢, and
the structure s—of two images, f and g. Each element is
defined as

2pppg+

I(f,8) = , (E3)
13+ u+ e
20704+ 2
y = — , E4
c(f, 8 a}+o§+c2 (E4)
Of, + C
s(f,g) = 22 (E5)
00y + C3

where i, is the average of the image, (rfz.’ ¢ 1s the variance,
ofe is the covariance, and c;3 are constants to avoid 0
on the denominator. The SSIM is the product of the three
metrics,

SSIM(f. &) = I(f. &) c(f. &) s(f. &) (E6)

and is equal to 1 when the two images are the same.

062427-8



EFFICIENT QUANTUM INTERPOLATION OF NATURAL ...

PHYSICAL REVIEW A 106, 062427 (2022)

[1] J.J. Garcia-Ripoll, Quantum-inspired algorithms for multivari-
ate analysis: From interpolation to partial differential equations,
Quantum 5§, 431 (2021).

[2] P. Garcfa-Molina, J. Rodriguez-Mediavilla, and J. J. Garcia-
Ripoll, Quantum Fourier analysis for multivariate functions and
applications to a class of Schrodinger-type partial differential
equations, Phys. Rev. A 105, 012433 (2022).

[3] N. Ahmed, T. Natarajan, and K. R. Rao, Discrete cosine trans-
form, IEEE Trans. Comput. 100, 90 (1974).

[4] G. K. Wallace, The JPEG still picture compression standard,
IEEE Trans. Consumer Electron. 38, xviii (1992).

[5] S. Efthymiou, S. Ramos-Calderer, C. Bravo-Prieto, A. Pérez-
Salinas, D. Garcfa-Martin, A. Garcia-Saez, J. I. Latorre, and
S. Carrazza, Qibo: A framework for quantum simulation
with hardware acceleration, Quantum Sci. Technol. 7, 015018
(2021).

[6] S. Efthymiou, S. Carrazza, C. Bravo-Prieto, A. P. Salinas,
S. Ramos, D. Garcia-Martin, M. Lazzarin, N. Zattarin, A.
Pasquale, Paul, and J. Serrano, giboteam/qibo: Qibo 0.1.7 (Zen-
odo, 2022), doi: 10.5281/zenodo.7307979.

[71 L. Grover and T. Rudolph, Creating superpositions that
correspond to efficiently integrable probability distributions,
arXiv:quant-ph/0208112 (2002).

[8] V. V. Shende, S. S. Bullock, and I. L. Markov, Synthesis
of quantum-logic circuits, IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 25, 1000 (2006).

[9] A. Kitaev and W. A. Webb, Wavefunction preparation and re-
sampling using a quantum computer, arXiv:0801.0342 (2008).

[10] M. Plesch and C. Brukner, Quantum-state preparation with
universal gate decompositions, Phys. Rev. A 83, 032302
(2011).

[11] A. Holmes and A. Matsuura, Efficient quantum circuits for
accurate state preparation of smooth, differentiable functions,
in 2020 IEEE International Conference on Quantum Computing
and Engineering (QCE) (IEEE, 2020) pp. 169-179.

[12] A. G. Rattew, Y. Sun, P. Minssen, and M. Pistoia, The effi-
cient preparation of normal distributions in quantum registers,
Quantum 5, 609 (2021).

[13] S. Lloyd and C. Weedbrook, Quantum Generative Adversarial
Learning, Phys. Rev. Lett. 121, 040502 (2018).

[14] P-L. Dallaire-Demers and N. Killoran, Quantum gen-
erative adversarial networks, Phys. Rev. A 98, 012324
(2018).

[15] C. Zoufal, A. Lucchi, and S. Woerner, Quantum generative
adversarial networks for learning and loading random distribu-
tions, npj Quantum Inf. 5, 103 (2019).

[16] S. Ramos-Calderer, A. Pérez-Salinas, D. Garcia-Martin, C.
Bravo-Prieto, J. Cortada, J. Planaguma, and J. I. Latorre, Quan-
tum unary approach to option pricing, Phys. Rev. A 103, 032414
(2021).

[17] C. A. Fuchs and J. Van De Graaf, Cryptographic distinguisha-
bility measures for quantum-mechanical states, IEEE Trans. Inf.
Theory 45, 1216 (1999).

[18] M. Kliesch and I. Roth, Theory of quantum system certification,
PRX Quantum 2, 010201 (2021).

[19] H. Nyquist, Certain topics in telegraph transmission theory,
Trans. Am. Inst. Electr. Eng. 47, 617 (1928).

[20] C. E. Shannon, Communication in the presence of noise, Proc.
IRE 37, 10 (1949).

