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Quantifying causal influence in quantum mechanics
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We extend Pearl’s definition of causal influence to the quantum domain, where two quantum systems A, B
with finite-dimensional Hilbert space are embedded in a common environment C and propagated with a joint
unitary U . For a finite-dimensional Hilbert space C, we find the necessary and sufficient condition on U for a
causal influence of A on B and vice versa. We introduce an easily computable measure of the causal influence
and use it to study the causal influence of different quantum gates, its mutuality, and quantum superpositions
of different causal orders. For two two-level atoms dipole-interacting with a thermal bath of electromagnetic
waves, the space-time dependence of causal influence almost perfectly reproduces the one of reservoir-induced
entanglement.
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I. INTRODUCTION

To infer causes from effects constitutes a key task of sci-
ence. Classically, causal influence (CI) is defined between
random variables (RVs) that take certain values in a set of
possible outcomes of randomized experiments. In a causal
model, the RVs sit on vertices of a graph, and the forward-
in-time-only CI in the classical world is represented by an
arrow in a directed acyclic graph. According to Pearl [1] (see
p. 276), a RV x has a CI on another RV y if y “listens” to x,
meaning that there is a functional relationship of the form y =
f (x) + z, where f is some function and z another RV. Apart
from direct CI, correlations between x and y might arise ad-
ditionally due to common causes. These can be eliminated in
practice by “do-interventions,” where x is randomly set by the
experimenter and one examines if y reacts. The correspond-
ing (do-)probabilities, obtained by randomized controlled
experiments or via the do-calculus, are the basis of Pearl’s
definition of CI as well as a measure of the average causal
effect [2].

Recently, there has been large interest in generalizing
causal analysis to the quantum world [3–32]. One of the
most exciting perspectives is to superpose different temporal
orders, and hereby create “indefinite causal order.” To that
end, process matrices were introduced with separate input and
output Hilbert spaces of each laboratory, and the possibility
to “wire” CI in opposite directions (e.g., from the output
of Alice to the input of Bob or vice versa) [4]. The “quan-
tum switch” was invented [33,34] and experimentally verified
[35–39]. Here a control qubit enables opposite temporal order
of two quantum gates, which can improve the communication
capacity of quantum channels and lead to a computational
or metrological advantage [33,40,41]. Common to most of
these developments is, however, that the actual CI remained
unexplored, and the “indefinite causal order” refers to indef-
inite (i.e., superposed, or mixed) temporal orders. To study
superpositions of different causal orders x → y and y → x,
one needs to define what is meant with a CI x → y in quantum

mechanics (QM). In Refs. [12,19,30] definitions of CI in QM
based on the Choi-Jamiołkowski representation of a unitary
channel propagating Alice’s and Bob’s system were given,
following earlier work in Refs. [42–44]. Here we give a clear
operational definition of CI based simply on density matri-
ces, generalizing the one by Pearl from classical statistical
analysis [1,2]. We prove a theorem that gives the necessary
and sufficient condition for CI in QM and introduce an easily
computable measure of CI. We use it to analyze the CI of stan-
dard quantum gates, examine some of the measure’s statistical
properties, as well as a quantum causal switch that superposes
two different CIs. At the example of a two-spin-boson model,
we examine propagation of causal influence. We find that
substantial CI arrives only far behind the light cone, and,
surprisingly, almost perfectly in sync with reservoir-induced
entanglement.

We take a conservative approach based on standard QM
(using density matrices rather than process matrices) and
the admission of do-interventions. Probability distributions
of classical RVs are replaced by quantum states, since ob-
servables have, in general, no determined value in QM until
they are measured [45–47]. On the other hand, quantum states
encode all that can be known about a quantum system, and
hence it is natural to base a theory of CI in QM on states:
“causal influence” in QM will be understood in the sense
that the final quantum state of the causally influenced system
“listens to,” i.e., depends on the initial quantum state of the
influencer. Below we make this idea mathematically precise
and introduce a measure of CI that we then explore. In prin-
ciple one could base a definition of CI also on correlation
functions. If all correlations are included, this is equivalent
to using the quantum state, but at the same time appears to
be more cumbersome and less fundamental: fundamentally
the world is quantum, and quantum computers will one day
probably be able to exchange quantum information without
doing measurements. This motivates our attempt to base a
definition of CI in quantum mechanics directly on quantum
states.
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II. NO-CAUSAL-INFLUENCE CONDITION

Consider two quantum systems A (Alice) and B (Bob)
described by their respective density matrices ρA and ρB and
a third system C, the joint environment, with a fixed initial
state ρC that can, e.g., correspond to the physical system that
propagates the CI and creates an effective interaction but also
leads to decoherence, or might generate a common cause (see,
e.g., [8,22]). The joint quantum system is a linear operator
on the Hilbert space HA ⊗ HB ⊗ HC , with dim(HJ ) = dJ ,
J ∈ {A, B,C}, where we assume dA, dB to be finite, whereas
dC can be infinite. We define [dJ ] := {0, . . . , dJ − 1} and use
Einstein summation convention for all repeated lower-case
indices and Greek indices. Fundamentally, we consider CI to
be a function of the set of quantum channels φ : ρAB �→ ρ ′AB

(completely positive maps of density operators on HA ⊗ HB)
to real positive numbers. These channels can be expressed in
terms of Kraus operators Kμ,

ρ ′AB = φ(ρAB) = TrC[KμρABCKμ†], (1)

where A, B, C indicate the subsystems, and AB, ABC joint sys-
tems. In order for ρ ′AB to even be a function of ρAB, we need
ρABC = ρAB ⊗ ρC . Otherwise, the same ρAB = TrC[ρABC] can
arise from different ρABC and specifying an initial ρAB does
not suffice to uniquely determine ρ ′AB because the channel
φ depends on ρBC in this case. A definition of CI based on
the quantum channel φ would then be ambiguous. On the
other hand, if ρABC = ρAB ⊗ ρC , we can absorb ρC in the
definition of φ, and φ can then be specified independently
of the initial ρAB. In the simplest case there is only a single
unitary Kraus operator, K1 = U , but (1) allows us to also deal
with the situation where the entire system is open. We can
also include measurements and the collapse of states, even
with postselection, as long as renormalization of the state is
avoided as this would lead to nonlinearities. We must then
require in addition that ρAB = ρA ⊗ ρB. Otherwise, for an
initially correlated state, a measurement by Bob collapses
the state also on Alice’s side and would signal CI, while it
is well known that in this scenario no information can be
transmitted (see, e.g., Ref. [48]). We hence assume a fully
factorizing initial state, ρABC = ρA ⊗ ρB ⊗ ρC , and φ itself is
then a function of the {Kμ} and ρC , denoted as φ{Kμ},ρC if we
want to make explicit the dependencies of φ.

