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Characterization of nonsignaling bipartite correlations corresponding to quantum states
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Characterizing quantum correlations from physical principles is a central problem in the field of quantum
information theory. Entanglement breaks bounds on correlations put forth by Bell’s theorem, thus challenging
the notion of local causality as a physical principle. A natural relaxation is to study no-signalling as a constraint
on joint probability distributions. It was shown that, when considered with respect to so-called locally quantum
observables, bipartite nonsignalling correlations never exceed their quantum counterparts; still, such correlations
generally do not derive from quantum states. This leaves open the search for additional principles which identify
quantum states within the larger set of (collections of) nonsignalling joint probability distributions over locally
quantum observables. Here, we suggest a natural generalization of no-signalling in the form of no-disturbance to
dilated systems. We prove that nonsignalling joint probability distributions satisfying this extension correspond
with bipartite quantum states up to a choice of time orientation in subsystems.
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I. INTRODUCTION

The question whether nature admits an underlying deter-
ministic description as in classical physics looms large over
the interpretational problems which have plagued quantum
theory from the outset [1]. Combining the assumption of de-
terminism with relativity, Bell-derived nontrivial constraints
on correlations arising from freely chosen local measurements
on spatially separated systems, which are also known as Bell
inequalities [2] (see also [3]). Entangled states in quantum
mechanics violate Bell inequalities, which have since been
convincingly verified in numerous Bell experiments, e.g.,
[4–6] (see also [7]).

Given the foundational significance of Bell inequality
violations as well as the paramount importance of entangle-
ment in quantum information theory [8–15], characterizing
quantum correlations constitutes an important and ongoing
research objective [16–21]. A natural starting point for such a
characterization is the observation that quantum correlations
obey the no-signalling principle: the joint probability distri-
butions for different local measurements a, b with respective
outcome sets {A}, {B} marginalize to the same local distribu-
tions

μ(A | a)=
∑

B

μ(A, B | a, b), μ(B | b)=
∑

A

μ(A, B | a, b).

(1)

Importantly, Eq. (1) depends on the set of local quantum
measurements, consequently one must specify the possible
choices of measurements on either subsystem to evaluate
the constraints inherent to no-signalling. For instance, the
Popescu-Rohrlich box correlations restrict to just two mea-
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surements on either side [22]. A physically more interesting
scenario is that in which, locally, arbitrary quantum mea-
surements are allowed. Remarkably, one can show that this
already bounds the correlations to be quantum in the bipartite
case [23,24]. Nevertheless, the collections of nonsignalling
distributions over the set of locally quantum observables do
not correspond with quantum states [25,26]. There are more
nonsignalling distributions than quantum states, i.e., while the
correlations are as strong as quantum ones, the underlying
distributions need not derive from a quantum state.

In this paper we identify two physical principles that
characterize those nonsignalling bipartite correlations which
correspond with quantum states. To set the stage, we review
some basic facts about correlations over nonsignalling corre-
lations in Sec. II. In Sec. III we reformulate the problem from
the perspective of contextuality and identify no-disturbance as
the key underlying principle. This subsumes no-signalling, but
makes explicit the intimate relationship with noncontextuality.
Based on this, we suggest an extension of the no-disturbance
principle to dilated systems in Sec. IV. Theorem 2 shows that
this strengthened principle almost singles out quantum states.
In Sec. V we identify the missing piece of data by introducing
a notion of time orientation. Our main result, Theorem 3,
proves that under a related consistency condition with respect
to unitary evolution in subsystems correlations indeed derive
from quantum states. Section VI concludes the paper.

