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Experimental robustness of the fractional topological phase to dephasing noise
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We observe experimentally the fractional topological phase (FTP) robustness to the dephasing noise in two-
qudit photonic systems. We use a source of photon pairs generated by spontaneous parametric down-conversion,
hyperentangled in the polarization and photon path degrees of freedom. The dephasing noise is described
theoretically via Kraus maps and experimentally implemented via the spatial light modulator. The FTP is a great
candidate to explore in the implementation of quantum processing and communication due to its robustness to
dephasing noise.
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The concept of geometric phase was introduced by
Pancharatnam during a study of the light polarization trans-
formation on the Poincaré sphere in classical optics [1]. Its
quantum version, presented by Berry, was associated with the
adiabatic evolution of a quantum state under the action of a
time-dependent Hamiltonian [2]. Berry used the adiabatic the-
orem to deduce the geometric phase, but this restriction is not
necessary for its manifestation, as pointed out by Aharonov
and Anandan [3], who obtained the key result for the geomet-
ric phase γg,

γg = arg 〈ψ (0)|ψ (t )〉 + i
∫ t

0
dt ′ 〈ψ (t ′)|ψ̇ (t ′)〉 , (1)

where ψ (t ) is the state vector at time t . The quantity given
by Eq. (1) is invariant under any attempt of redefining the
phase of the state vector along the time evolution, that is, γg

is not sensitive to any transformation of the kind |ψ (t )〉 →
eiϕ(t ) |ψ (t )〉. This is the gauge invariance property of the ge-
ometric phase, which is behind its robustness against phase
noise in quantum gate implementations [4].

In the years following Berry’s studies, experimental works
about the geometric phase [5–7] made use of the term topo-
logical for the phase dependence on the path traced in the
state space. However, the connectedness of the correspond-
ing spaces was not discussed. Kwiat and Chiao observed the
geometric phase in bipartite states using a photonic system
and two-photon interferometry, thus ensuring that it manifests
in an optical system at the quantum level [8]. Hessmo and
Sjöqvist’s works [9,10] about the entanglement influence on
geometric phase pointed to the existence of the topological
phase. They showed that the geometric phase of the max-
imally entangled state of two qubits could have only two
values, 0 or π . Milman and Mosseri proved that these two
values originate from two distinct homotopy classes of closed
paths traced in the manifold representing maximally entan-
gled states of two qubits [11,12].
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Sjöqvist reported a quantum kinematic method to de-
scribe the geometric phase for mixed states under nonunitary
evolutions and discussed a way to measure the geometric
phase for these states [13]. An experimental work by Du et al.
[14] measured the geometric phase for a mixed state, whose
results agree with the theoretical prediction [15]. This gives
rise to the question whether an evolved mixed state can also
acquire a topological phase and if it would be robust to noise.

Souza et al. [16] and Du et al. [17] experimentally observed
the topological phase for two qubits. The generalization for
two qudits came with the work by Oxman and Khoury [18],
who showed that the topological phase appears in multiples
of fractional values 2π/d , where d is the individual dimen-
sion of the qudits. This phase is referred to as the fractional
topological phase (FTP). Its topological nature originates in
the multiple connectedness of the space formed by maxi-
mally entangled two-qudit states. Later the fractional values
were also shown to occur in multiple-qubit systems [19,20].
The relationship between the fractional topological phase
and entanglement in a two-qubit system was investigated in
Ref. [21].

The experimental demonstration of the fractional phase
values has been achieved with spatial qudits encoded in en-
tangled photon pairs [22–24]. The theoretical investigation
of the fractional topological phase robustness to dephasing
noise was done in Refs. [25–31]. However, no experimental
demonstration has been presented so far, which is a key re-
quirement for practical applications in quantum phase gates.
In this work we demonstrate experimentally the topological
phase robustness against the action of a dephasing quantum
channel.