In Ref. [8], a common cause of correlations between A,
B in the form of an initially entangled state propagated to A,
B was considered, created by an entangled state of A, C and
then swapping C and B. In our approach, we deal with this
situation by also including the creation of the entanglement
as part of the quantum channel. In other words, distinguishing
between a common cause and direct causal influence amounts,
in our framework as well as in classical causal analysis, to
distinguishing between a CI C → AB and a CI A → B (or
mixtures thereof). Both can be done in the same framework
starting from the fully factoring initial state. Indeed, also clas-
sically one would not introduce additional initial correlations
between the random variables before applying the processes
whose causal net of influences one wants to examine, jus-
tifying the fully factorized initial state also from a classical
perspective.

If we write the initial states in an orthonormal basis,
ρA = ρA

i j |i〉〈 j|, ρB = ρB
kl |k〉〈l|, ρC = ρC

mn|m〉〈n|, for i, j ∈
[dA], k, l ∈ [dB], m, n ∈ [dC], then (1) leads to ρ ′ABC

i′k′m′, j′l ′n′ =
ρA

i jρ
B
klρ

C
mnKμ

i′k′m′,ikmKμ∗
j′l ′n′, jln, where the prime indices run over

the same range as the respective nonprimed indices, and the
partial trace over the systems B and C gives

ρ ′A
i′ j′ = Fkl,i j (i

′, j′)ρA
i jρ

B
kl (2)

for Alice’s final reduced state, where Fkl,i j (i′, j′) :=
Kμ

i′k′m′,ikmKμ∗
j′k′m′, jlnρ

C
mn has the physical meaning of the prop-

agator of the channel defined in Eq. (1) with system B traced
out after the propagation.

Definition 1. Let A, B at initial time t0 be in the state ρ(t0) =
ρA ⊗ ρB, where ρB is a state set by Bob in a do-intervention.
We say that B at time t0 does not causally influence A at
time t for a given initial ρA if and only if the reduced state
ρ ′A = TrB[φ(ρ(t0))] of the system A after the propagation
from t0 to t is independent of ρB for any density matrix ρB.
If this condition is fulfilled for any initial ρA, we say that
system B at time t0 does not causally influence system A at
time t , shortly denoted by B(t0) � A(t ). Otherwise we say
that B at time t0 causally influences A at time t , denoted
by B(t0) → A(t ). Analogously one defines A(t0) � B(t ) and
A(t0) → B(t ), leading to a total of four possible cases. When
we are not concerned with time dependence we may skip the
arguments t , t0 and simply consider initial and final states of a
joint evolution. Definition 1 of no CI is similar to the one of a
“semicausal map” in Ref. [42], but is based on the dependence
of a final state directly on an initial state rather than a local
channel. The generalization of Def. 1, as well as of Theorem
II and expression (5) below to N quantum systems is given in
the Appendix.

Theorem 1. Let A and B be quantum systems evolving via
φ{Kμ},ρC . Let Fkl,i j (i′, j′) := Kμ

i′k′m′,ikmKμ∗
j′k′m′, jlnρ

C
mn. Then, B �

A if and only if, for all i, j, k, k̃, l, i′, j′ (no sum over k̃),

Fkl,i j (i
′, j′) = δklFk̃k̃,i j (i

′, j′). (3)

The statement for A � B is analogous with the func-
tion F̃i j,kl (k′, l ′) = Kμ

i′k′m′,ikmKμ∗
i′l ′m′, jlnρ

C
mn (the propagator of

channel φ with A traced out after propagation) replacing
Fkl,i j (i′, j′). This makes explicit that the CI is a function of the
channel φ that maps ρAB to ρ ′AB alone. The proof of Theorem
1 is based on straightforward linear algebra and is given in the
Appendix.

III. MUTUALITY

As an example, consider unitary evolution, i.e., a sin-
gle Kraus operator K1 = U = U A ⊗ U BC , for U A ∈ U (dA),
U BC ∈ U (dBdC ), the unitary group. Then Fkl,i j (i′, j′) =
δklU A

i′iU
A∗
j′ j , such that condition (3) is fulfilled, and, therefore,

by Theorem 1, B � A as expected. Similarly one finds A �

B. However, tensor products of unitary matrices are a set
of Haar measure zero in U (dAdBdC ). Unitary matrices that
allow one-way CI exist as well. An example where A�→B,
is given by the unitary transformation U (123) corresponding
to the permutation |ikm〉 �→ |mik〉. The opposite case results
from the unitary U (132) that permutes |ikm〉 �→ |kmi〉 . See
Appendix for another example which does not correspond to
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a permutation. Among 105 Haar distributed random unitary
23 × 23 matrices via QuTip [49] all of them permitted CI in
both directions, which is the generic situation.

IV. NO TRANSITIVITY

Classical CI is not transitive (see Ref. [2], p. 237), i.e.,
A(t0) → B(t1) and B(t1) → C(t2) does not imply A(t0) →
C(t2), and is hence different from logical implications. “No
transitivity” straightforwardly extends to the quantum do-
main, as can be seen from the example of two consecutive
CNOTs (from t0 to t1 and from t1 to t2) with B the control
and A and C the target, respectively. The reduced density
matrix of B, ρ ′B(t1), depends on ρA only in the off-diagonal
elements (see Appendix). Similarly, starting at time t1 with
a product state ρA ⊗ ρB ⊗ ρC , if one applies at t2 the CNOT

gate with C the target system and B the control, one eas-
ily shows B(t1) → C(t2), but the reduced density matrix of
system C only depends on the diagonal components of ρ ′B,
which do not depend on ρA after the first CNOT, and therefore
A(t0) � C(t2).

V. MEASURE OF CAUSAL INFLUENCE

Consider two qubits A (control) and B (target) and apply
the CNOT gate on a pure state. One might suspect that CNOT

permits only influence from A to B. However, applying The-
orem 1, we see that both CI directions are allowed. This is
not merely a mathematical consequence of the definition but
corresponds to a well known and real physical effect called
phase kickback in quantum circuits [50] where the phase β

in the initial state (|0〉 + |1〉) ⊗ (|0〉 + eiβ |1〉)/2, ends up in
the state of Alice. More generally, both reduced states after a
CNOT gate on an initial product state depend on components
of their partner’s initial state. Nevertheless, while Alice’s final
state only carries Bob’s dependence in the off-diagonal com-
ponents, all his components after the CNOT depend on Alice’s
initial state [see (C2) in the Appendix]. This is in sync with
the intuition that the CI from control to target is “stronger”
than the other way around and motivates the introduction
of a measure of CI. Although one could argue that a CNOT

with reversed roles of control and target is a CNOT conjugated
with local Hadamard transformations and hence expect equal
influence in both directions, it is reasonable not to request
invariance of a measure of CI under local prepropagation
of the influencing system because varying its initial state is
part of the process of examining the influence. A natural
way to quantify the CI is via |∂ρ ′A

i′ j′/∂ρB
h f |, for h, f ∈ [dB].

We base our definition on all pure initial states ρA of Alice.
Note that, due to linear propagation, the ρ ′A

i′ j′ are holomorphic
functions of the ρB

h f such that these complex derivatives are
always well defined. For the same reason, the measure is
independent of ρB.