II. NO-SIGNALLING AND LOCALLY QUANTUM
OBSERVABLES

Throughout, we denote by L(H) the algebra of linear op-
erators on some finite-dimensional Hilbert space H, by P (H)
the lattice of projections on H, and by L(H)sa the real-linear
space of self-adjoint (Hermitian) operators, representing the
observables of a system.
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In contrast to restricted sets of observables such as those
in [22,24] study no-signalling for all locally quantum observ-
ables. Locally, quantum here means that every local system
is described in terms of an observable algebra L(H)sa of
self-adjoint (Hermitian) operators corresponding to the re-
spective quantum system described by the Hilbert space H.
However, rather than assuming the tensor product structure
between Hilbert spaces, the composite system is described
solely in terms of product observables, i.e., pairs (a1, a2)
where ai ∈ L(Hi )sa for i = 1, 2. Using the spectral decom-
position of observables ai = ∑

j A jq
j
i ∈ L(Hi )sa for Aj ∈ R

and q j
i ∈ P (Hi ), bipartite correlations arise from measures

μ : P (H1) × P (H2) → [0, 1], μ(1) = μ(11,12) = 1 [here,
1i ∈ L(Hi ) denotes the identity matrix]. For the later term the
no-signalling constraints in Eq. (1) read

μ(q1) := μ(q1,12) =
∑

j

μ
(
q1, q j

2

)
,

μ(q2) := μ(11, q2) =
∑

j

μ
(
q j

1, q2
)
, (2)

for all mutually orthogonal sets of projections (q j
i ) j , i.e.,∑

j q j
i = 1i and q j

i qk
i = δ jk .1 For later reference, we point out

that the structure of observables implies that (in addition to
no-signalling) μ is also independent of contexts, in a sense to
be made precise in Sec. III.

As a consequence, μ defines a finitely additive probabil-
ity measure over the space of product projections P (H1) ×
P (H2). Gleason’s theorem proves that every finitely additive
probability measure over the projections P (H) derives from
a quantum state [27]. Applying Gleason’s theorem to the
respective subsystems one therefore shows that μ extends to
a linear functional σμ : L(H1 ⊗ H2) → C, equivalently, that
there exists a linear operator ρμ such that σμ(a) = tr[ρμa] for
every a ∈ L(H1 ⊗ H2). Since μ is positive, σμ is positive
on all product observables a1 ⊗ a2 with a1 ∈ L(H1)+ and
a2 ∈ L(H2)+. We call such normalized, i.e., tr[ρμ] = 1, linear
functionals positive on pure tensor (POPT) states.

Theorem 1. Let H1, H2 be Hilbert spaces with
dim(H1), dim(H2) � 3 finite [24,25]. There is a one-to-one
correspondence between measures μ : P (H1) × P (H2) →
[0, 1], which satisfy the no-signalling constraints in Eq. (2)
and POPT states σμ : L(H1 ⊗ H2) → C.

Crucially, a POPT state σμ is generally not positive. In
turn, μ defines a quantum state if and only if σμ is positive.
Despite POPT states forming a much larger set than the set of
quantum states, the authors of [24] showed that correlations
arising from POPT states are indistinguishable from those
arising from quantum states, i.e., they can be reproduced using
a quantum state.2

1For convenience, we restrict ourselves to (measures over) pro-
jective measurements. It is straightforward to extend the discussion
to positive operator-valued measures (POVM), equivalently ef-
fect spaces. This allows to include the two-dimensional case in
Theorem 1 (see [24,28]).

2More generally, multipartite correlations arising from POPT states
are distinguishable from quantum correlations [23], see also [29].

The existence of unphysical POPT states gives rise to the
problem of finding a sharper classification that rules out such
states. This paper offers a solution to this problem. To this
end, we first argue that, rather than no-signalling, the natural
principle underlying Eq. (2) is no-disturbance. We then extend
the scope of the no-disturbance principle to dilations of local
systems and show that up to a consistency condition with
respect to unitary evolution in subsystems this establishes a
one-to-one correspondence between nonsignalling joint prob-
ability distributions and bipartite quantum states.

We remark that distributions over product observables were
studied before, e.g., in [25], out of the attempt to define a
tensor product intrinsic to quantum logic.3 We do not consider
this problem here, but note that our result has the potential to
give an alternative impulse to this research program. Another
perspective on this problem was given by Wallach in [26],
who considerde a generalizsation of Gleason’s theorem to
composite systems. Since it distracts from the physical sig-
nificance of the present discussion, we study this problem in
more generality elsewhere [30].

