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Thermodynamic optimization of quantum algorithms: On-the-go erasure of qubit registers
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We consider two bottlenecks in quantum computing: limited memory size and noise caused by heat dissipa-
tion. Trying to optimize both, we investigate “on-the-go erasure” of quantum registers that are no longer needed
for a given algorithm: freeing up auxiliary qubits as they stop being useful would facilitate the parallelization
of computations. We study the minimal thermodynamic cost of erasure in these scenarios, applying results on
the Landauer erasure of entangled quantum registers. For the class of algorithms solving the Abelian hidden
subgroup problem, we find optimal on-the-go erasure protocols. We conclude that there is a trade-off: if we have
enough partial information about a problem to build efficient on-the-go erasure, we can use it to instead simplify
the algorithm, so that fewer qubits are needed to run the computation in the first place. We provide explicit
protocols for these two approaches.
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I. INTRODUCTION

When is the best time to reset qubit registers? A default
option is to run a whole algorithm and reset all registers
to |0〉 at the end, after the final measurements. However, if
the total number of qubits is a limitation and we need to
run several algorithms concurrently, we may want to free
up some registers as they stop being useful: for example,
in the period-finding algorithm, the auxiliary register can be
discarded after applying the oracle (Fig. 1). Another critical
factor may be heat dissipation: Landauer’s principle tells us
that the erasure of every single qubit from a fully mixed state
to |0〉 has a fundamental work cost of kBT ln 2 if performed
at temperature T , releasing the same amount of heat to the
environment [1]. As heat dissipation in a quantum computer
threatens coherence, reducing the work cost of erasure may be
of critical importance.

We consider algorithms that use a main register of n qubits
and an auxiliary register of m qubits (Fig. 1); the latter can be
discarded at some halfway point in the algorithm. For exam-
ple, the period-finding algorithm is of this form. To optimize
memory space, we may want to erase it as soon as possible:
a brute-force erasure procedure of those m qubits (Fig. 2)
would dissipate heat m kBT ln 2 with a simple fixed map,
independent of the algorithm. On the other extreme, if we
only want to optimize the heat cost, we can apply Bennett’s
reversible erasure procedure [2–4], which coherently copies
the output register to an external system, and then uncom-
putes the algorithm’s circuit on the original qubits reversibly
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(Fig. 3). The main drawback of this procedure emerges when
it is applied to probabilistic quantum algorithms like period
finding: Bennett’s uncomputing only works when the output
register is decoupled from the rest of the quantum computer—
in other words, when the algorithm outputs a deterministic
result [5]. Probabilistic quantum algorithms are made (ap-
proximately) deterministic by repeating them many times, and
applying classical postprocessing to the probabilistic outputs,
including, for example, a majority vote. To apply Bennett’s
uncomputing to a probabilistic algorithm like period finding,
we would have to implement all these runs of the algorithm
and the (usually classical) postprocessing as a large reversible
quantum circuit, so that the final postprocessed quantum out-
put is approximately decoupled from the rest of the memory.1

This process has a large complexity cost both in terms of
memory size and circuit length; while it may be worth pur-
suing in a distant future when our computers work flawlessly
and reversibly at the quantum level, in this work we focus on
a NISQ regime, and try to optimize both thermodynamic and
computational complexity costs of algorithms.

We will work in the quantum resource theory of thermal
operations [7–9]. In this framework, unitary operations on
degenerate systems are given for free, and irreversible oper-
ations like erasure have associated work costs. Contemporary
quantum computers are of course still far from this ideal sce-
nario; nonetheless, the fundamental limits for the energy cost
of implementing single-qubit unitaries are comparable to that
of erasure [10]. Moreover, note that the energy requirements
to implement common unitary operations (which depend on
the quantum control mechanisms) scale sublinearly on the
number of qubits, while erasure scales linearly [10]. This,
together with recent erasure experiments that approach Lan-
dauer’s limit [11–13], have led us to speculate that energies
of the order kBT may eventually become relevant to quantum
computing. Overall, thermodynamic optimization of quantum

1For example, majority votes can be implemented reversibly [6].
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FIG. 1. Class of algorithms considered. We consider quantum
algorithms where a main register is used until the final measurement,
but there can be auxiliary registers, which are needed for only part
of the algorithm, for example, the period-finding algorithm and more
generally algorithms for hidden subgroup problems are of this form.

computation entails at least three independent components:
(1) cost of unitary gates, (2) cost of erasure of fully mixed
qubits, and (3) optimizing number of fully mixed qubits that
must be erased (see [14–17] for reviews on the thermody-
namics of quantum computation). Our work addresses the
third component, and can be applied in conjunction with re-
strictions or improvements on the former two. This is further
discussed in Sec. IV.

A. Contribution of this paper

Making use of entanglement between the main and auxil-
iary register as a thermodynamic resource [7–9,14,18,19], we
introduce an erasure scheme (Fig. 4). It entails a strictly lower
heat dissipation than brute-force erasure; in contrast to Ben-
nett’s uncomputing, the auxiliary register is reset on-the-go
without needing additional qubits. However, these improve-
ments do not come for free: the main cost of our scheme will
arise from the information to access the entanglement.

In the setting of the Abelian hidden subgroup problem, we
use partial information about entanglement to optimize the
erasure of auxiliary registers. In particular:

(1) We find that optimal erasure (where all the entangle-
ment between registers is exploited) is possible only if we
already know the solution to the problem, i.e., the hidden
subgroup (Theorem 2).

(2) Given partial information about the problem, we pro-
vide an optimal on-the-go erasure protocol of auxiliary
registers and compute its work cost (Theorem 3).

(3) As an alternative to erasure, we can use that same
partial information to simplify the algorithm, so that it uses
fewer qubits (Theorem 4). We provide explicit protocols for
the cases of black-box oracles and open circuit access to
oracles (Figs. 7 and 8).

(4) There is a precise trade-off between the thermody-
namic cost of erasure and algorithm simplification. The

FIG. 2. On-the-go brute-force erasure. In order to free up mem-
ory space, the auxiliary register can be erased on the go. A
brute-force erasure at temperature T will have work cost kBT ln 2
per qubit due to Landauer’s principle.

FIG. 3. Bennett’s uncomputing erasure. For Bennett’s uncom-
puting, the original probabilistic algorithm is made essentially
deterministic by running many copies of (V ⊗ 1) ◦ U in parallel
together with a quantum implementation of the classical postpro-
cessing, summarized as U. The result of this calculation is coherently
copied to an output register and U is uncomputed.

optimal choice of implementation (in terms of computational
complexity) depends on the oracle: if we have open circuit
access to the oracle, it is more efficient to simplify the circuit;
if the oracle is given as a black box it is roughly equivalent to
perform on-the-go erasure or to simplify the circuit.

In Sec. II we review the mathematical tools and notions
of quantum thermodynamics along with the algorithm solving
the Abelian hidden subgroup problem. These are the main in-
gredients on which our results are based, which will be shown
in Sec. III. By the example of the period finding algorithm in
Sec. III C 1, we illustrate the key concepts of our optimized
on-the-go erasure scheme and in Sec. III A, we generalize
the example to the Abelian hidden subgroup problem. There
we state the main theorems 1–4 together with a qualitative
sketch of the proofs. Discussions and open questions can be
found in Sec. IV. The full proofs of the main theorems and
further generalizations are explored in the Appendixes: in
Appendix A an explicit erasure protocol [20] is reviewed, and
Appendixes B and C contain the proofs for our results.

II. SETTING AND BUILDING BLOCKS

In this section we briefly review the results obtained in
[18] regarding optimal bounds for the thermodynamic costs of
erasing a memory with quantum side information—this will
be useful as a building block for our erasure schemes. Then
we recall the algorithm solving the Abelian hidden subgroup
problem, and lastly, we devise a strategy for how to optimize
the erasure of the auxiliary register of said algorithm.

A. Erasure with quantum side information

Landauer’s principle [1,21] demonstrates the intricate re-
lation between information theory and thermodynamics. It
states that logically irreversible operations come with an

FIG. 4. Optimized on-the-go erasure. We propose an optimized
on-the-go erasure scheme which takes advantage of the entanglement
between main and auxiliary register to reduce the work cost of
erasure of the latter.
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intrinsic work cost, related to the temperature of the environ-
ment where the computation is carried out. If we are looking
at a system S initially in a state ρS , the average work cost
of erasing this system at a temperature T (that is setting
ρS �→ |0〉〈0|S using a thermal bath at temperature T ) scales
with the entropy of the initial state,

W (S) = H (S)kBT ln 2, (1)

where kB is the Boltzmann constant and H (ρ) =
− Tr(ρ log2 ρ) is the von Neumann entropy [14]. In the
setting of Fig. 2, being ignorant about the state of the m-qubit
auxiliary system, one has to apply a fixed erasure map and
not the optimal map designed for the actual state ρS . The
average work cost of this map corresponds to the worst-case
scenario of erasing a fully mixed state ρS = (1/2)⊗m, that is
mkBT ln 2 for erasure at temperature T . This energy is then
dissipated into the rest of the quantum computer, causing it
to heat up, which may increase noise and decoherence. Using
side information, available as entanglement between the main
and auxiliary registers, we attempt to improve this work cost
by using the following result.