Definition 2. Let ρA = V |0〉〈0|V †, for V ∈ U (dA) and some
fixed initial state |0〉A of Alice, i.e., ρA

i j = Vi0V ∗
j0. We define the

measure of causal influence from B to A as

IB→A(φ) =
∫

dμ(V )
∑
h f i′ j′

∣∣∂ρ ′A
i′ j′/∂ρB

h f

∣∣2
. (4)

FIG. 1. (a) CI (dimensionless) for some quantum gates. The
environment for the three-qubit gates is initially in state |0〉C and,
when required, A is the control qubit and B, the target. (b) E [IA→B]
(dimensionless) as function of dA, dB and dC [Eq. (7)], where dA is
coded in the sequence of points for each dB, dC with 2 � dA � 6 from
top to bottom (3 � dB � 8) or bottom to top (dB = 2, coinciding on
this scale) in each sequence.

Analogously, one defines IA→B. Notice that for either A or B
corresponding to the trivial (one-dimensional) Hilbert space,
there is a single physical state so the derivatives vanish and
the influence is always zero. Therefore we restrict ourselves to
dA, dB > 1. Based on an average rather than a maximization
procedure, Def. 2 allows for straightforward evaluation. While
not all do-interventions are physically realizable [21], both
definitions 1 and 2 can be applied experimentally, as long as
Alice and Bob can generate arbitrary local states, e.g., through
measurement and local quantum channels.

For finite dC , from (2) and the definition of F ,
∂ρ ′A

i′ j′/∂ρB
h f = ρA

i jFkl,i j (i′, j′)Dkl,h f with Dkl,h f ≡ ∂ρB
kl/∂ρB

h f .
Since for all density matrices ρ, ρi0i0 = 1 − ∑

j �=i0
ρ j j and the

partial derivative of a complex number with respect to its com-
plex conjugate vanishes, we have Dkl,h f = (1 − δh f )δkhδl f −
δh f δkl (δh0 − 1)(−1)δk0 , where, without loss of generality, we
took i0 = 0. Then, by algebraic computation and using invari-
ant integration over the unitary group [51], see Appendix,

IB→A(φU,ρC ) = [Fkl,i j (i
′, j′)F ∗

k1l1,i j (i
′, j′)

+ Fkl,ii(i
′, j′)F ∗

k1l1,i1i1 (i′, j′)]
Dkl,h f Dk1l1,h f

dA(dA + 1)
.

(5)

In Fig. 1(a) we show the values of the CI for some common
qubit gates.

VI. PROPERTIES OF THE MEASURE

The measure (4) enjoys the following important properties
(see Appendix for the proofs):

(1) I = 0 if and only if there is no CI.
(2) For every channel {Kμ},
IB→A

(
φ{(U A

1 ⊗U B⊗IC )Kμ(U A
0 ⊗IBC )},ρC

) = IB→A(φ{Kμ},ρC ) (6)

for all U A
0 ,U A

1 ∈ U (dA), U B ∈ U (dB), U ∈ U (dAdBdC ), and
analogously for IA→B. These properties are natural: after the
propagation, any local action should not change the CI. And
since we consider all initial states of Alice, the measure
should be invariant under her local prepropagation unitaries.
On the other hand, since the changes of ρB reflect Bob’s
do-interventions, IB→A need not be invariant under local
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FIG. 2. Histogram of IB→A (dimensionless), for 104 random Haar
distributed unitary matrices of dimension D = dAdBdC , for D = 2 ×
2 × 2 (light blue) and D = 3 × 2 × 2 (dark blue), their mean values
are 0.76 and 0.896, the standard deviations 0.19 and 0.095, and
their expected values [Eq. (7)] 16/21 � 0.76 and 128/143 � 0.895,
respectively.

unitaries of Bob before the propagation, and indeed, in gen-
eral, IB→A(φKμ(IAC⊗U B ),ρC ) �= IB→A(φ{Kμ},ρC ).

(3) The natural scale of IB→A is given by the Haar-measure
average E [IB→A(φU,ρC )] = ∫

dμ(U )IB→A(φU,ρC ).

E [IB→A(φU,ρC ))] = dB − 1

d2
Ad2

Bd2
C − 1

[
2d2

Ad2
BdC − 2d2

BdC

+ dA(dB − 2)2
(
d2

Bd2
C − 1

)]
. (7)

E [IA→B(φU,ρC )] is obtained by permuting A ↔ B. Figure 1(b)
illustrates the behavior of E [IA→B(φU,ρC )]. Notice that it
is strictly increasing with dB, which is reasonable as one
expects that the larger the Hilbert-space dimension of the
influencing system, the more it can influence. A particular
case of interest is such that either one of the systems A or
B, or the environment has a dimension much greater than
the others. E [IB→A(φU,ρC )] tends to 2(dB − 1)/dC , ∞ and
(dB − 1)(dB − 2)2/dA in these limits, respectively. Figure 2
shows a histogram of IA→B for random Haar generated uni-
tary matrices. The relatively narrow distribution confirms that
E [IB→A(φU,ρC )] represents a good scale for IB→A(φU,ρC ) for
given Hilbert-space dimension. For three qubits, there are
gates such as CNOT or CSIGN with almost twice the value of
E [IB→A(φU,ρC )].

VII. QUANTUM CAUSAL SWITCH

In analogy to the quantum switch [33,34] one can create
a unitary evolution Usup that superposes the CI A�→B and
A←
�

B, controlled by an ancilla qubit |χ c〉 = cos(θ/2)|0〉 +
eiφ sin(θ/2)|1〉, for θ ∈ [0, 2π ) and φ ∈ [0, π ). In the
Appendix we investigate the behavior of such a “quantum
causal switch” and show how one can interpolate continuously
between the two directions of the CI as function of the state
of the control qubit. For almost all states of the control qubit,
the CI is in both directions.

VIII. PROPAGATION OF CAUSAL INFLUENCE

To illustrate the propagation of CI within a specific exactly
solvable physical model, compare it to the well-known cre-
ation of reservoir-induced entanglement, and to verify that
indeed entanglement does not arrive before the CI, which
would be physically unreasonable, we apply the measure to
two spin-1/2s interacting with a bath of harmonic oscilla-
tors, which corresponds to dC = ∞. The Hamiltonian is H =
HAB + Hbath + Hint , with Hint = (SA + SB)

∑
k gkqk . SA, SB are

the “coupling agents” acting on HA and HB with eigenvalues
a0, a1 and b0, b1, respectively, and qk and gk are the general-
ized coordinates and coupling constants to the kth oscillator,
respectively. For degenerate-in-energy, noninteracting spins
HAB = 0, and the model becomes an exactly solvable dephas-
ing model that can lead to reservoir-induced entanglement
[52]. The Hamiltonian does not give any direct interaction
between A and B, but an effective interaction is mediated by
the heat bath that turns out to be the standard dipole-dipole
interaction with a time-dependent reflecting retardation. The
propagation of an initial product state at time t [52] leads
to a CI

Ibath
B→A = 4

3 sin2 [(a0 − a1)(b0 − b1)ϕ(t )]e−2(a0−a1 )2 f (t ), (8)

where

ϕ(t ) =
∑

k

g2
k

2mh̄ω2
k

(
t − sin ωkt

ωk

)

and

f (t ) =
∑

k

g2
k (1 + 2n̄k )

2mh̄ω3
k

(1 − cos ωkt ),

where n̄k is the thermal occupation of the kth oscillator.
Both ϕ(t ) and f (t ) vanish at t = 0 and are strictly positive
for t > 0.