[21] E. T. Whittaker, XVIIL.—On the functions which are repre-
sented by the expansions of the interpolation-theory, Proc. R.
Soc. Edinburgh 35, 181 (1915).

[22] J. 1. Latorre, Image compression and entanglement,
arXiv:quant-ph/0510031 (2005).

[23] P. Q. Le, F. Dong, and K. Hirota, A flexible representation
of quantum images for polynomial preparation, image com-
pression, and processing operations, Quant. Info. Proc. 10, 63
(2011).

[24] Y. Zhang, K. Lu, Y. Gao, and M. Wang, NEQR: A novel en-
hanced quantum representation of digital images, Quant. Info.
Proc. 12, 2833 (2013).

[25] Y. Zhang, K. Lu, and Y. Gao, QSobel: A novel quantum image
edge extraction algorithm, Sci. China Inf. Sci. 58, 1 (2015).

[26] X.-W. Yao, H. Wang, Z. Liao, M.-C. Chen, J. Pan, J. Li, K.
Zhang, X. Lin, Z. Wang, Z. Luo et al., Quantum Image Pro-
cessing and Its Application to Edge Detection: Theory and
Experiment, Phys. Rev. X 7, 031041 (2017).

[27] A. Klappenecker and M. Rotteler, Discrete cosine transforms
on quantum computers, in ISPA 2001. Proceedings of the 2nd
International Symposium on Image and Signal Processing and
Analysis. In Conjunction with 23rd International Conference
on Information Technology Interfaces (IEEE Cat. No.01EX480)
(IEEE, New York, 2001) pp. 464-468.

[28] C. Y. Pang, Z. W. Zhou, and G. C. Guo, Quantum discrete co-
sine transform for image compression, arXiv:quant-ph/0601043
(2006).

[29] S. van der Walt, J. L. Schonberger, J. Nunez-Iglesias, F.
Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and
the scikit-image contributors, scikit-image: Image processing in
Python, Peer] 2, e453 (2014).

[30] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal
of Software Tools (2000), https://www.bibsonomy.org/bibtex/
25fa6ceed386170d95ae17fd29a42303d/ross_mcek.

[31] A. Hore and D. Ziou, Image quality metrics: PSNR vs. SSIM,
in 2010 20th International Conference on Pattern Recognition
(IEEE, 2010) pp. 2366-2369.

[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image
quality assessment: From error visibility to structural similarity,
IEEE Trans. Image Process. 13, 600 (2004).

[33] T. Acharya and P.-S. Tsai, Computational foundations of image
interpolation algorithms, Ubiquity 2007, 4 (2007).

[34] P. W. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM Rev. 41,
303 (1999).

[35] S. Ramos-Calderer,
resampling (2022).

[36] Brought to my attention in a post by Craig Gidney in https://
quantumcomputing.stackexchange.com/questions/
5526/garbage-free-reversible-binary-to-unary-
decoder-construction.

https://github.com/qiboteam/qft-

062427-9


https://doi.org/10.22331/q-2021-04-15-431
https://doi.org/10.1103/PhysRevA.105.012433
https://doi.org/10.1109/T-C.1974.223784
https://doi.org/10.1109/30.125072
https://doi.org/10.1088/2058-9565/ac39f5
https://doi.org/10.5281/zenodo.7307979
http://arxiv.org/abs/arXiv:quant-ph/0208112
https://doi.org/10.1109/TCAD.2005.855930
http://arxiv.org/abs/arXiv:0801.0342
https://doi.org/10.1103/PhysRevA.83.032302
https://doi.org/10.22331/q-2021-12-23-609
https://doi.org/10.1103/PhysRevLett.121.040502
https://doi.org/10.1103/PhysRevA.98.012324
https://doi.org/10.1038/s41534-019-0223-2
https://doi.org/10.1103/PhysRevA.103.032414
https://doi.org/10.1109/18.761271
https://doi.org/10.1103/PRXQuantum.2.010201
https://doi.org/10.1109/T-AIEE.1928.5055024
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1017/S0370164600017806
http://arxiv.org/abs/arXiv:quant-ph/0510031
https://doi.org/10.1007/s11128-010-0177-y
https://doi.org/10.1007/s11128-013-0567-z
https://doi.org/10.1007/s11432-014-5158-9
https://doi.org/10.1103/PhysRevX.7.031041
http://arxiv.org/abs/arXiv:quant-ph/0601043
https://doi.org/10.7717/peerj.453
https://www.bibsonomy.org/bibtex/25fa6cccd386170d95ae17fd29a42303d/ross_mck
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/1322464.1317488
https://doi.org/10.1137/S0036144598347011
https://github.com/qiboteam/qft-resampling
https://quantumcomputing.stackexchange.com/questions/5526/garbage-free-reversible-binary-to-unary-decoder-construction