III. NONCONTEXTUALITY AND NO-DISTURBANCE

A crucial feature of locally quantum nonsignalling joint
probability distributions is that they satisfy a stronger con-
straint than no-signalling, called no-disturbance. We introduce
this notion in the following sections, before extending the
no-disturbance principle to dilations in Sec. IV. Our approach
naturally embeds within the analysis of the principal role of
contextuality in quantum theory [31]. For a recent review of
the wider subject, see [32].

A. Noncontextuality and marginalization constraints

Contextuality is a key principle in foundations, separating
quantum from classical physics [16,33–37]. Moreover, it was
shown to be a resource for quantum computation in various
architectures [10,38,39].

At the core of contextuality lies the notion of simultaneous
measurability, which equips the set of observables with a
reflexive, symmetric, but generally nontransitive relation [37].
We call any subset of simultaneously measurable observables
a context. The set of all contexts carries an intrinsic order rela-
tion arising from coarse-graining on outcomes of observables.
The resulting partially ordered set is called the partial order
of contexts. For the close connection between contextuality in
this sense and the nonexistence of valuation functions in the
sense of Kochen and Specker [36], we refer to [31].

In quantum theory, two observables are simultaneously
measurable if and only if they commute. Consequently,
contexts are given by commutative subalgebras V ⊆ L(H),
which are ordered by inclusion into the corresponding partial
order of contexts denoted by V (H). In this setup a quan-
tum state becomes a collection of probability distributions

3For a recent contribution to this problem, see [40] (and references
therein).
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(μV )V ∈V (H),4 one for every context and such that distributions
are constrained across contexts: let μṼ , μV be probability
distributions in contexts Ṽ ,V ∈ V (H) such that Ṽ ⊂ V , and
denote by iṼV : P (Ṽ ) ↪→ P (V ) the inclusion relation between
their respective projections, then μṼ is obtained from μV by
marginalization

∀q ∈ P (Ṽ ) : μṼ (q) = μV (iṼV (q)) = μV |Ṽ (q). (3)

In other words, Eq. (3) encodes a notion of coarse-graining
between contexts, represented by the marginalization of dis-
tributions from larger to smaller contexts. While individually
inconspicuous, marginalization constraints impose a strong
condition in conjunction with noncontextuality: the proba-
bilities of the outcomes of an observable a ∈ Ṽ ⊂ V,V ′ are
independent of other observables b ∈ V , c ∈ V ′, i.e., they are
independent of context:

∀Ṽ ,V,V ′ ∈ V (H), Ṽ ⊂ V,V ′ : μV ′ |Ṽ = μṼ = μV |Ṽ . (4)

This noncontextuality assumption on probability distributions
μV is at the heart of Gleason’s theorem [27]; for a reformula-
tion of the latter in this language see [30,31,41].

B. No-signalling from no-disturbance

There is a natural notion of composition for (partial or-
ders of) contexts: their canonical product, denoted V (H1) ×
V (H2), is the Cartesian product with elements (V1,V2) for
V1 ∈ V (H1), V2 ∈ V (H2) and order relations such that for all
Ṽ1,V1 ∈ V (H1), Ṽ2,V2 ∈ V (H2),

(Ṽ1, Ṽ2) ⊆ (V1,V2) :⇐⇒ Ṽ1 ⊆1 V1 and Ṽ2 ⊆2 V2. (5)

Restricted to product contexts, Eq. (4) says that for all Ṽi ⊂
Vi,V ′

i ∈ V (Hi ) with i = 1, 2

μ(V1,V2 )|(Ṽ1,V2 ) = μ(Ṽ1,V2 ) = μ(V ′
1 ,V2 )|(Ṽ1,V2 ),

μ(V1,V2 )|(V1,Ṽ2 ) = μ(V1,Ṽ2 ) = μ(V1,V ′
2 )|(V1,Ṽ2 ). (6)

We call the collection of constraints over all contexts
(V1,V2) ∈ V (H1) × V (H2) in Eq. (6) the no-disturbance prin-
ciple.5 Note that no-disturbance reduces to no-signalling in
Eq. (1) when restricted to the trivial contexts 1i := C1i ⊂
L(Hi )6 on the respective local subsystem,