Ibath
A→B is obtained by permuting ai ↔ bi, i = 0, 1. The CI

is invariant under t → −t . For values of f and ϕ such that
there is no causal influence, no entanglement between the
qubits is generated. However, the converse is not true, i.e., not
all CI generates entanglement. Ibath

B→A takes a maximum value
of 4/3, periodically oscillates as function of ϕ and decays
exponentially for large f but does not vanish exactly, whereas
the generated entanglement does vanish exactly as the state
approaches the fully mixed state [53–55].

For the physical example of two double quantum dots
(DQDs) at distance x from each other coupled with dipole
interaction to blackbody radiation, with a UV frequency cut-
off ym = ωmaxτ , where τ = h̄/kBT and T is the temperature,
the functions f (t ) and ϕ(t ) can be obtained analytically (see
Appendix) if one approximates coth �1 for ym � 1 [56].
Physically, it is clear that CI can only arise inside the light
cone, x = ct , and indeed, the CI plotted for this system
in Fig. 3(a) shows that there is no CI for spacelike sepa-
rated points, t < x/c. Surprisingly, however, significant CI
is generated only far behind the light cone, namely, for t �
1012(x/c)3. This is reminiscent of reservoir-induced entangle-
ment [57,58] that also arises only far behind the light-cone
[56] (i.e., “Entanglement harvesting” [59–69], i.e., entangle-
ment creation outside the light cone, is typically not possible
here without “reservoir engineering”). In fact, the space-time
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FIG. 3. (a) IB→A (dimensionless) for two initially noninteracting
DQD with d = 10 nm coupled with the blackbody radiation at T =
2.73 K with ym = 4250 (h̄ωm = 1 eV), parametrized by x/c and t .
The corresponding plot for the entanglement of formation E looks
almost identical (see Fig. 2 in Ref. [57]). Dotted line: t = 1011(x/c)3.
Full line: light-cone ct = x. (b) Difference δ = 0.795 481IB→A − E
(dimensionless), see text, E for the initial state (|0〉 + |1〉) ⊗ (|0〉 +
|1〉)/2. Same parameters as in panel (a).

dependence of CI and entanglement of formation (EOF) E ,
created as long as both initial states of A and B contain
components of both |0〉 and |1〉, are almost perfectly in
sync, see Fig. 3(b). Minimization of

∑
it , jx

δ2
it , jx over a reg-

ular grid of 51 × 51 points in the space-time regions shown
with δ = λIB→A − E gives λ � 0.795 481, and the remaining
differences are less than about 0.05 in absolute value over
the 12 orders of magnitude of x/c considered. Under time
reversal, t → −t , f (t ) remains invariant, whereas ϕ(−t ) =
−ϕ(t ), which leads to complex-conjugate matrix elements of
ρAB as usual. Formally there is hence exactly as much CI
in positive time direction as in negative time direction. This
can be seen already from (V) with ρ ′AB → ρ ′AB∗ under time
reversal. Hence, reasons for the apparent purely forward CI
in Nature must be sought outside quantum mechanics [70].
Indeed, causality is, even in our most fundamental established
theories, implemented by hand by choosing advanced Green’s
functions only.

IX. CONCLUSION

In summary, we gave a definition of causal influence (CI)
in the quantum world based on reduced density matrices.
We derived a necessary and sufficient condition on the joint

evolution operator of Alice, Bob, and an environment that
a given quantum system can causally influence another one.
Moreover, we introduced a measure of the CI, analyzed it in
detail, showed the possibility of superposing opposite direc-
tions of CI, and applied it to particular cases of both finite-
and infinite-dimensional environments. For the example of
two degenerate double-quantum dots at distance x dipole-
interacting with thermal blackbody radiation we found that
the space-time dependence of the CI is almost perfectly in
sync with the reservoir induced entanglement. Both arrive
long after [t ∝ (x/c)3] the light cone ct = x. Just as entangle-
ment measures, classicality measures and measures based on
other resource theories have had a large impact in theoretical
physics for the last three decades. Similarly, we hope that
having a causality measure in quantum mechanics opens the
path to study many new things, starting from its properties,
over Bell-like inequalities, to the relationship to entangle-
ment harvesting, the classical limit of quantum CI, and
many more.
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APPENDIX A: PROOF OF THEOREM 1

Let αi j (i′, j′) := ρB
klρ

C
mnKμ

i′k′m′,ikmKμ∗
j′k′m′, jln. Then, from (1),

ρ ′A
i′ j′ = ρA

i jαi j (i′, j′). Imposing B � A for all ρA, B � A must
hold in particular for ρA

i j = δi jδii0 and thus, ρ ′A
i′ j′ = αi0i0 (i′, j′)

must be independent of (ρB) ∀ i0. Since i0 is arbitrary ∈ [dA],
we need that αii(i′, j′)(/ρB) ∀ i ∈ [dA], where (/ρB) denotes no
dependence on ρB for all ρB. Moreover, consider the previ-
ous density matrix but with two nonvanishing off-diagonal
components ρA

i1 j1 and, due to Hermiticity, ρA
j1i1 , for i1 �= j1.

Then, imposing the independence condition, it is necessary
that [

ρA
i1 j1αi1 j1 (i′, j′) + ρA

j1i1α j1i1 (i′, j′)
]
(/ρB) (A1)

(without implicit sum). Thus, writing ρA
i1 j1 as the sum of its

real part and i times its imaginary part and ρA
j1i1 as their

difference, one sees that it is necessary that (αi1 j1 (i′, j′) ±
α j1i1 (i′, j′))(/ρB), leading to the conclusion that αi j (i′, j′)(/ρB)
must hold for all i, j, i′, j′. Applying the definition of
Fkl,i j (i′, j′),

αi j (i
′, j′) = ρB

kkFkk,i j (i
′, j′) +

∑
l �=k

ρB
klFkl,i j (i

′, j′), (A2)

its independence of ρB is fulfilled if and only if

Fkk,i j (i
′, j′) = Fk̃k̃,i j (i

′, j′) and
Fkl,i j (i

′, j′) = Flk,i j (i
′, j′) = 0 (A3)

for all k �= l, k̃, i, j, i′, j′. The first condition comes from the
trace one of the density matrices, thus, any ρB

k0k0
can be written

as ρB
k0k0

= 1 − ∑
k �=k0

ρB
kk and thus the first summand in (A2)
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becomes ∑
k �=k0

ρB
kkFkk,i j (i

′, j′) +
(

1 −
∑
k �=k0

ρB
kk

)
Fk0k0,i j (i

′, j′). (A4)

Since ρB
kk for k �= k0 can vary independently, it is necessary that Fkk,i j (i′, j′) = Fk0k0,i j (i′, j′) for all k, then∑

k

ρB
kkFkk,i j (i

′, j′) = Fk0k0,i j (i
′, j′)

∑
k

ρB
kk

= Fk0k0,i j (i
′, j′)Tr[ρB] = Fk0k0,i j (i

′, j′).