The experimental setup is shown in Fig. 1. A 355-nm laser
with vertical polarization becomes polarized at 45◦ after pass-
ing through a half waveplate (HWP) oriented at 22.5◦ with
respect to the vertical direction. A controllable phase factor eiλ

is introduced between the horizontal and vertical components
when the beam crosses a quarter waveplate (QWP) oriented
at 0◦, slightly tilted around the horizontal axis perpendicular
to the beam propagation direction. After crossing the lens Lp,
the laser beam pumps two bismuth borate (BiBO) nonlinear
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FIG. 1. Experimental setup (top view) for measuring the FTP in a
two-qudit photonic system under dephasing noise: HWP, half wave-
plate; QWP, quarter waveplate; Lp, LC , Li, and Lf : lenses; D, dichroic
mirror; MS, multiple slits; SLM, spatial light modulator; PBS, polar-
izing beam splitter; D1 and D2, avalanche photon detectors.

crystals cut for a type-I phase match. The crystals are glued
together, with their optical axes orthogonal to each other. By
spontaneous parametric down-conversion, they generate two
noncollinear beams of photon pairs at 710 nm [32]. The two-
photon state generated is entangled in the polarization degree
of freedom [32] and can be written as |ψ〉 = 1√

2
(|H, H〉 +

eiλ |V,V 〉). By suitably tilting the QWP at the pump beam
path, we set eiλ = −1 [32]. A dichroic mirror reflects the
pump beam and transmits the twin beams to an array of mul-
tiple slits positioned after the nonlinear crystals at the focal
plane of the lens Lp. The slits are 100 μm wide, with a center-
to-center separation of 250 μm. This arrangement generates
an entangled state in the transverse path degree of freedom
[33], where the number of slits sets the dimension of the
qudits. Each transverse path selected by a certain slit is called
a slit mode. Thus, taking into account both the polarization
and the transverse path degrees of freedom, we have a source
of photons in a hyperentangled state, which can be written as
[24]

|�〉 = 1√
2
αm,n(|mH, nH〉 − |mV, nV 〉), (2)

where m, n = 1, . . . , d . For notation simplicity, we use the
Einstein summation convention throughout the text. The su-
perposition state between the two-qudit spatial state with the
two photons with horizontal polarization or vertical polar-
ization is a crucial ingredient of the setup. We measure the
fractional topological phases through interference between the
initial two-qudit state and the SU(d ) transformed state. This
requires controlled quantum operations, where the spatial de-
gree of freedom is the target and the polarization is the control.
We can rewrite it more compactly as |�〉 = αμ

m,n |mμ, nμ〉,
where μ = H,V and αH

m,n = −αV
m,n = αm,n/

√
2. Note that if

αm,n = δm,d−n+1/
√

d , for example, we have a maximally en-
tangled state.

The density operator describing the down-converted pho-
tons transmitted by the multiple slits is given by ρ =
αμ

m,nα
μ′∗
m′,n′ |mμ, nμ〉 〈m′μ′, n′μ′|. The action of a dephasing

channel can be represented by a completely positive map
with the Kraus representation [34] ε(ρ) = ph jKh jρK†

h j , where
h, j = 0, . . . , d and Kh j are the Kraus operators with Kh j =
Kh ⊗ Kj , as well as Kh and Kj acting over the signal and
idler subspaces, respectively. Here {ph j} are the weighting
statistical factors. The dynamics in this process preserves the
density operator trace, which means ph jK

†
h jKh j = 1 ⊗ 1 and∑

h, j ph j = 1.
A transmissive spatial light modulator (SLM) is inserted

into the path of both the signal and idler beams to apply the
SU(d ) operations and the dephasing channels. The SLM adds
a different phase for each slit mode labeled by m (signal) and
n (idler) when we image the slits on the SLM screen. For this
end, we use the LC and Li lenses to project a magnified image
of the multiple slits at the SLM plane (the magnification was
necessary to match each slit with a pixel row of the SLM). We
split the SLM screen horizontally in two regions (one for each
photon) and vertically in d regions (one for each slit mode)
such that we can choose different gray scales for these regions
in the SLM control software, corresponding to different phase
values added to the slit modes. The SLM modulates only the
H polarization, which is an important feature for the condi-
tional operation on the superposition between an evolved state
H modified by the SLM and an unchanged state V .