μ(V1,V2 )|(V1,12 ) = μ(V1,12 ) = μV1,V ′
2
|(V1,12 ),

μ(V1,V2 )|(11,V2 ) = μ(11,V2 ) = μ(V ′
1 ,V2 )|(11,V2 ). (7)

Observe that general (possibly contextual) nonsignalling
joint probability distributions over locally quantum observ-
ables correspond with collections of probability distributions
(μV )V ∈V (H1 )×V (H2 ) satisfying Eq. (7). Such distributions are
the natural objects of study when no further structure on
observables is assumed. They are thus more general than the

4Collections of probability distributions over general partial orders
of contexts (not necessarily quantum) are also known as empirical
models in the sheaf-theoretic framework of contextuality [33].

5The term appears in [42], but was used under different names
before, e.g., in [16] (see also, [31,34]).

6The respective contexts correspond to the trivial events of observ-
ing that there is a local system.

measures μ : P (H1) × P (H2) → [0, 1] in Eq. (2), which sat-
isfy the more restrictive no-disturbance condition in Eq. (6).7

In particular, no-disturbance is already implicit in [24]. With
Ref. [24], we reemphasise that V (H1) × V (H2) �= V (H1 ⊗
H2) is a meager part of the full quantum structure of the
composite Hilbert space H1 ⊗ H2. In particular, the product
system is not described by the tensor product of the individual
Hilbert spaces.

Having established the crucial role of noncontextuality and
no-disturbance, in the next section we extend this principle to
dilations on local subsystems.

IV. NO-DISTURBANCE FOR DILATIONS

A key idea of this work is to impose the no-disturbance
condition in Eq. (6) not only between locally quantum observ-
ables, but to extend its scope to dilations of (at least) one of
the two subsystems. We give some motivational background
for this step first.

Recall that by Theorem 1 a measure μ : P (H1) ×
P (H2) → [0, 1] defines a POPT state μ(q1, q2) = σμ(q1 ⊗
q2) = tr[ρμ(q1 ⊗ q2)] with corresponding linear operator
ρμ ∈ L(H1 ⊗ H2). Similarly, for every q1 ∈ P (H1) we define
a positive linear operator ρμ(q1) ∈ L(H2)+ from μ(q1, q2) =:
trH2 [ρμ(q1)q2] for all q2 ∈ P (H2). It follows from
Theorem 1 that ρμ extends to a positive linear map
φμ : L(H1) → L(H2). On the other hand, for any single
q1 ∈ P (H1) we may assume ρμ(q1) ∈ L(H2)+ to arise via
coarse-graining from some |ψμ(q1)〉 ∈ K := H2 ⊗ HE on a
larger system,8 by tracing out the extra degrees of freedom

ρμ(q1) = trHE [|ψμ(q1)〉〈ψμ(q1)|]
= trHE [u∗(q1 ⊗ |ψμ〉〈ψμ|)u]. (8)

|ψμ(q1)〉 is a purification of ρμ(q1), where the unitary u ∈
L(H2 ⊗ HE ) is chosen to separate the input from the ancillary
system. We want to arrange the purifications for all q1 ∈
P (H1) in an economical way. To start with, note that, since
ρμ(q1) ∈ L(H2)+ for every q1 ∈ P (H1), [ρμ(qi

1)]i defines
a nonnormalized (

∑
i ρμ(qi

1) = ρμ(11) = trH1 [ρμ]) positive
operator-valued measure (POVM) on L(H2) for every set of
mutually orthogonal projections (qi

1)i in L(H1), i.e., for every
context V1 ∈ V (H1). We may thus write

ρV1
μ

(
qi

1

) = trHE

[
u∗(qi

1 ⊗ ∣∣ψV1
μ

〉〈
ψV1

μ

∣∣)u
]
, (9)

for all qi
1 ∈ P (V1) and V1 ∈ V (H1), mimicking the purifica-

tion in Eq. (8). Equation (9) is called a dilation of the POVM
[ρμ(qi

1)]i to the projection-valued measure (PVM) q1 �→ q1 ⊗
1HE . More generally, by Naimark’s theorem [43,44] every
POVM ρV1

μ admits a dilation to a PVM ϕV1
μ : P (V1) → P (K)

such that ρμ = v∗ϕV1
μ v, where v : H2 → K is a linear map.9

7The latter additionally encodes a noncontextuality constraint in the
form of an independence condition on the choice of simultaneously
measurable product observables.