Lemma 1 (Erasure with quantum side information [18]).
Given two degenerate quantum registers G and S and any
reference system R, then there exists a process E acting on G,
S and an environment at temperature T that erases S while
preserving G and R, that is,

ρRGS
E�−→ ρRG ⊗ |0〉〈0|S, where ρRG = TrS (ρRGS ), (2)

which does not exceed an average work cost (and heat dissi-
pation) of

W (S|G)ρ = H (S|G)ρ kBT ln 2, (3)

with H (S|G)ρ = H (GS)ρ − H (G)ρ the conditional von Neu-
mann entropy of S conditioned on G. This procedure is
reversible on GS: there exists a process that achieves the
transformation ρG ⊗ |0〉〈0|S �→ ρGS for the symmetric work
cost −W (S|G)ρ .

The key insight of Lemma 1 is that quantum correlations
(and in particular entanglement) can be used as additional
resources to reduce the work cost of erasure of the auxiliary
system. The average work cost is meant with respect to the
thermodynamic limit of many independent copies of the sys-
tems GS (for a brief discussion of single-shot and finite-size
effects; see Sec. IV). In the following G will be the main
register and S will be the auxiliary register.2 The reference
system R includes the nonaccessible degrees of freedom that
may be correlated with our quantum registers, e.g., the rest of
the quantum computer.

1. Example: Erasure of half of a Bell pair

This is the simplest application of Lemma 1, which will
be useful to understand the general procedure later [18]. Take
system S to be a single qubit with Hilbert space HS = C2

and G to be two qubits with HG = HG1 ⊗ HG2 = C2 ⊗ C2.

2The notation G for the main register is chosen because later the
main register will encode a group G.

Suppose that initially, G2 and S are entangled,

ρGS = ρG1 ⊗ |χ〉〈χ |G2S, (4)

where |χ〉 = (|00〉 + |11〉)/
√

2 is a fully entangled Bell state.
The goal is to erase S while preserving G, that is, the final state
should be ρG ⊗ |0〉〈0|S = ρG1 ⊗ 1G2

2 ⊗ |0〉〈0|S . We achieve
that with the following protocol:

(1) Unitarily rotate the pure state of G2S from |χ〉 to |00〉
for free,

(2) Perform reverse erasure on G2, to end up in state ρG1 ⊗
1G2

2 ⊗ |0〉〈0|S , gaining kBT ln 2 work.
This erasure map, decomposed in the following two steps:

ρG1 ⊗ |χ〉〈χ | U�−→
free

ρG1 ⊗ |0〉〈0|G2 |0〉〈0|S (5)

E†�−−−−−−→
gain kBT ln 2

ρG1 ⊗ 1G2

2
⊗ |0〉〈0|S, (6)

does not affect the reduced state of the G register:

ρG = TrS (ρGS ) = ρG1 ⊗ 1G2

2
(7)

= TrS

(
ρG1 ⊗ 1G2

2
⊗ |0〉〈0|S

)
. (8)

At the end, the total average work cost of erasure for this toy
example is

W (S|G) = −kBT ln 2 = H (S|G)kBT ln 2 (9)

in accordance with Eq. (3).

B. Hidden subgroup problem

Several computational problems can be phrased in terms
of the hidden subgroup problem (HSP) [24], most famously
period finding, which finds its application in Shor’s integer
factorization algorithm, and the discrete logarithm problem
[25]. We will first state the general problem and how our
erasure algorithm applies, before looking at those particular
instances.

Problem 1 (Hidden Subgroup Problem [22]). Let G be a
finite group, S some finite set and f : G → S a function. Given
the existence of a subgroup H ⊆ G such that for all g, g′ ∈ G

f (g) = f (g′) ⇐⇒ gH = g′H, (10)

the goal is to determine H .
The HSP can be solved by an efficient3 quantum algo-

rithm originally found by [26], under the assumption that the
group G is Abelian (the group operation is commutative).
We will from now on be using the addition symbol + for
group operations in G to highlight its Abelian property, that
is g + h instead of gh. Unless stated otherwise, whenever we
refer to the HSP, the Abelian HSP is meant. For the general
non-Abelian HSP, there are algorithms efficient in terms of
oracle complexity [23,27], but to the authors’ knowledge, no
general algorithm exists that is efficient in gate complexity.
Here we follow [22,23] for the quantum algorithm solving

3That is, polynomial time complexity under the assumption that f
can be implemented efficiently.
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FIG. 5. Abelian hidden subgroup algorithm [22,23]. The quan-
tum circuit above solves the Abelian hidden subgroup problem. Since
it is of the same form as Fig. 4, we can use it as a candidate for
optimizing the on-the-go erasure. The main register HG encodes
the group G and the auxiliary register HS encodes S. The function
oracle acts on states of the joint register via Of |g, s〉 = |g, s ⊕ f (g)〉,
with ⊕ denoting the bitwise XOR operation. The algorithm performs
the following sequence: (1) Generalized quantum Fourier transform
QG ⊗ 1 on G register creates a superposition 1

|G|
∑

g∈G |g, 0〉. (2)
Global oracle operation Of on both registers. At any later point we
can erase S with a map Ẽ . (3) Quantum Fourier transform QG on G
register. (4) Measurement of the G register. (5) Classical postprocess-
ing of the result.

the HSP (Fig. 5). In Appendix B 1 the computational steps
are derived and explained in detail. At this point, the key
observation we make is that the circuit solving the HSP is
precisely of the form as required, e.g. the circuit in Fig. 1.
After a unitary U = O f ◦ (QG ⊗ 1) operation on main and
auxiliary register the latter is no longer needed and can be
erased by using a Landauer erasure Ẽ . The computation on
the main register can be continued independently.

C. Strategy towards on-the-go erasure

So far we have identified the point at which we optimize the
erasure of the auxiliary register: Right after these qubits are
not needed anymore but before the computation on the main
register is finished. The global unitary U from Fig. 4 corre-
sponds to the composition O f ◦ (QG ⊗ 1) = U from Fig. 5.
By ρGS we denote the state of GS right after U . To apply the
result from Lemma 1 we have to determine where in ρGS the
entanglement between G and S is. Operationally, this means
we need to find local operations UG and US on the main
and auxiliary register respectively such that the entanglement
between these registers is compressed in well-defined qubits,
for example, � Bell pairs |χ〉,

ρGS
UG⊗US�−−−→ ρG(1)S(1) ⊗ (|χ〉〈χ |G(2)S(2) )⊗�. (11)

In our erasure algorithm, the entanglement is always com-
pressed into fully entangled pairs of qubits.4 In Sec. III A we
establish bounds on the number of Bell pairs � for which the
transformation in Eq. (11) can be achieved. After an optimized
erasure of S according to Lemma 1, the reduced state of the
main register is ρG(1) ⊗ (1G(2)/2)⊗�. Before one can continue
the computation with V = QG, the local transformation UG

4Alternatively, one could weaken this assumption and consider
partially mixed qubits, for which the relative entropy is greater, and
therefore (by Lemma 1), the work cost of erasure is lower. To be
applied optimally, this may require more fine-tuned control of the
physical interface in the “information battery” part of the quantum
computer (see Appendix A 2).

FIG. 6. The erasure process acting on an initial state ρGS must
leave the reduced state of the main register invariant, i.e., we require
TrS (ρGS ) = ρG′ (the violet box in the circuit must act locally as the
identity on G). This requirement is necessary to ensure that our on-
the-go erasure procedure does not affect the outcome of the algorithm
to which it is applied.

has to be undone,

ρG(1) ⊗
(
1G(2)

2

)⊗�
U †

G�−→ ρ ′
G, (12)

where the reduced state on G is unaffected by the erasure
ρ ′

G = TrS (ρGS ) (Fig. 6). This ensures that the algorithm still
produces the same outcome, regardless of the manipulations
due to the on-the-go erasure. An important question we will
answer in the next section is about the costs of the unitaries
UG and US . While in the thermal operations resource theory
they are for free, we have to quantify their cost from a com-
putational standpoint.

III. RESULTS

Here we introduce the optimized on-the-go erasure proto-
cols, starting with general bounds for the HSP. Then we will
define a class of modifications realizing these optimizations
whose costs we will quantify in terms of the algorithm’s
width. This section is concluded by a toy example for the
period finding algorithm which is a special case of the HSP.

A. General bounds for on-the-go erasure in the HSP

For general unitary transformations UG and US as sketched
in the strategy from Sec. II C there is an upper bound on how
well one can optimize the thermodynamics of the algorithm:

Theorem 1 (Entanglement upper bound). For an Abelian
group G with hidden subgroup H and indicator function
f : G → S as in Problem 1, solved by the algorithm from
the circuit in Fig. 5 the maximal number �max of Bell pairs
between main and auxiliary registers that can be obtained via
local unitary operations is

�max = log2
|G|
|H | = −H (S|G)ρGS , (13)

where ρGS is the state of the computational registers after the
oracle operation O f .