We introduce now the Kraus operators that implement the
unitary operations leading to the FTP as well as the dephasing
noise. The SU(d ) operations implemented are represented
by diagonal matrices that can be written as U = eiξp |p〉 〈p|
and V = eiχq |q〉 〈q| (p, q = 1, . . . , d). Here ξp(t ) and χq(t )
are controllable phases, parametrized by t . The evolution
under the application of U and V can be described by a
map with only one Kraus operator, which can be written
as T = (eiξpδHα |p〉 〈p| ⊗ |α〉 〈α|)s ⊗ (eiχqδHβ |q〉 〈q| ⊗ |β〉 〈β|)i.
The projectors |p〉 〈p| (|q〉 〈q|) and |α〉 〈α| (|β〉 〈β|) act over
the transverse path subspace and the polarization subspace,
respectively, for the signal (idler) photon. The dephasing noise
is implemented through a π phase shift randomly added to the
photon paths such that its Kraus representation can be writ-
ten as Dh j = (eiπδhpδHα |p〉 〈p| ⊗ |α〉 〈α|)s ⊗ (eiπδ jqδHβ |q〉 〈q| ⊗
|β〉 〈β|)i. To implement this map along with the map T , we
program several masks for the SLM. First, we choose the
same set of gray scales (matching the slit modes) specified
according to the values of ξp and χq for all masks. These
values are known by the parametrization describing the SU(d )
evolution. Then we modify one gray scale of each mask ac-
counting for the addition of a π phase in a certain slit mode,
which characterizes the action of a Kraus operator with a
certain index h or j (h, j = 0, . . . , d), except for the mask
implementing D00 = 1 ⊗ 1 in which no π phase is added to
any slit mode.

To guarantee the randomness of the π phase addition, we
divide the acquisition time into (d + 1)2 intervals. One of
them is used for the D00 mask, while the others correspond
to the Dh j 
=00 masks and have the same duration. We then
run a film on the SLM screen [35] during the acquisition
time with different masks appearing within a certain time
interval. Once the photon pair generation is random, one does
not know which masks act on each pair, ensuring the desired
randomness. Depending on how intense we wish the noise to
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be, we can decrease the D00 interval duration and increase the
time interval of the other masks. For example, if we have two
qubits and a 10-s acquisition time, we can make a 100% noise
taking 1.25 s for the eight masks corresponding to the Dh j 
=00

operators and leaving the D00 aside. For a 75% noise we take
0.9375 s to the Dh j 
=00 operators and 2.5 s to D00. The 50%
noise is achieved taking 0.625 s for each Dh j 
=00 and 5 s for
D00. Finally, for 0% noise we let D00 act over the entire 10-s
interval.

The maps are applied to the |mH, nH〉 terms only. Then,
by adding a scanning phase, which is independent of the slit
modes, between the |mH, nH〉 and the |mV, nV 〉 terms, we
produce interference patterns for different stages of the evo-
lution and compare their visibilities and phase displacements.
From this comparison one can perceive the SU(d ) and noise
dephasing influences. This scanning phase is added by the
phase shifter, whose Kraus representation contains only the
operator S = (1 ⊗ 1)s ⊗ (e−i4θδHβ 1 ⊗ |β〉 〈β|)i.

By composing all the maps in a way similar to that in [31],
we get the state ε(ρ) = εS ◦ εD ◦ εT (ρ) just before the HWP
in front of the detectors:

ε(ρ) = ph jF
μ

hm, jnFμ′∗
hm′, jn′ |mμ, nμ〉 〈m′μ′, nμ′| ,

Fμ

hm, jn = αμ
m,n f μ

hm, jn,

f μ

hm, jn = (−1)(δhm+δ jn )δHμei(ξm+χn−4θ )δHμ . (3)

The desired interference between the evolved state terms
|mH, nH〉 and |mV, nV 〉 requires erasure of the polarization
information. This task is done by a HWP at 22.5◦ with the
horizontal direction and a PBS placed before the detectors,
which erases the polarization information and gives the field
operators at the detectors plane as E+

1 = 1√
2
(E+

SH + E+
SV )

and E+
2 = 1√

2
(E+

IH + E+
IV ), where E+

f μ ( f = S, I and μ =
H,V ) are the positive-frequency components of the field op-
erators before the HWP-PBS set and the indices S and I
stand for signal and idler photons, respectively. They can be
expanded in terms of the slit mode functions and the anni-
hilation operators that act on the states |mμ, nμ〉, as shown
in [22–24,31]. This allows us to calculate the coincidence
count C = β Tr{E+

2 E+
1 [ε(ρ)]E−

1 E−
2 }, β being the detection

efficiency. In this calculation we must integrate over the detec-
tor’s transverse position and make use of the orthonormality
condition obeyed by the slit mode functions, since all the slit
modes are superposed on the same area of each respective
detector. Considering an ideal situation where β = 1, we have
as a result

C = 1
8 [2 − |αm,n|2 ph j ( fhm, jn + f ∗

hm, jn)]

= 1
4 [1 − |αm,n|2 ph j (−1)(δhm+δ jn ) cos(ξm + χn − 4θ )],

(4)

where we make explicit the sum over the polarization index in
Eq. (3).