(A5)

Finally, the second condition comes from a similar argument derived for the independence of αi j (i′, j′) with i �= j.

APPENDIX B: EXAMPLE OF A SINGLE DIRECTION OF INFLUENCE

The unitary matrix (B1) in U (2 × 2 × 2) is such that A → B but B � A, i.e., it only allows one influencing direction.
Moreover, IA→B(φU,|0〉〈0|C ) = 1.5 and IB→A(φU,|0〉〈0|C ) = 0.0.

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1√

2
1√
2

0 0

0 0 0 0 0 0 1√
2

1√
2

0 0 0 0 1√
2

− 1√
2

0 0

0 0 0 0 0 0 1√
2

− 1√
2

0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

APPENDIX C: QUBIT DENSITY MATRICES AFTER THE APPLICATION OF THE CNOT GATE

Write Alice’s and Bob’s initial states in the computational basis so that ρA = ρA
i j |i〉〈 j|, ρB = ρB

kl |k〉〈l| and ρC = ρC
mn|m〉〈n|,

for i, j ∈ [2], k, l ∈ [2], m, n ∈ [2] and let the initial state be ρA ⊗ ρB ⊗ ρC at t0. Let ρ ′ABC and ρ ′′ABC be the states after applying
a CNOT gate with control B and target A and subsequently a CNOT with control B and target C, at t1 and t2, respectively. The
reduced density matrices of B at t1 and of C at t2 are given by

ρ ′B =
(

ρB
00 ρB

012 Re ρA
01

ρB
102 Re ρA

10 ρB
11

)
, ρ ′′C =

(
ρB

00ρ
C
00 + ρB

11ρ
C
11 ρC

01ρ
B
00 + ρC

10ρ
B
11

ρC
01ρ

B
11 + ρC

10ρ
B
00 ρC

00ρ
B
11 + ρC

11ρ
B
00

)
. (C1)

For the application of the CNOT with A control and B target to the state ρA ⊗ ρB, one has that the reduced density matrices are
given by

ρ ′A =
(

ρA
00 ρA

012 Re ρB
01

ρA
102 Re ρB

10 ρA
11

)
, ρ ′B =

(
ρB

00ρ
A
00 + ρB

11ρ
A
11 ρB

01ρ
A
00 + ρB

10ρ
A
11

ρB
01ρ

A
11 + ρB

10ρ
A
00 ρB

00ρ
A
11 + ρB

11ρ
A
00

)
. (C2)

APPENDIX D: INTEGRATION OVER THE
UNITARY GROUP

For φU,ρC , using the definition of Dkl,h f , the CI (4) can be
written as

IB→A(φU,ρC ) =
∫

dμ(V )
∑
h f i′ j′

|Vi0V
∗
j0Fkl,i j (i

′, j′)Dkl,h f |2.

(D1)

Expanding the square, one has order two terms of the func-
tions F and D and integrals of the type

∫
dμ(V )V ∗

j0V
∗

i10Vi0Vj10.
In Ref. [51] is shown that the integrals∫

dμ(U )U ∗
i1 j1 · · ·U ∗

ip jp
Uk1l1 · · ·Ukqlq denoted by 〈I, J|K, L〉

vanish unless q = p, which will be assumed to be the
case. Even more, such integrals are nonvanishing if, in

addition, K = Iσ1 and L = Jσ2 , for σ1, σ2 ∈ Sp, and since
Ui1 j1 · · ·Uip jp = Uτ (i1 )τ ( j1 ) · · ·Uτ (ip)τ ( jp) for any τ ∈ Sp due
to the fact that it is a multiplication of complex numbers,
we may assume σ1 = id , then the nonzero integrals are of
the form 〈I, J|I, Jσ2〉. Since the Haar measure is invariant
under transposition, a permutation between rows and columns
does not change the integral, i.e., 〈I, J|K, L〉 = 〈J, I|L, K〉.
Furthermore, the integral is affected by whether the indices
take on the same or different values, but independent of what
these values are, for this reason it is convenient to use the
graphical representation introduced in Ref. [51]:

(1) The distinct values in the index set I are represented
as dots in a column and, on its right, the distinct values of the
index set J as dots in a column (since Jσ2 is a permutation of
J , it has the same distinct values as J).
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FIG. 4. [50] Nonvanishing integrals I for p = 2. Their respective values, from panel (a) to panel (e), are 1
D2−1

=: I(a), −1
D(D2−1)

=: I(b),
1

D(D+1) =: I(c), 1
D(D+1) =: I(d ), and 2

D(D+1) =: I(a).

(2) Factors U ∗
ir jr and Uir ,σ2( jr ), for r = 1, . . . , p, are repre-

sented by thin (solid) and dotted lines, respectively. The power
of the matrix element, if greater than 1, will be represented
above the solid line or below the dotted line, correspondingly.
When a pair U ∗

ir jrUir jr occurs together, the thin and dotted lines
will be replaced by a thick solid line, whose multiplicity will
be understood as the power of this pair.

Using this graphical representation, the nonvanishing
integrals I of p = 2 are those shown in Fig. 4 to-
gether with their values. Then, the nonvanishing integrals∫

dμ(V )V ∗
j0V

∗
i10Vi0Vj10 = 〈 ji1, 00|i j1, 00〉, for V ∈ U (dA), are

such that (i, j1) = σ ( j, i1), for σ ∈ S2, i.e., either
(1) (i, j1) = ( j, i1), so that the integral is 〈ii1, 00|iii, 00〉,

and it takes the values

〈 ji1, 00| jii, 00〉 =
{
I(e) = 2

dA(dA+1) if j = i1
I(d ) = 1

dA(dA+1) if j �= i1,
(D2)

whose value can be compactly written as
(1 + δi1 j )/[dA(dA + 1)], or

(2) (i, j1) = (i1, j), and, since the integral is independent
of what the values of the indices are, it takes the same value
as in case 1.

Thus, considering both options and not overcounting the
intersection,∫

dμ(V )V ∗
j0V

∗
i10Vi0Vj10 = δi1iδ j j1 [δ ji1I(e) + (1 − δ ji1 )I(d )]

+ δi1 j1δi j[δ ji1I(e) + (1 − δ ji1 )I(d )]

− δi1 jδi1iδi1 j1I(e)

= 1

dA(dA + 1)
(δi1iδ j j1 + δi1 j1δi j ).