The formal proof of this statement is outsourced to Ap-
pendix B 3. Here we sketch it: The key insight is to quantify
the entanglement between G and S using the conditional von
Neumann entropy [28–30]. As the function f from the HSP
is constant on cosets g + H ∈ G/H , the only entanglement
that is generated by the function oracle O f comes from a sum
over the different cosets in G/H . Each coset [g] ∈ G/H con-
tributes to the entanglement by terms of the form |[g]〉G/H ⊗
| f ([g])〉S(2) . They originate the state right after the function

062426-4



THERMODYNAMIC OPTIMIZATION OF QUANTUM … PHYSICAL REVIEW A 106, 062426 (2022)

oracle

ρGS = 1

|G|
∑

[g],[g′]∈G/H

∑
h,h′∈H

|g + h, f (g)〉〈g′ + h′, f (g′)|GS.

(14)
The sum over the cosets can be factored out via a local trans-
formation, given by a choice of representative for each coset,
that is, UG|g + h〉G = |[g]〉G/H ⊗ |h〉H . Furthermore reorder-
ing the computational basis of HS such that | f ([g])〉S(2) has
the same computational representation as |[g]〉G/H , we find

ρrest ⊗
∑

[g]∈G/H

|[g], f ([g])〉〈[g], f ([g])|G/H,S(2) (15)

= ρrest ⊗ (|χ〉〈χ |)⊗ log2 |G/H |
G/H,S(2) . (16)

This results in a contribution of �max = log2 |G/H | Bell pairs.
The remaining terms in the sum are not entangled. Along the
same lines we show that such a factorization can indeed be
realized by unitary operations.

Lemma 2 (Existence of transformations saturating the
bound). There exist local unitaries UG and US which saturate
the upper bound �max of Bell pairs which can be factored from
the state after the function oracle O f .

There is a caveat to the transformations UG and US sat-
urating this upper bound as in Theorem 1. In fact, finding
the transformations must be at least as difficult as solving the
problem for which we run the algorithm in the first place.

Theorem 2 (No-go for saturating the bound). Any on-the-
go erasure protocol applying local unitaries UG and US to
factorize the maximum amount �max of Bell pairs from Theo-
rem 1 can be used to solve the HSP.

The underlying reason is that the transformation UG re-
quired for this factorizes the main register HG into parts
belonging to H and G/H ,

UG : HG → HH ⊗ HG/H . (17)

Essentially this means we have operational access to the ele-
ments of H ⊆ G via the inverse operation U †

G. This hints at a
relation between the number of Bell pairs we can factorize and
the amount of information we have about the solution of our
problem. In a next step we explore how Theorem 2 generalizes
to instances where �max is not reached. What type of partial
information is required to factor � � �max Bell pairs, and how
do we quantify it?

B. On-the-go erasure and limits with partial information

1. Optimized on-the-go erasure

In a first step we characterize the partial information we
need to know about the indicator function f : G → S such that
we are able to factor � � �max Bell pairs after the function
oracle O f . We start with the promise of knowing where � Bell
pairs are, that is, we have access to transformations UG and US

on HG and HS which factor out � Bell pairs after the function
oracle. The Bell pairs we consider are fully correlated qubits
which tells us that the oracle O f maps some part of HG one to
one on HS . Formally, this corresponds to a factorization HG

∼=
H(1)

G ⊗ H(2)
G and HS

∼= H(1)
S ⊗ H(2)

S with O f fully correlating
the spaces H(2)

G and H(2)
S . This translates into a promise about

algebraic properties of f which characterizes what we need to
know about f to factor out � Bell pairs (Promise 1).

Promise 1 (General partial information characterization,
informal version). We need to know a factorization
G ∼= G(1) × G(2) and S ∼= S(1) × S(2) with |G(2)| = |S(2)| = �.
Moreover, f must map G(2) one to one on S(2).

A formalized version of this promise is given in Ap-
pendix B 3, Definition 2 and Theorem 9, together with a proof
that Promise 1 is sufficient and necessary for factoring � Bell
pairs. For the ease of presentation, we will present here a
subclass of partial information which respects the group struc-
ture of G. Partial information of this type can be understood
as narrowing down the search for the subgroup H ⊆ G to a
search for H ⊆ K with partial information about the function
oracle (see Appendix B 3 for detailed prescriptions of the
transformations). In particular, the specific form in Eq. (19)
allows factoring out Bell pairs as outlined in our strategy
(Sec. II C) in Eq. (11).

Promise 2 (Partial subgroup information). We assume to
have access to partial information about the indicator function
f : G → S. That is, we know

(1) An intermediate subgroup K between H and G (H ⊆
K ⊆ G) which operationally means to have access to a unitary
operation UG which factors the main register according to

UG : HG → HK ⊗ HG/K . (18)

(2) Where f maps G/K in S; operationally that means
having access to a unitary US such that

UG ⊗ US|g, f (g)〉 = |kg, [k]〉 ⊗ | f̃ (kg), [k]〉. (19)

The circuit in Fig. 7 implements the modifications due to
the transformations UG and US from Promise 2. This brings
a reduction of the work cost of erasure which we quantify in
Theorem 3.

Theorem 3 (Work cost of erasure with partial information).
Given the transformations UG and US from Promise 2, there
exists an on-the-go erasure protocol acting on G, S and an
environment at temperature T , resetting the auxiliary register
S after O f while preserving G which does not exceed an
average work cost of erasure of

W = (m − 2�)kBT ln 2, (20)

where � = log2 |G|/|K| and m = log2 |S| is the number of
qubits of the auxiliary register.

This result also generalizes to partial information from
Promise 1. The only change in the circuit of Fig. 7 is that the
transformations UG and US have to be replaced by their gen-
eralized versions. In Appendix B 3, Theorem 10 generalizes
Theorem 3. For a proof, the reader is referred there.

2. Oracle simplification with partial information

In Sec. III B we derived a no-go result (Theorem 2) for
the factorization HG → HH ⊗ HG/H by observing that find-
ing such a factorization is as difficult as finding the hidden
subgroup H ⊆ G itself. With the newly introduced partial
information erasure (Promise 2), how do we now quantify
the difficulty of finding the transformations UG and US? Put
differently: What is the operational significance of the partial
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FIG. 7. Optimized on-the-go erasure. The above circuit is a modified version of Fig. 5 implementing the optimized on-the-go erasure of
� qubits (see shaded part of the diagram). Here we know unitaries UG and US which factor out part of the entanglement between the main
and auxiliary register in the form of � Bell pairs. The � qubits belonging to the auxiliary register are then erased at temperature T with Ẽ at a
total average work cost of −�kBT ln 2. In the list below, the first steps 1–2 and last steps 3–5 of the modified algorithm displayed above are
unchanged from the original. 1-2. Generalized quantum Fourier transform and oracle operation. 2a. Unitary transformation UG ⊗ US ⊗ 1B.
2b. Side information erasure E of � qubits, standard erasure Ẽ of remaining m − � qubits. 2c. Reverse transformation U †

G ⊗ U †
S ⊗ 1B. 3-5.

Quantum Fourier transform, measurement, and classical postprocessing.

information required for the transformations UG and US? The
following result answers this question.

Theorem 4 (Partial information correspondence). The
unitaries UG and US from Promise 2 can be used to formally
construct a new function oracle Õ f which requires 2� fewer
qubits than O f (� = log2 |G|/|K|). Moreover, this modified
oracle Õ f can still be used to solve the HSP.

With the modified oracle Õ f the HSP algorithm can be run
on 2� fewer qubits than with O f . Both the main and auxiliary
qubits can be reduced by � and in comparison to the circuit in
Fig. 7, the quantum Fourier transform on the main register is
now implemented for the group K instead of G. Details for the
proof of Theorem 4 are in Appendix C. The two constructions
we made are thermodynamically equivalent: For the circuit
in Fig. 7 we have an average work cost of erasure equal
(m − 2�)kBT ln 2 due to an erasure of � auxiliary qubits which
were fully entangled to the main register. In the simplified
algorithm using modified oracle from Fig. 8, 2� fewer qubits
are required to run, hence, the average work cost of erasure
is also (m − 2�)kBT ln 2. The two constructions also produce
the same computational output; in Appendix C it is shown

that the construction for Theorem 4, given in the circuit of
Fig. 8 is sufficient for finding the hidden subgroup H . The
simplification due to the modified oracle Õ f (see Fig. 8) can
be categorized in two ways:

(1) O f is given as a black box: The simplification Õ f is a
formal construction of an existence result.

(2) O f is given with open circuit access: The transforma-
tions UG and US can be incorporated into the oracle O f , and
the new oracle requires 2� fewer physical qubits.

C. Special cases of the hidden subgroup problem

1. Toy example with period finding

In this simple example, the on-the-go erasure protocol is
straightforward. The period finding algorithm (PFA) is con-
cerned with the following problem, which is a special case of
the HSP:

Problem 2 (Period finding problem). Given a function f :
ZN → ZM which is r-periodic and injective on each period of
length r, the goal is to find r.