8Physically, one considers the system together with an (environ-
mental) ancillary system.

9Here, we concentrate the dependence on contexts in the mapping
V1 �→ ϕV1

μ , by choosing K sufficiently large [43–45] and by absorbing
any context dependence on vV1 into ϕV1

μ for every V1 ∈ V (H1).

062420-3



MARKUS FREMBS AND ANDREAS DÖRING PHYSICAL REVIEW A 106, 062420 (2022)

Importantly, the dilations V1 �→ ϕV1
μ generally depend on

contexts V1 ∈ V (H1). In contrast, recall that no-disturbance in
Eq. (6) encodes noncontextuality constraints between product
observables. By comparison, this suggests to extend the no-
disturbance principle also to product observables with respect
to the dilations (ϕV1

μ )V1∈V (H1 ).
Definition 1. We say that the measure μ : P (H1) ×

P (H2) → [0, 1] satisfies no-disturbance for dilations if
μ(q1, q2) = trH2 [(v∗ϕV1

μ (q1)v)q2] for some Hilbert space K,
linear map v : H2 → K, and projection-valued measures
(ϕV1

μ )V1∈V (H1 ), ϕV1
μ : P (V1) → P (K) such that

∀q1 ∈ P (V1),V1 ∈ V (H1), q′
2 ∈ P (K) : μ′(q1, q′

2)

:= trH2

[
v∗ϕV1

μ (q1)q′
2v

]
(10)

satisfies the no-disturbance principle in Eq. (6) for all product
contexts in V (H1) × V (K).

From a physical point of view, we interpret the (condi-
tional) probability distributions μV2 (q1, ·) in contexts V2 ∈
V (H2) as states of incomplete information. We saw that
this interpretation arises naturally from the explicit dilations
in Eq. (9), which express the state as arising from coarse-
graining of ancillary degrees of freedom. This view is further
corroborated if one allows not only projective measurements
on the respective subsystems L(H1) and L(H2), but arbitrary
positive operator-valued measures, e.g., as discussed in [24].

Put the other way around, if μ did not satisfy no-
disturbance for dilations in Definition 1, while poten-
tially being nondisturbing (nonsignalling) when restricted
to the system H1 ⊗ H2, it would fail to be nondisturbing
(nonsignalling) for every choice of dilations (ϕV1

μ )V1∈V (H1 ) to
a larger system. Such measures would, at the very least,
prompt a substantial revision of the concept of mixed states
in terms of states of information in quantum theory. As such,
the extension to dilated systems in Definition 1 is a natural
one, and arguably conservative compared with other related
approaches, e.g., [17,19–21].

Note also that Definition 1 does not change the fact that
the composite system is described by means of the Cartesian
product of contexts in Eq. (5), not the tensor product.

To state the implications of Definition 1, we remind
the reader of some basic facts about Jordan algebras. Re-
call that the set of self-adjoint (Hermitian) matrices L(H)sa

are closed under the anticommutator {a, b} = ab + ba for
all a, b ∈ L(H)sa. This defines the (special) Jordan algebra
J (H) = (L(H)sa, {·, ·}).10 Moreover, we obtain a Jordan ∗-
algebra by extending the operation {·, ·} to the complexified
algebra J (H) = J (H)sa + iJ (H)sa. This expresses the fact
that J (H)sa is the self-adjoint part of L(H). Finally, a Jor-
dan ∗-homomorphism 	 : J (H1) → J (H2) is a linear map
	 : L(H1) → L(H2) such that 	({a, b}) = {	(a),	(b)} and
	∗(a) = 	(a∗) for all a, b ∈ J (H1).

We have the following key result, which extracts the Jordan
structure from Definition 1.