(D3)

APPENDIX E: GENERALIZATION TO n QUANTUM
SYSTEMS

Consider n quantum systems described by their respec-
tive density matrices ρ1, ...,ρn and a system e, the joint
environment, with a fixed initial state ρe corresponding to
the physical system that propagates the causal influence and
creates an effective interaction, but also leads to decoher-

ence. The joint quantum system lies in the Hilbert space
H1 ⊗ · · · ⊗ Hn ⊗ He, with dim(Hr ) = dr , r ∈ {1, . . . , n, e}.
Definition 1 naturally extends as l � k if and only if, after
the propagation of the initial state ρ1 ⊗ · · · ⊗ ρn ⊗ ρe, the
reduced state of system k fulfils that ρ ′k (/ρ l ) for any density
matrix ρ l describing system l .

Definition 2 is generalized as follows: Let ρk =
V k|0〉〈0|V k† for, where V k ∈ U (dk ) so that ρk

ik jk = V k
ik0(V k

jk0)∗.
Then, the causal influence from l to k is

Il→k =
∫

dμ
(
V k

) ∑
i′k j′k ĩl j̃l

∣∣∣∣∣
∂ρ ′k

i′k j′k

∂ρ l
ĩl j̃l

∣∣∣∣∣
2

. (E1)

If the full system is closed, we consider the evolution
of the systems 1, . . . , n, e via a joint unitary transformation
U ∈ U (d1 × · · · × dn × de). The uncorrelated initial state is
mapped to U (ρ1 ⊗ · · · ⊗ ρn ⊗ ρe)U † =: ρ ′1···ne. Using Ein-
stein’s sum convention, we write the initial state of system
r in the computational basis so that ρr = ρA

ir jr |ir〉〈 jr |, for
ir, jr ∈ [dr] for all r ∈ {1, . . . , n} and take ρe = |0〉〈0|. Then,

ρ ′1···ne
i′1...i′ni′e, j′1... j′n j′e

= ρ1
i1 j1 · · · ρn

in jnUi′1...i′ni′e,i1...in0U
∗
j′1... j′n j′e, j1... jn0.

(E2)

Then, the elements of the reduced density matrix of the system
k become

ρ ′k
i′k ,i

′
j
= ρ1

i1 j1 · · · ρn
in jnUi′1...i

′
k−1i′k i′k+1...i

′
ni′e,i1...in0

× U ∗
i′1...i

′
k−1 j′k i′k+1...i

′
ni′e, j1... jn0. (E3)

Defining

Fi1 j1...in jn (i′k, j′k ) =Ui′1...i
′
k−1i′k i′k+1...i

′
ni′e,i1...in0U

∗
i′1...i

′
k−1 j′k i′k+1...i

′
n,i

′
e, j1... jn0,

(E4)

and, from (E3) and (E4),

∂ρ ′k
i′k j′k

∂ρ l
ĩl j̃l

=
∏
r �=l

ρr
ir jr Fii j1...in jn (i′k, j′k )Dil jl ,ĩl j̃l . (E5)
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Thus,

Il→k = Fi1 j1...in jn (i′k, j′k )F ∗
i12 j12 ...in2 jn2

(i′k, j′k )Dil jl ,ĩl j̃l Dil2 jl2 ,ĩl j̃l

∏
r,r2 �=k,l

ρr
ir , jr ρ

r2∗
ir2 , jr2

∫
dμ(V k )ρk

ik , jk ρ
k∗
ik2 , jk2

, (E6)

where the values of the integral is given by (D3).
On the other hand, applying an analogous reasoning as in the proof of Theorem 1, one finds the extension of Theorem 1:

l � k if and only if

∏
r �=k,l

ρr
ir jr Fi1 j1...il jl ...in jn (i′k, j′k ) = δil jl

⎛
⎝ ∏

r �=k,l

ρr
ir jr Fi1 j1...ĩl ĩl ...in jn (i′k, j′k )

⎞
⎠, (E7)

for all il , jl , ĩl , ik, jk, i′k, j′k .

APPENDIX F: PROOF OF PROPERTY 1 OF THE MEASURE

By Def. 1, if there is no causal influence, all the derivatives in (3) vanish and therefore I is the integral over zero, which is
zero. Conversely, suppose that ∂ρ ′A

i′ j′/∂ρB
h f �= 0 for a particular combination of indices h, f and a specific value of ρB

h f . Since ρ ′A
i′ j′

is a linear function of all ρB
h f , ∂ρ ′A

i′ j′/∂ρB
h f is independent of ρB

h f . Hence, ∂ρ ′A
i′ j′/∂ρB

h f > 0 for a set of finite measure, and hence
IB→A �= 0.

APPENDIX G: PROOF OF PROPERTY 2 OF THE MEASURE

The invariance follows from the following three invariances:
(1) IB→A(φ{(U A⊗IBC )Kμ},ρC ) = IB→A(φ{kμ},ρC ).
From (4), using ∂ρ ′A

i′ j/∂ρB
h f = ρA

i jFkl,i j (i′, j′)Dkl,h f ,

IB→A(φ{(U A⊗IBC )Kμ},ρC ) =
∫

dμ(V )
∑
h f i′ j′

∣∣ρA
i jU

A
i′i′1

Kμ

i1k′m′,ikmU A∗
j′ j′1

Kμ∗
j′1k′m′, jlnρ

CDkl,h f

∣∣2

=
∫

dμ(V )
∑
h f i′ j′

ρA
i jU

A
i′i′1

Kμ

i1k′m′,ikmU A∗
j′ j′1

Kμ∗
j′1k′m′, jlnρ

C
mnDkl,h f ρ

A∗
ĩ j̃ U A∗

i′ ĩ′1
Kμ∗

ĩ1 k̃′m̃′,ĩk̃m̃
U A

j′ j̃′1
Kμ

j̃′1 k̃′m̃′, j̃ l̃ ñ
ρC∗

m̃ñDk̃l̃,h f

=
∫

dμ(V )
∑

h f i′1 j′1

ρA
i jK

μ

i′1k′m′,ikmKμ∗
j′1k′m′, jlnρ

C
mnDkl,h f ρ

A∗
ĩ j̃ Kμ∗

i′1 k̃′m̃′,ĩk̃m̃
Kμ

j′1 k̃′m̃′, j̃ l̃ ñ
ρC∗

m̃ñDk̃l̃,h f

= IB→A(φ{kμ},ρC ), (G1)

where we used that U A
i′i′1

U A∗
i′ ĩ′1

= U A†
ĩ1

′
i′
U A

i′i′1
= δi′1 ĩ′1

and U A∗
j′ j′1

U A
j′ j̃′1

= U A†
j′1 j′U

A
j′ j̃′1

= δ j′1 j̃′1
.

(2) IB→A(φ{(IA⊗U B⊗IC )Kμ},ρC ) = IB→A(φ{Kμ},ρC ).
According to Def. 2, IB→A = ∫

dμ(V )
∑

h f i′ j′ |∂ρ ′A
i′ j′/∂ρB

h f |2. Alice’s reduced final state is obtained tracing out systems B and
C after the evolution, nevertheless Alice’s final state remains unaltered due to the invariance of the partial trace under final U B.