FIG. 8. Oracle simplification. If we have access to partial information about a subgroup K , the modified oracle Õ f (violet box in the circuit)
can be used instead of the original oracle Of . The 2� qubits inside the violet box are in the |0〉 state regardless of the input of the main and
auxiliary qubits. All in all, the oracle Õ f has 2� fewer (variable) input qubits than Of . If the function oracle Of is given with open circuit access
(in contrast to a black box), the transformations UG and US can be incorporated into Of , giving a physical reduction of 2� qubits. In comparison
to the standard algorithm (Fig. 5) the group G has been replaced by K ; henceforth, also the generalized quantum Fourier transforms QG had
to be replaced by QK . The remaining steps are as in Fig. 5; in the following enumeration they are steps 1 and 3–4, while steps 2a′–2c′ are
encapsulated by Õ f in the above circuit: 1. Generalized quantum Fourier transform QK on HK , 2a′. Inverse transformation U †

G on HK ⊗ HG/K ,
2b′. Original oracle operation Of , 2c′. Transformations UG ⊗ US , 3–4. Generalized quantum Fourier transform QK on HK , and measurement
of K register.
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FIG. 9. Two-qubit on-the-go erasure for the period finding algorithm. Here the circuit describing the optimized on-the-go erasure of the
least significant qubits in the period finding algorithm is shown. Given the Promise 3, the oracle Of fully entangles the least significant qubits
of main and auxiliary register. The auxiliary qubit of this pair can then be erased at a negative average work cost of −kBT ln 2 if the erasure is
performed at temperature T .

The quantum algorithm solving this problem is of the same
form as the HSP algorithm, with G = ZN , S = ZM and QG

replaced by the standard quantum Fourier transform QN . The
main register uses n = log2 N and the auxiliary register uses
m = log2 M qubits. After the first two steps the quantum state
of main and auxiliary register equals

ρGS = 1

N

N−1∑
i, j=0

|i, f (i)〉〈 j, f ( j)|GS. (21)

Suppose we were in possession of partial information about
the function f , in form of a promise.

Promise 3. The function f can be written in the
form f (2x(+1)) = 2 f̃ (x)(+1), for some other function f̃ :
ZN/2 → ZM/2. In particular, it maps even numbers to even
numbers and odd to odd.

This example was first proposed in [18] and it is a special
case of Promise 2; here, we go through the calculations of the
optimized on-the-go erasure (Fig. 9 ) and provide an explicit
simplification of the function oracle (Fig. 10). First of all,
if f maps even to even numbers and odd to odd, the least
significant qubits of main and auxiliary register in Eq. (21)
are always fully entangled. By reordering them, we can write

ρGS = 1

N/2

⎛
⎝N/2−1∑

i, j=0

|i, f̃ (i)〉〈 j, f̃ ( j)|G(1)S(1)

⎞
⎠ (22)

⊗ 1

2

⎛
⎝ 1∑

k,�=0

|kk〉〈��|G(2)S(2)

⎞
⎠ (23)

= ρG(1)S(1) ⊗ |χ〉〈χ |G(2)S(2) , (24)

and apply the result from Lemma 1 to the Bell state |χ〉.
Since the reduced main register is unaffected by this erasure,
the algorithm still works to determine the period r. In this
case, the local unitary operations UG and US with the purpose
to compress the entanglement between main and auxiliary
register into well defined qubits can be chosen to be trivial,
UG = 1G and US = 1S (Fig. 9). Ultimately, the reason for this
was that (part of) the entanglement was between well-known
qubits: the least significant ones. In general, however, this
cannot be assumed to be the case.

How much worth is the partial information in Promise 3
in terms of computational complexity? An alternative usage
of the partial information is to run the PFA not for the func-

tion f : ZN → ZM but rather f̃ : ZN/2 → ZM/2 with f̃ (x) =
f (2x)/2. This algorithm requires two fewer qubits to run.
Operationally, we simply do not let the PFA act on the least
significant qubits, we replace the quantum Fourier transform
QN by QN/2 and we let the function oracle act on all but the
least significant qubits (Fig. 10).

2. Discrete logarithm problems

Another special case of the HSP is the discrete logarithm
problem, which has applications in classical public-key cryp-
tography.

Problem 3 (Discrete logarithm problem). Given the cyclic
group S = {1, γ , . . . , γ N−1} of order N with generator γ and
some element A ∈ S. The question is which a ∈ Z/NZ satis-
fies γ a = A.

This problem can be rephrased as a HSP (see [23] for
a pedadogical derivation) by introducing the group G =
Z/NZ × Z/NZ and a function

f : G → S; (i, j) �→ γ iA− j . (25)

The function f is a homomorphism of groups: Let
(i, j), (k, �) ∈ G, then

f ((i, j) + (k, �)) = f (i + k, j + �) (26)

= γ i+kA− j−� = γ iγ kA− jA−� (27)

= f (i, j) f (k, �). (28)

The discrete logarithm is now solved by finding the hid-
den subgroup H = 〈〈(a, 1)〉〉 ⊆ G. In this formulation, the
on-the-go erasure protocol is again applicable, given that par-
tial information in the form of Promise 2 is available. This
could again be the case in form of an intermediate subgroup
H ⊆ K ⊆ G.

IV. DISCUSSION

In the resource theory of thermodynamics we optimized
the erasure costs of erasing auxiliary qubits in the algorithms
solving the HSP. To achieve this, we applied the result from
[18], which states that quantum side information in the form
of entanglement can be used as a resource to reduce the cost
of erasing quantum systems. Lastly, we quantified the cost of
using said side information in terms of a trade-off: the side
information could be used to reduce the algorithm width, at
equal thermodynamic costs.
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FIG. 10. Two-qubit oracle simplification for the period finding algorithm. At equivalent thermodynamic costs as the on-the-go erasure in
Fig. 9, the period finding algorithm can alternatively be simplified to an algorithm which uses two qubits fewer by keeping the least significant
qubits of main and auxiliary register constantly in the ground state |0〉.

Our work has treated three possibilities to erase auxil-
iary qubits in a quantum algorithm. When considering our
proposal for an optimized on-the-go erasure of � qubits for
application, the following costs have to be weighted against
each other: on-the-go erasure versus the following:

(1) Straightforward erasure: Given the architecture of
the quantum computer, does the work cost reduction by
2�kBT ln 2 outweigh the gate costs of the local unitaries UG

and US?
(2) Bennett’s uncomputing: What restrictions does the

quantum computer put on the algorithm’s width and what is
the gate cost of implementing many parallel copies of the orig-
inal circuit together with a quantum version of the classical
postprocessing and a reversible majority vote compared to the
gain of (m − 2�)kBT ln 2? Considering current gate costs or
even fundamental limits [10], this method is unlikely to yield
a thermodynamic advantage in any practical scenario.

The toy example for the PFA demonstrates that there are
cases where the local transformations UG and US are trivial,
hence they do not add any complexity to the algorithm, giv-
ing the optimized on-the-go erasure a strict advantage over
approaches (1) and (2). Last but not least, the optimized on-
the-go erasure has to be compared to another option:

(3) Oracle simplification: Is O f given with open circuit
access or is it given as a black box?

If the oracle is available with open circuit access, the sim-
plification comes with a decrease of complexity, making the
algorithm use 2� fewer qubits. For a black box, the complexity
is roughly the same, with the difference coming from the
quantum Fourier transform which has to be performed on
� fewer qubits. At the level of thermodynamic costs, both
options are equivalent.

A. Complexity implications

Depending on the type of partial information available to
perform the on-the-go erasure, the complexity of the trans-
formations UG and US can range from being exponential in
the input size to being almost trivial. The reason for this is
that Theorem 3 (together with Promise 2) is an existence
result and the complexity of the transformations depends on
the particular choice of computational basis representation of
the states |g〉 and |s〉, for g ∈ G and s ∈ S respectively. In the
scenario, where we have access to side information in the form
of an intermediate subgroup K, such that H ⊆ K ⊆ G, there
is no a priori reason for the Hilbert space HK = spanC{|k〉 :

k ∈ K} to be represented by a subregister of qubits of the
main register HG. In the most general case, a unitary trans-
formation is required to permute basis elements and ensure
HK is encoded on a subset of qubits of the main register.
This transformation (which in matrix form only has 0 and 1
elements) has exponential gate complexity O(n2n) [31], in the
general case. This is not to say that the transformations UG and
US cannot be implemented efficiently. There are cases where
the computational basis representation for G already ensures
that HK is implemented on a subset of the main register’s
qubits. In these cases, UG only has to permute qubits and has
thus gate complexity bounded by O(log |K|). For example,
in the PFA, this is the case for all subgroups of G = Z/NZ
generated by powers of 2 (Sec. III C 1), and for the discrete
logarithm for all subgroups of G = Z/NZ × Z/NZ of the
form 〈〈2k〉〉 × Z/NZ (Sec. III C 2). For the transformation
US to satisfy similar complexity bounds, the target space’s
computational representation has to be decomposed analo-
gously to the main register; this is discussed in more detail
in Appendix B 4.