10A Jordan algebra is called special if it is isomorphic to the subal-
gebra of the self-adjoint part of an associative algebra. Otherwise, it
is called exceptional.

Theorem 2. Let H1, H2 be Hilbert spaces with
dim(H1), dim(H1) � 3 finite, and let μ : P (H1) ×
P (H2) → [0, 1] satisfy no-disturbance for dilations in
Definition 1. Then the linear functional σμ:L(H1⊗H2) → C
in Theorem 1 is of the form

σμ(a ⊗ b) = trH2 [(v∗	μ(a)v)b],

for some Hilbert space K, linear map v : H2 → K, and Jordan
∗-homomorphism 	μ : J (H1) → J (K).

Proof. Since μ satisfies no-disturbance for the dila-
tions in Definition 1, there exists a Hilbert space K, a
linear map v : H2 → K, and projection-valued measures
(ϕV1

μ )V1∈V (H1 ) such that μ(q1, q2) = trH2 [(v∗ϕV1
μ (q1)v)q2] for

all q1 ∈ P (V1), V1 ∈ V (H1), and q2 ∈ P (H2). Moreover, the
extension μ′(q1, q′

2) = trH2 [v∗ϕV1
μ (q1)q′

2v] in Eq. (10), where
q1 ∈ P (V1), V1 ∈ V (H1), and q′

2 ∈ P (K), satisfies the no-
disturbance principle in Eq. (6). The constraints in Eq. (6)
are equivalent to the noncontextuality constraints in Eq. (4),
restricted to product contexts V (H1) × V (K). Consequently,
(ϕV1

μ )V1∈V (H1 ) does not depend on contexts, and therefore
defines a map ϕμ : P (H1) → P (K). It follows that ϕμ is
an orthomorphism, i.e., (i) ϕμ(0) = 0, (ii) ϕμ(1 − p) = 1 −
ϕμ(p), (iii) ϕμ(p)ϕμ(q) = 0, and (iv) ϕμ(p + q) = ϕμ(p) +
ϕμ(q) all hold whenever p, q ∈ P (H1), pq = 0. This follows
since by definition ϕV1

μ : P (H1) → P (K) is a projection-
valued measure in every context V1 ∈ V (H1). In particular,
note that conditions (i) to (iii) hold whenever p, q ∈ P (H1),
pq = 0, which implies p, q ∈ V1 for some V1 ∈ V (H1). Fi-
nally, by a result due to Bunce and Wright (Corollary 1 [46])
every orthomorphism ϕ : P (H1) → P (K) lifts to a Jordan
∗-homomorphism 	 : J (H1) → J (K) as desired. �

Of course, every quantum state has a purification which
yields a dilation of the form in Theorem 2. Our argument
works in the reverse direction: by requiring that measures
μ have a noncontextual extension, i.e., that they satisfy the
no-disturbance principle for at least one choice of dilations
V1 �→ ϕV1

μ , μ is of the form in Theorem 2. Next, we show that,
in this case, μ already defines a quantum state up to a choice
of time orientation in local subsystems.

V. UNITARY EVOLUTION AND TIME-ORIENTED STATES

Extending no-disturbance to dilations via Definition 1 is
not quite sufficient to ensure that a POPT state σμ = tr[ρμ ·]
becomes positive and thus a quantum state (but it almost
is). The difference is best expressed in terms of the Choi-
Jamiołkowski isomorphism [47]. In particular, by Choi’s
theorem the linear operator ρμ is positive if and only if a
related map φμ is completely positive [45]. Moreover, by
Stinespring’s theorem a map is completely positive if and only
if it corresponds with an algebra homomorphism (a represen-
tation) on a larger system [44], i.e., φμ : L(H1) → L(H2) is
completely positive if and only if there exists a Hilbert space
K, a linear map v : H2 → K, and an algebra homomorphism
	μ : L(H1) → L(K) such that φμ(a) = v∗	μ(a)v. By The-
orem 2, if μ satisfies no-disturbance for dilations, it is of this
form with the only difference that 	μ is a merely a Jordan
∗-homomorphism.