The experiment is performed with the SU(d ) parameters
shown in Table I, where ξm(t ) and χn(t ) are controlled with a
single parameter t ∈ [0, 1]. We generate two-qudit entangled
states with dimensions 2, 3, and 4 in the transverse path
subspace.

TABLE I. Phase values at different instants t of the SU(d ) evo-
lution for two-qubit, two-qutrit, and two-ququart cases.

Principal phases

t ξ1 = χ1 ξ2 = χ2

0 0 0
1
2 π/4 −π/4
1 π/2 −π/2
t ξ1 = χ1 ξ2 = χ2 ξ3 = χ3

0 0 0 0
1
2 π/3 −π/3 0
1 π/3 −2π/3 π/3
t ξ1 = χ1 ξ2 = χ2 ξ3 = χ3 ξ4 = χ4

0 0 0 0 0
1
2 −π/8 π/8 3π/8 −3π/8
1 −5π/4 π/4 7π/4 −3π/4

The state prepared corresponds to the one shown in Eq. (2)
with αm,n = δm,d−n+1/

√
d . This correspond to maximally

entangled sates, for which all dynamical phases vanish under
SU(d) evolution. Nonmaximally entangled states can expe-
rience the fractional topological phase provided α is a full
rank matrix; otherwise the cyclic evolution is not restricted
to fractional phases. The noise operations are performed by
making ph j = ph p j and

ph = p j =
{

1 − p if h, j = 0
p
d if h, j 
= 0.

(5)

First, we check the path correlations as well as the po-
larization entanglement for our state preparation as done in
[24]. Then we program the SLM to insert the phases shown in
Table I during the whole acquisition time, which correspond
to the 0% noise case as discussed before. We measure the
coincidence counts while scanning the phase shifter for each
one of the three values chosen for the parameter t , ending
up with three interference patterns. The results for ququarts
(d = 4) are shown in Fig. 2(a).

Along with the experimental points we plot the theoretical
fit according to

C = A[1 + v cos(4θ + δ)]. (6)

Such an expression is compatible with Eq. (4)
for v = |ph jϕh j | and δ = arg{ph jϕh j}, where ϕh j =
|αm,n|2ei[π (δhm+δ jn )+ξm+χn−4θ] is the inner product between
the evolved and the unchanged states. From the fitting
parameters we obtain the FTP experimentally by setting
γexpt = |δ(t = 1) − δ(t = 0)|. The values of v and δ provided
by the fitting software for the 0% noise case are shown in
the first row of Table II. We expect the value of γexpt to
agree with the theoretical prediction γtheor = 2π/d , which
is verified given that γ d=2

expt = 176◦ ± 6◦, γ d=3
expt = 125◦ ± 7◦,

and γ d=4
expt = 89◦ ± 7◦ (γ d=2

expt and γ d=3
expt are obtained from the

data in the Appendix). These values agree with the results
presented in [24] within the error bars.

Now, to take into account the dephasing noise in the qudits
evolution we reprogram the SLM with the films including the
random phase π within a certain interval of the acquisition
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FIG. 2. Interference patterns in the two-photon coincidence
counts C for two ququarts. The solid lines are the fitting curves
according to Eq. (6). Black squares correspond to t = 0, red circles
to t = 0.5, and blue triangles to t = 1. The noise level is (a) 0%,
(b) 50%, (c) 75%, and (d) 100%.

time. We choose three different intervals corresponding to
noise intensities of 50%, 75%, and 100%, which is equivalent
to setting p = 1

2 , 3
4 , and 1, respectively, in Eq. (5). The results

for ququarts are shown in the graphs of Figs. 2(b)–2(d). The

TABLE II. Fitting parameters for ququarts.