B. Outsourcing thermodynamic processes to an
information battery

In this presentation, all qubit erasure processes take place
in the computational registers. It is possible to outsource this
thermodynamic task to an external battery register [7,32–34].
The battery consists of fueled qubits in state |0〉 and depleted
qubits in the fully mixed state 1/2; the erasure of depleted
qubits takes place there at temperature T , with an average
work cost of kBT ln 2 per qubit. The idea is that when we iden-
tify pure or fully mixed qubits that need erasure, we exchange
them with those in the battery. In that way, all thermodynamic
processes that require interaction with an environment are
take place in the battery, protecting the main registers from
dissipation. The price of using a battery is the need for addi-
tional SWAP gates between the computational registers and
the battery, which depending on the hardware architecture
may be costly. Since the information battery does not have
an effect on the number of qubits that need to be erased in
a quantum computation, further discussion is outsourced to
Appendix A 2.

A related topic is algorithmic cooling which is about the
process of producing cold (that is, approximately pure) qubits
[35]. There are approaches that extract entropy from a target
system by coupling it to thermal baths in an approach called
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heat-bath algorithmic cooling [36–38]. Our optimizations in
erasure distinguish themselves from algorithmic cooling in
that they are not primarily about the production of pure
qubits but rather about reducing the thermodynamic cost of
said erasure using entanglement as a further resource. When
outsourcing the erasure process into an external information
battery (see Appendix A 2), one could apply algorithmic cool-
ing there to produce pure battery states.

C. Single-shot and finite-size effects

In our analysis, we have simplified the work cost of erasing
a single qubit. Using the von Neumann entropy to quantify
the work cost of erasure is an approximation valid in the
asymptotic i.i.d. limit; for any finite number of rounds smooth
entropies are more precise measures of work and heat in
erasure [18,39]. If the rest Hamiltonian of the qubits is not
fully degenerate, one needs to employ single-shot versions
of the free energy [40]; if we want to account for finite-size
effects (either on the environment, on thermalizing operations,
or energy gaps allowed in intermediate stages of erasure),
further corrections are necessary to find the exact work cost
as a random variable [41,42]. All these corrections can be
applied on top of our results: as mentioned in the introduction,
our focus is minimizing the number of qubits that need to be
erased through interaction with a thermal environment. The
exact cost of that erasure can then be computed in the appro-
priate regime using some of the corrections above; which ones
are relevant depends on the hardware architecture. Similarly,
the hardware will determine the actual thermodynamic cost
of individual unitary gates, which affects the calculation of
whether is better to perform erasure on the go or to simplify
the circuit.

A natural follow-up project is to study on-the-go erasure
for arbitrary quantum algorithms. Within this setting, one
could attempt to generalize the no-go result and the trade-off
found in this paper for the HSP algorithm. In that general set-
ting it would also be interesting to explore automatization of
the search for optimized erasure (or algorithm simplification)
points, for example using entanglement detection [43,44],
without affecting the state of the main register.
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APPENDIX A: PHYSICS BACKGROUND: ERASURE
AND INFORMATION BATTERY

This first Appendix is dedicated to providing an explicit
protocol for erasing a fully mixed qubit at the Landauer limit

(Appendix A 1) and to review the basics of an information
battery in quantum computing (Appendix A 2).

1. Explicit thermodynamic protocol for erasure
of a fully mixed qubit

Erasing a fully mixed qubit, that it mapping 1/2 �→ |0〉〈0|
comes with diverging resource costs by the third law of ther-
modynamics [45–47] which has been established in quantum
thermodynamics as well, with diverging resource costs be-
ing time, energy or control complexity [16,48,49]. Here we
showcase a protocol [20] which asymptotically implements
the erasure of a qubit. The setup for the erasure consists of
three quantum systems.

(1) Qubit. The system of the qubit is described by the two
dimensional Hilbert space HS = C2 with basis {|0〉S, |1〉S}.
Furthermore, it is assumed that the energy levels of this system
are degenerate, this is achieved with the Hamiltonian HS = 0.

(2) Work storage. In an idealized scenario the work storage
consists of an infinite number of evenly spaced, nondegenerate
energy eigenstates HW = {|Ek〉 : k ∈ Z}. The Hamiltonian in
given by HW = ∑

k∈Z k�|Ek〉〈Ek| with � the energy spacing
between two neighboring levels |Ek〉, |Ek+1〉. An experimen-
tal realization will only be able approximate this system
with energy levels bounded from below. Because the explicit
implementation of the qubit erasure is not relevant for the
remaining treatment of the online erasure, we will not investi-
gate this any further.

(3) Heat bath. The heat bath is an ensemble of N qubits
thermalized at a temperature β = 1/kBT where each qubit
has a different energy spacing. The Hilbert space is Hbath =
(C2)⊗N , with basis {|0〉�, |1〉�} for the �th factor. The Hamil-
tonian governing the dynamics of the system is Hbath =∑N

�=1 ��|1〉〈1|� ⊗ 1i �=�. The energy � is the same as for the
work storage. Requiring that the qubits of the heat bath are at
a temperature β gives the thermal state of Hbath to be

τ (β ) = e−βHbath

Z
, Z = Tr(e−βHbath ).

In a first example we consider the erasure of one fully
mixed qubit ρ = 1/2 in HS . For a heat bath consisting of
N qubits an erasure is performed in N steps. In step � (1 �
� � N) the qubit from HS is swapped with the �th qubit from
the heat bath Hbath and simultaneously the energy level of the
work storage is lowered by � steps to preserve energy. The
unitary operation implementing this step is

U (�) =
∑
k∈Z

{|Ek+�, 1S, 0�〉〈Ek, 0S, 1�|〉

+ |Ek, 0S, 1�〉〈Ek+�, 1S, 0�|} ⊗ 1i �=� (A1)

+1B ⊗ (|0S, 0�〉〈0S, 0�| + |1S, 1�〉〈1S, 1�|) ⊗ 1i �=�,

(A2)

and it commutes with the Hamiltonian of the joint system
of the work storage, qubit and heat bath. The energy level
diagram in Fig. 11 (adapted from [20]) visualizes this unitary
operation for � = 3.
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FIG. 11. Qubit erasure energy diagram. Energy level diagram for
the erasure setup of one qubit. From left to right are work storage,
qubit system, and heat bath. The curved arrows visualize the swap-
ping operation done by the unitary U (3) from Eq. (A1).

The erasure process is the composition U =
U (N ) · · ·U (2)U (1). With the initial state

ρi = |E0〉〈E0| ⊗ 1S

2
⊗ τ (β ),

the erasure U acts on ρi such that after the erasure we are left
with the reduced state of the S register

TrB,bath(UρiU
†) ∝ (|0〉〈0|S + e−Nβ�|1〉〈1|S ).

For a large number N of heat bath qubits, this process cor-
responds to an erasure of the qubit in system S: The fully
mixed state 1S/2 is mapped to |0〉〈0|S asymptotically as
N → ∞. In this process, the work storage performs a work
of W = kBT log 2 for the erasure which is dissipated as heat
into the bath. In the more general case, where the system qubit
is not necessarily a fully mixed state but rather ρS = (1 −
p)|0〉〈0|S + p|1〉〈1|S , the erasure unitary U can be truncated
which leads to a lower erasure cost of W (S) = H (S)kBT log 2
with H (S) the von Neumann entropy of the system S. This is
an explicit realization of the result from [18] for a single qubit.
For many qubits this process can be performed on each qubit
individually.

2. Using an information battery inside the quantum computer

For the purpose of this work it suffices to consider two
types of battery registers: One register H(depleted)

B , containing
only fully mixed qubits

ρ
(depleted)
B =

(
1

2

)⊗ dim B(depleted)

, (A3)

which are completely passive [50,51], that is, there exists no
unitary operation extracting energy from such a state. The
second register H(fueled)

B contains only pure qubits,

ρ
(fueled)
B = (|0〉〈0|)⊗ dim B(fueled)

. (A4)

Using a thermal reservoir at temperature T it is at best possible
to extract kBT ln 2 work from a fueled qubit. In our modifica-

FIG. 12. The first transformation brings the state ρGS ⊗ (1/2) ⊗
|0〉〈0| into a factorized form ρG′S′ ⊗ |χ〉〈χ | ⊗ (1/2) ⊗ |0〉〈0|, in
which the Bell pair |χ〉〈χ | is swapped with the partially erased
state (1/2) ⊗ |0〉〈0|. After uncomputing UG and US , that is, ρG′S′ ⊗
(1/2) ⊗ |0〉〈0| ⊗ |χ〉〈χ | is mapped to ρ̃GS ⊗ |χ〉〈χ |, the reduced
states of the main register ρ̃G = TrS (ρ̃GS ) is the same as before the
operation, ρG = ρ̃G, where ρG = TrS (ρGS ).

tions to the HSP algorithm, instead of partially erasing Bell
pairs in the computational registers, we swap them with a fully
mixed and a pure qubit from the battery HB = H(depleted)

B ⊗
H(fueled)

B , which amounts to a gain of one pure (fueled) qubit
in the information battery.

If the entanglement between the main register G and the
auxiliary register S is given by fully entangled qubits, for ex-
ample in the Bell state |χ〉 = (|00〉 + |11〉)/

√
2, then this state

can be replaced by fully mixed qubit for G and a pure qubit for
S via a swapping operation. On the reduced HG ⊗ HS register,
this is equivalent as a partial erasure of the qubit from S, while
preserving G.