(3) IB→A(φU (U A
0 ⊗IBC ),ρC ) = IB→A(φU,ρC ).

It follows from the (Haar) integration over all possible initial Alice’s states.

APPENDIX H: PROOF OF PROPERTY 3 OF THE MEASURE

From equation (5),

IB→A(φU,ρC ) = 1

dA(dA + 1)
Dkl,h f Dk1l1,h f (δi1iδ j j1 + δi jδi1 j1 )Fkl,i j (i

′, j′)F ∗
k1l1,i1 j1 (i′, j′), (H1)

and, applying the definition of the first moment,

E [IB→A(φU,ρC )] =
∫

dμ(U )IB→A(U )

= 1

dA(dA + 1)

∑
i, j,i1, j1

Dkl,h f Dk1l1,h f (δi1iδ j j1 + δi jδi1 j1 )
∫

dμ(U )Fkl,i j (i
′, j′)F ∗

k1l1,i1 j1 (i′, j′). (H2)
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Using the definition of the F functions, the integral over U can be written as∑
k′,k̃′,m′,m̃′

∫
dμ(U )U ∗

j′k′m′, jl0U
∗
i′ k̃′m̃′,i1k10Ui′k′m′,ik0Uj′ k̃′m̃′, j1l10 =

∑
k′,k̃′,m′,m̃′

〈p1 p2, q1q2|r1r2, s1s2〉, (H3)

where the integrals of the form
∫

dμ(V )V ∗
i1 j1 · · ·V ∗

ip jp
Vk1l1 · · ·Vkplp have been denoted by

〈(i1 . . . ip), ( j1 . . . jp)|(k1 . . . kp), (l1 . . . lp)〉 =: 〈I, J|K, L〉,. and where, for short, we introduced the notation p1 = j′k′m′,
p2 = i′k̃′m̃′, q1 = jl0, q2 = i1k10, r1 = i′k′m′, r2 = j′k̃′m̃′, s1 = ik0, and s2 = j1l10. The nonvanishing integrals are those such
that (r1, r2) = σ1(p1, p2) and (s1, s2) = σ2(q1, q2), for σ1, σ2 ∈ S2 = {id, σ }. Denote P = (p1, p2), Q = (q1, q2), R = (r1, r2),
and S = (s1, s2), so that the order-two integrals are of the form 〈P, Q|R, S〉 and we split them into the four (three nonequal)
following (nondisjoint) sets of integrals: 〈P, Q|P, S〉, 〈P, Q|R, Q〉, and 〈P, Q|P, Q〉 = 〈PQ|Pσ Qσ 〉. From set theory, given three
sets I1, I2, and I3, the number of elements of its union is

|I1 ∪ I2 ∪ I3| = |I1| + |I2| + |I3| − |I1 ∩ I2| − |I1 ∩ I3| − |I2 ∩ I3| + |I1 ∩ I2 ∩ I3|. (H4)

Thus, we can write the order-two integrals in terms of the four (three nonequal) sets of integrals stated above:

〈P, Q|R, S〉 = δPR〈P, Q|P, S〉 + δQS〈P, Q|R, Q〉 + δPRσ
δQSσ

〈P, Q|Pσ , Qσ 〉
− δPRδQS〈P, Q|P, Q〉 − δPRδPRσ

δQSσ
〈P, Q|P, Qσ 〉 − δQSδPRσ

δQSσ
〈P, Q|Pσ , Q〉 (H5)

+ δPRδPRσ
δQSδQSσ

〈P, Q|P, Q〉.
The integrals in (H5), in terms of integrals depending on p1, p2, q1, and q2, are as follows:

(1) 〈P, Q|P, S〉, which can be written as

〈p1 p2, q1q2|p1 p2, s1s2〉 = δq1s1δq2s2〈p1 p2, q1q2|p1 p2, q1q2〉 + δq1s2δq2s1〈p1 p2, q1q2|p1 p2, q2q1〉
− δq1q2δq1s1δq1s2〈p1 p2, q1q1|p1 p2, q1q1〉.

(H6)

(2) 〈P, Q|R, Q〉, which takes the same value as 〈Q, P|Q, R〉, and therefore it is computed as in 1.
(3) 〈P, Q|Pσ , Qσ 〉 = 〈P, Q|P, Q〉 = 〈p1 p2, q1q2|p1 p2, q1q2〉.
(4) 〈P, Q|P, Qσ 〉 = 〈p1 p2, q1q2|p1 p2, q2q1〉.
(5) 〈P, Q|Pσ , Q〉 which takes the same value as 〈Q, P|Q, Pσ 〉, and therefore it is computed as in 4.

Therefore, we are left with the values of 〈p1 p2, q1q2|p1 p2, q1q2〉 and 〈p1 p2, q1q2|p1 p2, q2q1〉. From Fig. 4 we have that

〈p1 p2, q1q2|p1 p2, q1q2〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
I(e) if p1 = p2 and q1 = q2

I(c) if p1 = p2 and q1 �= q2

I(d ) if p1 �= p2 and q1 = q2

I(a) if p1 �= p2 and q1 �= q2,

(H7)

and

〈p1 p2, q1q2|p1 p2, q2q1〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
I(e) if p1 = p2 and q1 = q2

I(c) if p1 = p2 and q1 �= q2

I(d ) if p1 �= p2 and q1 = q2

I(b) if p1 �= p2 and q1 �= q2.

(H8)

Combining (H5)–(H8), a generic integral of order two can be written as

〈p1 p2, q1q2|r1r2, s1s2〉 = δp1r1δp2r2

(
δq1s1δq2s2

{
δq1q2

1 + δp1 p2

D(D + 1)
+ (

1 − δq1q2

)[ δp1 p2

D(D + 1)
+ 1 − δp1 p2

D2 − 1

]}

+ δq1s2δq2s1

{
δq1q2

1 + δp1 p2

D(D + 1)
+ (

1 − δq1q2

)[ δp1 p2

D(D + 1)
− 1 − δp1 p2

D(D2 − 1)

]}

− δq1q2δq1s1δq1s2

1 + δp1 p2

D(D + 1)

)

+ δq1s1δq2s2

(
δp1r1δp2r2

{
δp1 p2

1 + δq1q2

D(D + 1)
+ (

1 − δp1 p2

)[ δq1q2

D(D + 1)
+ 1 − δq1q2

D2 − 1

]}

+ δp1r2δp2r1

{
δp1 p2

1 + δq1q2

D(D + 1)
+ (

1 − δp1 p2

)[ δq1q2

D(D + 1)
− 1 − δq1q2

D(D2 − 1)

]}
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− δp1 p2δp1r1δp1r2

1 + δq1q2

D(D + 1)

)