Noise t = 0 t = 0.5 t = 1

0% v = 0.623 ± 0.006 v = 0.066 ± 0.006 v = 0.597 ± 0.006
0% δ = 33.2 ± 0.5 δ = 26 ± 5 δ = 122.7 ± 0.6
50% v = 0.328 ± 0.005 v = 0.056 ± 0.006 v = 0.335 ± 0.005
50% δ = 29.2 ± 0.9 δ = 34 ± 6 δ = 120.4 ± 0.9
75% v = 0.230 ± 0.004 v = 0.048 ± 0.005 v = 0.236 ± 0.005
75% δ = 25 ± 1 δ = 21 ± 7 δ = 119 ± 1
100% v = 0.140 ± 0.004 v = 0.030 ± 0.005 v = 0.151 ± 0.004
100% δ = 24 ± 1 δ = 24 ± 9 δ = 114 ± 1

corresponding fitting values for v and δ are shown in Table II.
The complete results for qubits, qutrits, and ququarts can be
seen in the Appendix. The FTP values obtained under noise
are summarized in Table III. We clearly see the FTP robust-
ness to the dephasing noise through the preservation of the
phase displacement in the interference patterns caused by the
SU(d ) evolution.

The visibility of the measured interference patterns de-
creases and increases while the parameter t goes through its
interval for a given noise level. The higher the noise level, the
lower its maximum value, which occurs for t = 0 and 1. To
better visualize it, Fig. 3 plots the visibility as a function of
the noise level for these two instants and for each measured
dimension.

We also plotted the theoretical prediction [31], which led
us to make the following normalization of the experimental
data for comparison: vnorm(p) = v(p)/v(0), where v(p) is the
interference pattern visibility with dephasing weight p.

We see consistent agreement between the experimental
points and the theoretical curve. We also note that when
applying 100% noise (p = 1), the visibilities for qutrits and
ququarts exhibit a certain coherence resilience in their in-
terference patterns. There is a distinct behavior for d = 2
in comparison with d > 2 cases. It has been demonstrated
theoretically that qudits are less sensitive to noise with Bell
inequality tests and more robust to some eavesdropping attack
in quantum cryptography [36–39]. These previous works cor-
roborate our results.

In conclusion, we demonstrated experimentally the robust-
ness of the fractional topological phase to dephasing noise.
Two-qudit states are encoded in the transverse linear momen-
tum modes of the entangled photon pairs. Under the action
of local SU(d ) ⊗ SU(d ) operations, they acquire a fractional
topological phase measured from two-photon interference
patterns. We carried out measurements for the dimensions
d = 2, 3, and 4 under different noise levels. All measured
values agree with the theoretical prediction of 2π/d . For the

TABLE III. Measured topological phases for qubits, qutrits, and
ququarts, under different noise levels.

Noise Qubits Qutrits Ququarts

50% 178◦ ± 7◦ 128◦ ± 7◦ 91◦ ± 7◦

75% 179◦ ± 12◦ 125◦ ± 8◦ 94◦ ± 7◦

100% 122◦ ± 10◦ 90◦ ± 7◦
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(a)

(b)

FIG. 3. Normalized experimental visibilities as a function of the
noise level: (a) visibility when the SU(d ) evolution starts and (b) vis-
ibility at the end of the SU(d ) evolution. The experimental points for
qudits with d = 2 (red squares), d = 3 (black circles), and d = 4
(blue triangles) are plotted along with the theoretical curves [31]
(solid lines).

d = 2 and 100% noise case, the measured interference
patterns confirm the theoretical prediction of complete de-
coherence. For dimensions larger than d = 2, we observed
a coherence resilience, given the nonzero visibility obtained
even for 100% noise level. These results provide strong
evidence that the fractional topological phase is a reliable
candidate for noise robust quantum processing [40–42].
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stituto Nacional de Ciência e Tecnologia de Informação
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Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio
de Janeiro, and Fundação de Amparo à Pesquisa do Estado de
Minas Gerais.
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FIG. 4. Interference patterns in the two-photon coincidence
counts C for two qubits. The solid lines are the fitting curves ac-
cording to Eq. (6). Black squares correspond to t = 0, red circles
to t = 0.5, and blue triangles to t = 1. The noise level is (a) 0%,
(b) 50%, (c) 75%, and (d) 100%.