In general one is not lucky enough for the entanglement
between main and auxiliary register to be given in the form of
well-defined Bell pairs. Since local unitary transformations of
G and S respectively preserve the conditional entropy between
these two registers, the entanglement can be spread across
many qubits. For the class of algorithms solving the HSP,
we have shown that there always exist local unitaries UG and
US such that the entanglement between the registers can be
compressed into Bell pairs (see Appendix B 3). Instead of
using these unitaries to prepare the registers for being erased
as in Fig. 7, they can be used to swap the entangled states with
states from the battery. In Fig. 12 the situation is presented
for a single Bell pair swap. It generalizes to many Bell pairs
without any complications.

APPENDIX B: PROOFS: ON-THE-GO ERASURE IN THE
HIDDEN SUBGROUP PROBLEM

In Appendix B 1 we revise the group theoretic basics of the
HSP, then in B 2 we go through a step-by-step calculation the
unmodified quantum algorithm solving the HSP, and finally in
B 3 we deliver the proofs for the theorems of the main body
of the paper.
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1. Group theory of the Hidden Subgroup Problem

In this section an online erasure protocol is constructed for
the quantum algorithm [23] of the Hidden Subgroup Problem
(HSP).

Problem 1 (Hidden Subgroup Problem [22]). Let G be a
finite group, S some finite set and f : G → S a function. Given
the existence of a subgroup H ⊆ G such that for all g, g′ ∈ G

f (g) = f (g′) ⇐⇒ gH = g′H, (10)

the goal is to determine H .
From now on, G shall be an Abelian group. The HSP for

general non-Abelian groups does not yet have an efficient
quantum algorithm [23]. We diverge from the notation in
Eq. (10) and denote by g + h ∈ G the element in G obtained
by the additive group operation on g and h in G. The unit
element is 0. In particular, the cosets with respect to some
subgroup H ⊆ G are from now on denoted by ḡ = g + H ∈
G/H . We present important definitions and results from group
theory [52] and representation theory [53] which will be used
in the following discussion (formulation and notation of the
results from [52,53] has been adapted to the specific setting of
the HSP at hand).

Theorem 5 (Classification of finite Abelian groups [52]).
For any finite Abelian group G there exist positive integers
a1, . . . , am ∈ N such that

G ∼= Z/a1Z × · · · × Z/amZ (B1)

and a1|a2| · · · |am, where ai for all 1 � i � m and m are
uniquely determined.

Proposition 1 ([53]). For each 0 � k � a − 1, the func-
tion χk : Z/aZ → S1 declared by χk (�) = ωk�

a = e2π ik�/a is a
character of the irreducible representation

ρk : � ∈ Z/aZ �→ ωk�
a ∈ C∗ (B2)

of the cyclic group Z/aZ. In fact, these are all characters of
irreducible representations of Z/aZ.

Proposition 2 ([53]). The characters of G ∼= Z/a1Z ×
· · · × Z/amZ (c.f. Theorem 5) are given by

χg(h) = χ (a1 )
g1

(h1)χ (a2 )
g2

(h2) · · · χ (am )
gm

(hm), (B3)

where the factors are as in Proposition 1 and elements g, h ∈ G
are understood as in the decomposition of G into cyclic fac-
tors. The irreducible representation ρg having χg as character
is given by the product ρg = ρg1 · · · ρgm with the factors as in
Eq. (B2).

Remark. In this special Abelian case the following basic
properties are satisfied by the character χg as introduced in
Proposition 2: For any g, h ∈ G : χg(h) = χh(g) and if we
take another g′ ∈ G the characters act as group homomor-
phisms χh(g + g′) = χh(g)χh(g′). However, this is true only
for characters of one-dimensional irreducible representations
and does not hold in general.

Theorem 6 (First orthogonality relation of characters
(Abelian version) [53]). Let g, g′ ∈ G be elements of the
Abelian Group G. In the space of functions G → C the two
characters χg, χg′ of irreducible representations of G are

orthonormal

〈χg, χg′ 〉 = 1

|G|
∑
h∈G

χg(h)χg′ (h) = δgg′ . (B4)

The characters are defined as in Proposition 2.
A reformulation of the quantum Fourier transform for

states representing elements of G can be given in terms of
characters. Consider again the cyclic group Z/aZ, pick some
k ∈ Z/aZ and define

∣∣χ (a)
k

〉 = 1√
a

a−1∑
�=0

ωk�
a |�〉 = 1√

a

a−1∑
�=0

χ
(a)
k (�)|�〉. (B5)

Indeed this is the quantum Fourier transform, where we used
the abbreviation ωa = e2π i/a for the ath root of unity. A gen-
eralization is given by the following definition:

Definition 1 (Quantum Fourier transform of a group reg-
ister [23]). Let G be a finite Abelian group with
decomposition as in Theorem 5. For any g ∈ G the character
state |χg〉 is declared by

|χg〉 = 1√
G

∑
h∈G

χg(h)|h〉, (B6)

the functions χg, g ∈ G as in Proposition 2.
In the algorithm solving the HSP from Fig. 5, states will be

transformed according to the rule in Eq. (B6) and certain sum-
mands will cancel out according to Theorem 6. The following
subgroup will be of particular interest to us:

H⊥ = {g ∈ G : ∀h ∈ H : χg(h) = 1}. (B7)

Elements of H⊥ define functions, their characters, which al-
low us for probing the subgroup H .

2. The standard algorithm solving the (Abelian) HSP

Before going into the procedure of how the online erasure
in the algorithm for the HSP works we explain in this sec-
tion the quantum algorithm which solves the HSP (adapted
from [22,23], originally solved by [26]). We will only work
out the case where |G| and |S| are powers of 2 in order to
avoid approximations which are needed in the more general
case. The G register shall be made up of the first n = log2 |G|
qubits, the S register consists of the next m = log2 |S| qubits.
For (later) notational convenience, we refer to the ground state
of the G register as |0〉G and as that of the S register as |0〉S .
If clear from the context, subscripts indicating the register are
dropped. We explicitly calculate the protocol from the circuit
in Fig. 5.

Step 1. Denote by ρ� the density matrix of the joint G
and S register after iteration step � in the HSP algorithm, in
particular ρ0 = |0〉〈0| ⊗ |e〉〈e|. The first steps of the algorithm

ρ0
(1)�−→ |χ0〉〈χ0| ⊗ |0〉〈0| (B8)

= 1

|G|
∑

g,g′∈G

|g〉〈g′| ⊗ |0〉〈0| = ρ1, (B9)

where we used χ0(g) = 1 for all g ∈ G.
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Step 2. Oracle Operation:

ρ1
(2)�−→ 1

|G|
∑

g,g′∈G

|g〉〈g′| ⊗ | f (g)〉〈 f (g′)| (B10)

= 1

|G|
∑

ḡ,ḡ′∈G/H

⎧⎨
⎩ ∑

h,h′∈H

|g + h〉〈g′ + h′|
⎫⎬
⎭ (B11)

⊗ | f (g)〉〈 f (g′)| = ρ2. (B12)

In the Eq. (B12) we used that the choice of representative of
g in ḡ = g + H ∈ G/H does not affect the inner summation
and that f (g) = f (g′) if and only if ḡ = ḡ′. At this stage the S
register is traced out:

ρ ′
2 = TrS ρ2 = 1

|G|
∑

ḡ∈G/H

⎧⎨
⎩ ∑

h,h′∈H

|g + h〉〈g + h′|
⎫⎬
⎭. (B13)

Steps 3–4. The remaining two steps are performed on the
reduced G register. The states will be denoted by a dash ρ ′

�:

ρ ′
2

(3)�−→ 1

|G|
∑

ḡ∈G/H

⎧⎨
⎩ ∑

h,h′∈H

|χg+h〉〈χg+h′ |
⎫⎬
⎭ (B14)

=
( |H |

|G|
)2 ∑

ḡ∈G/H

⎧⎨
⎩ ∑

g̃,g̃′∈H⊥
χg(g̃)χg(g̃′)|g̃〉〈g̃′|

⎫⎬
⎭ = ρ ′

3.

(B15)

The measurement result of the G register gives an element g̃ ∈
H⊥. This element defines the function χg̃ : G → S1 whose
restriction to H is the unit function. For all h ∈ H , χg̃(h) =
1. Multiple iterations of the HSP algorithm give a set of
such functions {χg̃}g̃ constraining H ⊆ G and thus solving the
problem.

3. Proofs

Theorem 1 (Entanglement upper bound). For an Abelian
group G with hidden subgroup H and indicator function
f : G → S as in Problem 4, solved by the algorithm from
the circuit in Fig. 5 the maximal number �max of Bell pairs
between main and auxiliary registers that can be obtained via
local unitary operations is

�max = log2
|G|
|H | = −H (S|G)ρGS , (13)

where ρGS is the state of the computational registers after the
oracle operation O f .