The Jordan algebra J (H) does not completely determine
the algebra L(H) since it lacks the antisymmetric part or
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commutator [a, b] = ab − ba in the associative (and non-
commutative for dim(H) � 2) product ab = 1

2 (ab + ba) +
1
2 (ab − ba) for all a, b ∈ L(H). In particular, the Jordan
∗-homomorphism 	μ is an algebra homomorphism if and
only if it also preserves commutators, i.e., 	([a, b]) =
[	(a),	(b)] for all a, b ∈ J (H). This property has a distinc-
tive physical meaning in terms of the unitary evolution in local
subsystems.

To see this, we describe the dynamics of a system
represented by the observable algebra L(H)sa in terms of one-
parameter groups of automorphisms R �→ Aut[L(H)sa]. Note
that L(H) possesses a canonical action on itself by conjuga-
tion 
 : R × L(H)sa → Aut[L(H)sa], 
(t, a)b = eitabe−ita

for all a, b ∈ L(H)sa.11 This action expresses the unitary evo-
lution in the system, thus promoting the parameter t to a
time parameter with a playing the role of a Hamiltonian.
Note, however, that without fixing a preferred Hamiltonian
the value of t has a priori no objective physical meaning, it
is intrinsically relational. Nevertheless, the sign of t turns out
to be independent of (the choice of Hamiltonian) a ∈ L(H)sa

[48].
By differentiation, d

dt |t=0
(t, a) = i[a, ·], where [·, ·] is the
commutator in the ambient algebra L(H). It follows that 	μ

preserves commutators if and only if it preserves the canonical
unitary evolution 
 of the subsystem algebras. We call 
 the
canonical time orientation on L(H) [48–51] and 
∗(t, a) =
∗ ◦ 
(t, a) = 
(−t, a) (cf. Proposition 15 in [52]) the reverse
time orientation, which corresponds with the opposite order of
composition in L(H), equivalently, the opposite sign for the
commutator in the respective algebras,

L±(H) := (J (H), 
(±t, a)), 12

where we set a ·± b := 1
2 a, b ± 1

2 [a, b] for all a, b ∈ J (H).
Of course, L(H)+ = L(H).

Definition 2. We say that a measure μ : P (H1) ×
P (H2) → [0, 1], which satisfies no-disturbance for the
dilations in Definition 1, is time-oriented with respect to
L−(H1) and L(H2) if

∀t ∈ R, a ∈ J (H1)sa : 	μ ◦ 
∗
1 (t, a) = 	μ ◦ ∗ ◦ 
1(t, a)

= 
 ′
2(t,	μ(a)) ◦ 	μ,

(11)

where 	μ is the Jordan ∗-homomorphism in Theorem 2.
Two remarks on Definition 2 are in order. First, note that

Eq. (11) requires consistency with respect to the commutators
on L(H1) and L(K). However, since L(H2) arises from L(K)
by restriction, the time orientation 
2 on L(H2) extends to
a unique time orientation 
 ′

2 on L(K). Second, we used the

11The map 
 “selects” unitary (as opposed to antiunitary [53,54])
symmetries on J (H)sa. Inherent in this is an identification of self-
adjoint elements in J (H)sa and generators of symmetries, called a
dynamical correspondence. In other words, 
 “selects” a canonical
dynamical correspondence on J (H)sa: 
 = exp ◦ψ is the exponen-
tial of the (canonical) dynamical correspondence ψ on L(H). For
more details, see [48,49].

12These are the only associative products which reduce to J (H) on
the symmetric part [48,55].

reverse time orientation 
∗
1 on the first system. This choice of

relative time orientation (
∗
1 , 
2) is intrinsic to Choi’s theo-

rem [45] (see also [51]), which allows us to deduce positivity
of σμ from complete positivity of φμ in Theorem 2.

In fact, the conjunction of Definitions 1 and 2 yields our
main result.

Theorem 3. Let H1, H2 be Hilbert spaces with
dim(H1), dim(H2) � 3 finite, and let μ : P (H1) ×
P (H2) → [0, 1] be time-oriented as by Definition 2 (and
thus satisfy no-disturbance for dilations). Then μ uniquely
extends to a quantum state σμ ∈ S (H1 ⊗ H2).