+ (
δp1r2δp2r1δq1s2δq2s1 − δp1r1δp2r2δq1s1δq2s2

)(
δq1q2

1 + δp1 p2

D(D + 1)
+ (

1 − δq1q2

)[ δp1 p2

D(D + 1)
+ 1 − δp1 p2

D2 − 1

])

− δp1r1δp1 p2δp1r2δq1s2δq2s1

[
δq1q2

2

D(D + 1)
+ 1 − δq1q2

D(D + 1)

]

− δp1r2δp2r1δq1s1δq1q2δq2s2

[
δp1 p2

2

D(D + 1)
+ 1 − δp1 p2

D(D + 1)

]

+ δp1r1δp1 p2δp1r2δq1s1δq1s2δq1q2

2

D(D + 1)
, (H9)

and plugging it on equation (H3) and subsequently in (H2), we obtain the expected value of the measure of causal influence.
Let · · · denote the integral 〈p1 p2, q1q2|r1r2, s1s2〉 assuming that the indices are written in terms of the original ones, i.e.,

p1 = j′k′m′, etc., and denote the same integral but with a certain index taking the same value as another index writing the
equality of indices inside . . . instead of the three dots, i.e., the integral 〈p1 p2, q1q2|r1r2, s1s2〉 for i1 = i will be written as i1 = i.
Then, from equation (H2), and denoting by λ the set of indices i′ j′k′k̃′m′m̃′,

dA(dA + 1)E [IB→A(φU,ρC )] =
∑

λi ji1 j1
klk1l1h f

Dkl,h f Dk1l1,h f (δi1iδ j j1 + δi, jδi1, j1 ). . .

=
∑
λi j

klk1l1h f

Dkl,h f Dk1l1,h f i1 = i, j1 = j +
∑
λii1

klk1l1h f

Dkl,h f Dk1l1,h f j = i, j1 = i1.
(H10)

Since, for our purpose, the two terms in (H10) can be treated analogously, we will show the computations for the first term. We
separate the cases where h �= f and h = f . In the former case Dkl,h f takes the value δkhδl f and in the latter, (−1)δk0 (δh0 − 1)δklδh f .
Thus, the first term summed in the above expression can be written as∑

λi j
klk1l1h

∑
f : f �=h

δkhδl f δk1hδl1 f i1 = i, j1 = j +
∑
λi j

klk1l1h f

∑
f : f =h

(−1)δk0+δk10 (1 − δh0)δh f δklδk1l1 i1 = i, j1 = j. (H11)

The first term of the sum (H11) can be written as∑
λi jkl

i1 = i, j1 = j, k = k1 = h, l = l1 = f −
∑
λi jk

i1 = i, j1 = j, k = k1 = l = l1 = f = h, (H12)

and the second term is simplified as

(dB − 1)
∑
λi j
kk1

(−1)δk0+δk10 i1 = i, j1 = j, l = k, l1 = k1. (H13)

Using Mathematica, computing the integrals via (H9), one obtains the sums in (H12) and (H13), e.g., the first term in (H12) is

d2
AdB

[
d2

BdC
(
d2

A + dC − 1
) − 1

]
d2

Ad2
Bd2

c − 1
,

and (6) is recovered. E [IA→B(φU,ρC )] is obtained by permuting A ↔ B, i.e., E [IA→B(φU,ρC )](dA, dB, dC ) =
τ {E [IB→A(φU,ρC )](dA, dB, dC )}, where τ is the permutation τ (A) = B, τ (B) = A.

APPENDIX I: CAUSAL QUANTUM SWITCH

Consider unitary evolutions U A�→B and U A←
�

B that permit
a single influence direction indicated in their superscript. In
analogy to the quantum switch one can create a unitary evo-
lution Usup that superposes the CI A�→B and A←

�
B, controlled

by an ancilla qubit |χ c〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉, for
θ ∈ [0, 2π ) and φ ∈ [0, π ),

Usup = |0〉〈0| ⊗ U A�→B + |1〉〈1| ⊗ U A←
�

B. (I1)

Figure 5 shows the CI from A to B and vice versa, with dA =
dB = 2, for U 1

sup = |0〉〈0| ⊗ U (123) + |1〉〈1| ⊗ U (132) depend-
ing on the control qubit, where one sees that if |χ c〉 = |0〉,
I (φUsup,|χ c〉) = I (φU (123),|0〉〈0|C ) and if |χ c〉 = |1〉, I (φUsup,|χ c〉) =
I (φU (132),|0〉〈0|C ), for I ∈ {IA→B, IB→A}. Classically, CI is usu-
ally considered one-way only (represented by an arrow in
a directed acyclic graph), as time-ordering of events and
forward-in-time-only causal influence is assumed. In (I1),
both CI are forward in time. When time stamps of events can
be exchanged, mixtures of causal influences are also possible
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classically (lung cancer can be caused by smoking, but also
incite people to enjoy some final cigarettes ...), but the su-
perpositions introduced here go beyond this. More generally,
the four possible CI options could be superposed, and, for
open quantum systems, Kraus-operators with different causal
influence.

APPENDIX J: PROPAGATION OF CAUSAL INFLUENCE

For the physical example of two double quantum dots
(DQDs) at distance l from each other coupled with dipole
interaction to blackbody radiation, with a UV frequency cutoff
ym = ωmaxτ , where τ = h̄/kBT and T is the temperature, the
functions f (t ) and ϕ(t ) can be obtained analytically if one
approximates coth � 1 for ym � 1 [54]. The argument of the
sin in (7) becomes

At

t3
0

{−2 sin (ymt0) + Si[ym(t − t0)] + 2Si(ymt0)

(J1)

− Si[ym(t + t0)]} + 2A

ymt3
0

sin (ymt ) sin (ymt0),

where t0 = l/c denotes the time of travel of a light sig-
nal between the two DQD and A = α0d2/πc2τ 2, d is the

FIG. 5. IA→B (dashed line) and IB→A (continuous line), both
dimensionless, of U 1

sup depending on the control qubit |χ c〉 =
cos(θ/2)|0〉 + sin(θ/2)|1〉, parametrized by θ .

dipole moment of the quantum system divided by the electron
charge, and α0 � 1

137 and c are the fine-structure constant
and the speed of light in vacuum, respectively. In (J1) and
onwards, both t and t0 are in units of τ . The exponent in (6)
becomes −α0d2ω2

max/3c2.
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10, 3772 (2019).
[28] J. Foo, S. Onoe, R. B. Mann, and M. Zych, Phys. Rev. Res. 3,

043056 (2021).
[29] S. Utagi, Phys. Lett. A 386, 126983 (2021).
[30] J. Barrett, R. Lorenz, and O. Oreshkov, Nat. Commun. 12, 885

(2021).
[31] F. Costa, Quantum 6, 663 (2022).
[32] C. Zhang, Y. Hou, and D. Song, Phys. Rev. A 101, 062103

(2020).
[33] G. Chiribella, Phys. Rev. A 86, 040301(R) (2012).
[34] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron,

Phys. Rev. A 88, 022318 (2013).
[35] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. A.

Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č Brukner,
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