APPENDIX

The measured interference patterns to observe the frac-
tional topological phase for two qudits with dimensions 2 and
3 are shown in Figs. 4(a) and 5(a). As done in the ququart
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FIG. 5. Interference patterns in the two-photon coincidence
counts C for two qutrits. The solid lines are the fitting curves ac-
cording to Eq. (6). Black squares correspond to t = 0, red circles
to t = 0.5, and blue triangles to t = 1. The noise level is (a) 0%,
(b) 50%, (c) 75%, and (d) 100%.

TABLE IV. Fitting parameters.

Noise Fit Qubits Qutrits Ququarts

0% A(0) 2484 ± 40 3258 ± 16 6961 ± 25
0% v(0) 0.69 ± 0.02 0.665 ± 0.008 0.623 ± 0.006
0% δ(0) 0 ± 2 30.6 ± 0.6 33.2 ± 0.5
0% A(1/2) 2395 ± 12 3275 ± 17 7071 ± 28
0% v(1/2) 0.084 ± 0.007 0.063 ± 0.008 0.066 ± 0.006
0% δ(1/2) −1 ± 5 278 ± 7 26 ± 5
0% A(1) 2396 ± 10 3381 ± 14 7352 ± 31
0% v(1) 0.631 ± 0.006 0.672 ± 0.007 0.597 ± 0.006
0% δ(1) 176.3 ± 0.5 −94.9 ± 0.5 122.7 ± 0.6
50% A(0) 2423 ± 13 3278 ± 13 7090 ± 25
50% v(0) 0.186 ± 0.007 0.299 ± 0.006 0.328 ± 0.005
50% δ(0) −5 ± 2 33 ± 1 29.2 ± 0.9
50% A(1/2) 2436 ± 10 3311 ± 15 7168 ± 29
50% v(1/2) 0.037 ± 0.006 0.045 ± 0.007 0.056 ± 0.006
50% δ(1/2) −38 ± 9 −80 ± 8 34 ± 6
50% A(1) 2470 ± 9 3416 ± 17 7316 ± 28
50% v(1) 0.143 ± 0.005 0.306 ± 0.007 0.335 ± 0.005
50% δ(1) 173 ± 2 −95 ± 1 120.4 ± 0.9
75% A(0) 2484 ± 13 3296 ± 16 7103 ± 21
75% v(0) 0.050 ± 0.007 0.165 ± 0.007 0.230 ± 0.004
75% δ(0) −8 ± 8 34 ± 2 25 ± 1
75% A(1/2) 2452 ± 11 3336 ± 16 7139 ± 28
75% v(1/2) 0.024 ± 0.006 0.031 ± 0.007 0.048 ± 0.005
75% δ(1/2) −40 ± 15 −81 ± 13 21 ± 7
75% A(1) 2517 ± 15 3426 ± 16 7311 ± 27
75% v(1) 0.072 ± 0.008 0.184 ± 0.007 0.236 ± 0.005
75% δ(1) 171 ± 7 −91 ± 2 119 ± 1
100% A(0) 2474 ± 10 3295 ± 14 7175 ± 19
100% v(0) 0.018 ± 0.006 0.075 ± 0.006 0.140 ± 0.004
100% δ(0) −28 ± 19 35 ± 5 24 ± 1
100% A(1/2) 2506 ± 10 3348 ± 18 7204 ± 26
100% v(1/2) 0.023 ± 0.006 0.018 ± 0.007 0.030 ± 0.005
100% δ(1/2) −12 ± 14 −67 ± 23 24 ± 9
100% A(1) 2528 ± 12 3410 ± 14 7249 ± 22
100% v(1) 0.019 ± 0.007 0.082 ± 0.006 0.151 ± 0.004
100% δ(1) −47 ± 20 −87 ± 4 114 ± 1

case, we plotted the theoretical fit according to Eq. (6). The
values provided by the fitting software are shown in Ta-
ble IV (the data for ququarts are show again, including the
amplitude parameter). The measured interference patterns to
observe the fractional topological phase for the two qudits
under dephasing noise are also presented, shown in the graphs
of Figs. 4(b)–4(d) and 5(b)–5(d). We see that the FTP is
preserved in all cases, except for d = 2 at 100% noise. This
agrees with the theoretical prediction of zero visibility for
100% noise in two qubits as shown in [31]. The effect of the
noise is to diminish the visibility for any instant t , but we still
see the same behavior of the visibility dropping to near 0 for
t = 0.5 and approximately recovering the value of t = 0 when
t = 1.
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