Proof. The measure we use to quantify the degree of en-
tanglement between the G and S register is the conditional
von Neumann entropy

H (S|G) = H (ρGS ) − H (ρG), (B16)

where H is the standard von Neumann entropy [28–30]. The
number of Bell pairs formed by qubits from G and S will
be upper bounded by −H (S|G) as a single bell pair con-
tributes a negative conditional entropy of −1. The joint state
of HG ⊗ HS is ρGS and ρG = TrS ρGS is the reduced state of
the G register. Observe the following two facts: First, up until

the erasure of the S register which takes place after step 2 in
the HSP algorithm, the joint state ρGS is a pure state. Second,
we have ρGS = ρG ⊗ ρS before step 2 where the function
oracle is applied, where ρG and ρS = |0〉〈0| are pure states.
Assuming that the function oracle O f is a black box, the only
stage of the HSP algorithm where H (S|G) is nonzero is after
O f but before the HS is traced out. The corresponding state
from Eq. (B12) is

ρGS = 1

|G|
∑
ḡ,ḡ′∈
G/H

⎧⎪⎪⎨
⎪⎪⎩

∑
h,h′∈

H

|g + h〉〈g′ + h′|

⎫⎪⎪⎬
⎪⎪⎭ ⊗ | f (g)〉〈 f (g′)|,

(B17)

whose conditional entropy H (S|G) is given by

H (S|G) = H (ρGS ) − H (ρG) (B18)

= 0 + Tr(ρG log2 ρG), (B19)

with ρG = ρ ′
2 the reduced G register state; cf. Eq. (B13). The

entropy measure is invariant under unitary transformations of
ρG. By reordering the computational basis of the G register
we can split HG

∼= HH ⊗ HG/H . The state ρ2 can be factored
ρ2

∼= ρH ⊗ ρG/H :

1

|G|
∑

ḡ∈G/H

⎧⎨
⎩ ∑

h,h′∈H

|g + h〉〈g + h′|
⎫⎬
⎭ (B20)

∼= 1

|H |
∑

h,h′∈H

|h〉〈h′|
︸ ︷︷ ︸

=ρH

⊗ |H |
|G|

∑
ḡ∈G/H

|g〉〈g|
︸ ︷︷ ︸

=ρG/H

. (B21)

The factor ρH is a pure state of HH , the right one ρG/H is a
mixed state in HG/H , already represented in its diagonal basis
with eigenvalues |H |/|G|. The entropy of ρG = ρ2 therefore
is

H (ρG) = − TrH (ρH log2 ρH ) − TrG/H (ρG/H log2 ρG/H )

(B22)

= −
∑
G/H

|H |
|G| log2

( |H |
|G|

)
(B23)

= + log2

( |G|
|H |

)
, (B24)

which gives the entropy of the S register conditioned on G

H (S|G) = − log2

( |G|
|H |

)
. (B25)

Up to the negative sign this is equal the maximal number
k := log2(|G|/|H |) of Bell pairs formed by qubits from the G
and S register which can possibly be extracted from the HSP
algorithm. �

Lemma 2 (Existence of transformations saturating the
bound). There exist local unitaries UG and US which saturate
the upper bound �max of Bell pairs which can be factored from
the state after the function oracle O f .

Proof. We argue why operations UG and US exist such that
the result from Eq. (11) can be achieved. First, consider the G

062426-12



THERMODYNAMIC OPTIMIZATION OF QUANTUM … PHYSICAL REVIEW A 106, 062426 (2022)

register: If a choice of representative is made for each coset
ḡ ∈ G/H , any element g′ ∈ G can be split as g′ = g + h with
g the representative of ḡ′ and h ∈ H . Thus, there exists an in-
vertible map on HG such that |g′〉 �→ |h〉 ⊗ |g〉 ∈ HH ⊗ HG/H .
The states {|g〉}g∈G are orthonormal, thus, this map is unitary,
we shall denote it by UG. In comparison to the notation in
step (3) from the paragraph about the classification of all qubit
extraction procedures, we have HG/H = HB1 , HH = H(1)

G and

UG : HG −→ HH ⊗ HG/H , (B26)

|g′〉 = |g + h〉 �−→ |h〉 ⊗ |g〉. (B27)

The relevant states in the ancillary register HS are of the form
| f (g)〉 for g ∈ G. In fact, by the very defining assumption for
the HSP in Eq. (10), it suffices to restrict to representatives g of
cosets ḡ ∈ G/H . Generally, the ancillary register HS may have
more qubits than are actually needed to represent im f ⊆ S.
This overhead of qubits can be factored out by reordering the
computational basis of HS such that | f (g)〉 �→ |0〉 ⊗ | f̃ (g)〉 ∈
H(1)

S ⊗ HB2 . This operation is unitary and can be chosen
such that for all representatives g, the states | f̃ (g)〉 ∈ HB2 and
|g〉 ∈ HG/H have the same computational representation. This
transformation will be denoted by US . �

Theorem 2 (No-go for saturating the bound). Any on-the-go
erasure protocol applying local unitaries UG and US to factor-
ize the maximum amount �max of Bell pairs from Theorem 1
can be used to solve the HSP.

Proof. Any local unitary UG factoring the main register
register HG into HH ⊗ HG/H can in fact be used to determine
H ⊆ G. Elements in H can be obtained by applying the in-
verse U †

G to states in HH ⊗ HG/H . Pick some g ∈ G, then UG

factors the state |g〉 into two parts:

UG|g〉 = |hg〉 ⊗ |[g]〉. (B28)

Despite our ignorance about how the group structure is bi-
narily encoded in the quantum registers HH and HG/H , we
know that for any h ∈ H , |[g]〉 = |[g + h]〉. Elements from H
can then be obtained in two steps:

(1) Determine |[0]〉 ∈ HG/H by computing UG|0〉 =
|h0〉 ⊗ |[0]〉.

(2) Pick any |h〉H ∈ HH and deduce |h〉G ∈ HG via

U †
G|h〉 ⊗ |[0]〉 = |h〉 ∈ HG. (B29)

In the second step the register H and G is highlighted for
the states |h〉H and |h〉G. That is because for HG, we have
access to an encoding g ∈ G �→ |g〉 ∈ HG while for HH we
do not. That is also the reason why one has to use the inverse
operation U †

G to obtain H . As with the functions χg̃ from the
standard algorithm solving the HSP in Appendix B 2, this pro-
cedure can be used to determine a small number of elements
h ∈ H which then generate the whole subgroup H . �

In fact one can even go further: Finding an on-the-go era-
sure procedure in the setting of Theorem 2 is more difficult
than solving the HSP, for that it also requires the transforma-
tion US . For partial information erasure procedures we give a
quantitative description of how much information is required
to compress the entanglement for an on-the-go erasure.

Definition 2 (General local transformations of G and S).
Define local transformations

UG : HG → H(1)
G ⊗ H(2)

G , (B30)

US : HS → H(1)
S ⊗ H(2)

S , (B31)

which factor quantum states encoding elements in g ∈ G and
s ∈ S according to

UG|g〉 = |g(1), g(2)〉, (B32)

US|s〉 = |s(1), s(2)〉. (B33)

Similarly to the notation introduced in Eq. (B33),
let us write for some state | f (g)〉 ∈ HS , US| f (g)〉 =
| f (1)(g), f (2)(g)〉. Using this notation we can formulate two
general conditions on transformations UG and US:

Theorem 9 (General characterization of partial erasure
transformations). If and only if the transformations UG and
US satisfy the two requirements

(1) For all g, g̃ ∈ G : f (g) = f (g̃) → g(2) = g̃(2),
(2) The function f (1)(g) depends only on g(1) and

f (2)(g) = g(2) in the binary computational representation in
H(2)

S = (C2)⊗k = H(2)
G ,

they can factor out the entanglement in the form of � Bell
pairs after O f in the HSP algorithm, where � = dim H(2)

G =
dim H(2)

S .
Proof. We obtain conditions on transformations UG and US

which allow bringing the joint state of the G and S register into
the form

ρGS �→ ρG̃S̃ ⊗ (|χ〉〈χ |)⊗�. (B34)

We allow that UG may only factor part of the register HG/H ,
say k � |G|/|H | qubits. The transformations need not neces-
sarily respect the group structure of G; hence, we refrain from
using an intermediate subgroup K as in the main part of the
paper but rather work with the factorization from Definition
2. Starting with the state ρ2 after step 2 of the standard HSP
algorithm (see Fig. 5 and Appendix B 2), we find a new state
ρ2a:
ρ2a = (UG ⊗ US )ρ2(U †

G ⊗ U †
S ) (B35)

= 1

|G|
∑

g,g̃∈G

|g(1), g(2)〉〈g̃(1), g̃(2)| ⊗ | f (1)(g), f (2)(g)〉

×〈 f (1)(g̃), f (2)(g̃)| (B36)

♥= 1

|G|

⎧⎨
⎩ ∑

g(1),g̃(1)

|g(1)〉〈g̃(1)| ⊗ | f (1)(g(1) )〉〈 f (1)(g̃(1) )|
⎫⎬
⎭

(B37)

⊗
⎧⎨
⎩ ∑

g(2),g̃(2)

|g(2)〉〈g̃(2)| ⊗ | f (2)(g(2) )〉〈 f (2)(g̃(2) )|
⎫⎬
⎭ (B38)

= 1

dim H(1)
G

⎧⎨
⎩ ∑

g(1),g̃(1)

|g(1)〉〈g̃(1)| ⊗ | f (1)(g(1) )〉〈 f (1)(g̃(1) )|
⎫⎬
⎭

⊗ (|χ〉〈χ |)⊗k. (B39)

The necessary and sufficient condition for the transformations
UG and US factoring � Bell pairs is the equality ♥ above. �
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Remark. The transformations UG and US from Promise 2
where one has partial information on an intermediate sub-
group H ⊆ K ⊆ G are a special case of the transformations
from Theorem 9 with

H(1)
G = HK , and H(2)

G = HG/K , (B40)

as this decomposition satisfies all two assumptions from
Theorem 7.