Proof. Since μ satisfies no-disturbance for dilations in
Definition 1, the dilations (ϕV1

μ )V1∈V (H1 ) uniquely extend to
a Jordan ∗-homomorphism 	μ by Theorem 2. In particular,
	μ preserves anticommutators. Moreover, since μ is time-
oriented (see Definition 2), 	μ also preserves commutators
between the algebras L−(H1) and L(H2), hence, it is an al-
gebra homomorphism. By Stinespring’s theorem, this implies
that the linear map φμ : L−(H1) → L(H2) is completely pos-
itive. Finally, we define a linear operator ρμ ∈ L(H1 ⊗ H2)
by the relation φμ(a) = trH1 [ρμ(a ⊗ 12)] for all a ∈ L(H1).
Note that φμ ◦ ∗ is the inverse of the Choi-Jamiołkowski iso-
morphism [45,47], defined on the computational basis {|i〉}i in
H1 by

ρμ =
∑

i j

|i〉〈 j| ⊗ φμ(| j〉〈i|) =
∑

i j

|i〉〈 j| ⊗ (φμ ◦ ∗)(|i〉〈 j|),

(12)

where ∗ denotes the Hermitian adjoint (see also [51]). Since
φμ : L−(H1) → L(H2) is completely positive and since ∗
reverses time orientations by Eq. (11), it follows from Choi’s
theorem [45] that ρμ ∈ L(H1 ⊗ H2) is positive. Hence, σμ =
tr[ρμ ·] defines a quantum state. By construction, σμ is the
unique linear extension of μ, i.e., μ = σμ|P (H1 )×P (H2 ).

Conversely, it follows from the isomorphism in Eq. (12),
Choi’s theorem [45], and Definition 2 that every quantum state
restricts to a time-oriented measure μ : P (H1) × P (H2) →
[0, 1]. �

We finish this section with a few remarks. We defined
the canonical time orientation 
 on L(H) = (J (H), 
) with
respect to unitary symmetries. In turn, antiunitary symmetries
correspond with unitary symmetries on the algebra L−(H)
(and vice versa). Recalling that every antiunitary operator is
the product of a unitary and the time-reversal operator further
corroborates the notion of time-oriented-ness in Definition 2.

Moreover, note that Eq. (11) is invariant under changing
time orientations, equivalently, under time reversal in both
subsystems (cf. [51]). On the other hand, it follows from
Theorem 3 that applying time reversal to one subsystem only
will generally map outside the set of bipartite quantum states.
This is reminiscent of the positive partial transpose (PPT)
criterion for bipartite entanglement due to Peres [56,57]. In
fact, following this analogy the criterion can be given a sharp
physical interpretation in terms of time orientations [50].

Finally, note that Theorem 3 represents a generalization
of Gleason’s theorem to composite systems. We extend this
perspective to the general setting of von Neumann algebras in
[30].
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VI. CONCLUSION AND OUTLOOK

We studied the physical principle of no-disturbance on
joint probability distributions over product observables, which
reduces to no-signalling as shown in Eq. (7). As such, we
identified no-disturbance as the key principle in [24], which
shows that correlations over product observables satisfying
no-disturbance cannot exceed bipartite quantum correlations.
However, no-disturbance is not sufficient to restrict to quan-
tum states. Our main result, Theorem 3, resolves this issue: by
extending the scope of no-disturbance to dilations in Defini-
tion 1, and by enforcing a consistency condition with respect
to the unitary evolution in local subsystems in Definition
2, we show that the resulting joint probability distributions
correspond with bipartite quantum states unambiguously.

Our research naturally relates to other approaches, which
seek to single out quantum correlations from more general
nonsignalling distributions, by imposing additional princi-

ples, e.g., [17,19–21]. Apart from the extension of the
no-disturbance principle to dilated systems, which fits nicely
with the usual interpretation of mixed states as states of in-
complete information as argued above, our only additional
assumption already has a clear physical meaning in terms of
the arrow of time [50].
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