Theorem 10 (Work cost of erasure with partial information,
general version). Given the transformations UG and US from
Definition 2 and Theorem 9, there exists an on-the-go erasure
protocol acting on G, S and an environment at temperature T ,
resetting the auxiliary register S after O f while preserving G
which does not exceed an average work cost of erasure of

W = (m − 2�)kBT ln 2, (B41)

where � = log2(dim H(2)
G ).

Proof. This result follows from the form of the state in
Eq. (B39) and Theorem 1. For completeness, the resulting of
state of the circuit from Fig. 7 is reproduced here in order
to show it coincides with the one from the standard HSP
algorithm in Fig. 5.

Steps 1–2. These steps are the same as for the standard HSP
algorithm. The resulting state is

ρ2 = 1

|G|
∑
ḡ,ḡ′∈
G/H

⎧⎪⎪⎨
⎪⎪⎩

∑
h,h′∈

H

|g + h〉〈g′ + h′|

⎫⎪⎪⎬
⎪⎪⎭ ⊗ | f (g)〉〈 f (g′)|.

(B42)
Steps 2a–2c. Applying the operation UG ⊗ US to the state

ρ2 gives (see calculation in proof of Theorem 9)

ρ2a = (UG ⊗ US )ρ2(U †
G ⊗ U †

S )

= 1

dim H(1)
G

{ ∑
g(1),g̃(1)

|g(1)〉〈g̃(1)|

⊗| f (1)(g(1) )〉〈 f (1)(g̃(1) )|
}

⊗ (|χ〉〈χ |)⊗k. (B43)

The Bell pairs |χ〉 are formed between qubits from H(2)
G and

H(2)
S . The erasure Ẽ in step 2b of H(1)

S is a standard Landauer
erasure at temperature T . We are ignorant about the state in
H(1)

S , thus we have to pay the full cost of

W (1) = dim
(
H(1)

S

)
kBT ln 2 = (m − �)kBT ln 2. (B44)

Conversely the erasure E is done with quantum side informa-
tion according to Theorem 1. The average work cost of erasure
at temperature T is given by

W (2) = H (S(2)|G(2) )kBT ln 2 = −�kBT ln 2, (B45)

which amounts to a total average work cost of erasure

W = W (1) + W (2) = (m − 2�)kBT ln 2. (B46)

The erasure leaves the reduced state of the G register invariant.
After uncomputing UG, we get

ρ ′
2c = 1

|G|
∑

ḡ∈G/H

⎧⎨
⎩ ∑

h,h′∈H

|g + h〉〈g + h′|
⎫⎬
⎭, (B47)

as in Eq. (B13) from the standard HSP algo-
rithm.

Steps 3–6. Based on the last observation, these steps go
through as for the standard case. �

4. Gate complexity of UG and US

The transformations UG and US from Definition 2 which
are used in Theorem 9 are permutations of the basis states |g〉
and |s〉 for g ∈ G and s ∈ S. These permutations ensure that
after the application of the function oracle O f , the entangle-
ment is compressed into a well-defined subregister of the main
and auxiliary register.

In general, a permutation unitary on the computational
basis states of n qubits requires O(n2n) CNOT gates [31]
and is therefore not efficiently implementable. Nevertheless,
depending on the type of partial information available, the
complexity of the transformations UG and US can be dras-
tically reduced (see, for example, the PFA, Sec. III C 1). To
this end, let us work in the special setting where the partial
information is available in the form of an intermediate sub-
group K, such that H ⊆ K ⊆ G (as in Promise 2). There, the
transformations UG and US act on a state |g, f (g)〉 as

UG ⊗ US|g, f (g)〉 = |kg, [k]〉 ⊗ | f̃ (kg), [k]〉, (B48)

where kg ∈ K and [k] ∈ G/K are a decomposition of g ∈ G
into an element in K and the quotient group G/K .

Consider the special case where K is already implemented
on a subset of qubits of the main register—that is, HK =
spanC{|k〉 : k ∈ K} is the Hilbert space generated by some but
not necessarily all qubits that span HG. Here the transforma-
tion UG is only a composition of qubit swaps which can be
implemented efficiently with a complexity O(log |K|).

For the target space an analogous rule holds. If the map
f : G → S implemented on the level of the function oracle
O f respects the qubit decomposition of HG into HK ⊗ HG/K ,

that is, these subregisters are mapped to subregisters of the
auxiliary space HS , then also US has complexity O(log |K|).
One particular case where this happens is the toy example for
the PFA shown in Sec. III C 1.

APPENDIX C: PROOFS: ORACLE SIMPLIFICATION IN
THE HIDDEN SUBGROUP PROBLEM

This Appendix is dedicated to proving Theorem 4 and
giving more details on the modified HSP algorithm using
a simplified oracle. By replacing the function oracle O f by
Õ f one also has to reconsider what group the main register
encodes. In fact, as the transformation UG now hidden in Õ f

factors HG into registers HK and HG/K encoding the groups
K and G/K , respectively, the main register now encodes the
subgroup K . This coincides with the statement, that with the
partial information, we can narrow down the search for H ∈ G
to a search of H ∈ K . Consequently, also the generalized
quantum Fourier transform QG has to be replaced by QK as
is shown in Fig. 8 with the simplified algorithm.

Theorem 4 (Partial information correspondence). The uni-
taries UG and US from Promise 2 can be used to formally
construct a new function oracle Õ f which requires 2� fewer
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qubits than O f (� = log2 |G|/|K|). Moreover, this modified
oracle Õ f can still be used to solve the HSP.

Proof. An explicit calculation of the state ρi for the algo-
rithm in the circuit of Fig. 8 is performed, with 1 � i � 6
indexing the steps defined there.

Steps 1–2. The sum
∑

k is implicitly over the range of the
first factor in {|k, t〉 = UG|g〉 : g ∈ G} ⊆ HK ⊗ HG/K . Then

ρ1 = 1

|K|
∑
k,k̃

|k, 0〉〈k̃, 0| ⊗ |0〉〈0| (C1)

U †
G⊗1S�−−−→ 1

|K|
∑
k,k̃

U †
G|k, 0〉︸ ︷︷ ︸

=:|g(k,0)〉

〈k̃, 0|UG ⊗ |0〉〈0| = ρ2. (C2)

Steps 3–4. Making use of the notation introduced in
Eq. (C2) where g(k, t ) ∈ G is the unique element s.t.
UG|g(k, t )〉 = |k, t〉 the next states can be written as

ρ2
O f�−→ 1

|K|
∑
k,k̃

U †
G|k, 0〉〈k̃, 0|UG ⊗ | f (g(k, 0))〉〈 f (g(k̃, 0))|

(C3)
UG⊗US�−−−→ 1

|K|
∑
k,k̃

|k, 0〉〈k̃, 0| ⊗ | f (1)(k), 0〉〈 f (1)(k̃), 0| = ρ4.

(C4)

For the last equality we used property 2 imposed in Theorem
9. At this stage we see that Õ f acts trivially on the registers

H(2)
G = HG/K and H(2)

S , saving 2� erasures like the online
erasure protocols do.

Steps 5–6. Recovering the hidden subgroup It remains to
be shown that the modified algorithm can still be used to
determine the hidden subgroup H . Let

ρ ′
4 = TrHG/K ⊗HS ρ4 (C5)

= 1

|K|
∑

k̄∈K/H

⎧⎨
⎩ ∑

h,h′∈H

|k + h〉〈k + h′|
⎫⎬
⎭ (C6)

be the reduced state of ρ4 where all registers but HK have been
traced out. Observing H ⊆ K , the quantum Fourier transform
QK acts on ρ ′

4 as

ρ ′
4

QK�−→ 1

|K|
∑

k̄∈K/H

⎧⎨
⎩ ∑

h,h′∈H

|χk+h〉〈χk+h′ |
⎫⎬
⎭ (C7)

=
( |H |

|K|
)2 ∑

k̄∈K/H

⎧⎨
⎩ ∑

g,g′∈H⊥
K

χk (g)χk (g′)|g〉〈g′|
⎫⎬
⎭, (C8)

where HK⊥ = {g ∈ K : ∀h ∈ H : χg(h) = 1} is the analog of
H⊥ from the standard HSP algorithm with the difference
that G has been replaced by K . This calculation demon-
strates that the modified algorithm still recovers the hidden
subgroup H . �
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