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We study four well-known capacities of a two-parameter family of qubit Pauli channels. These are the channels
that are covariant under the SO(2) group and contain the depolarizing channel as a special case. We find
exact expressions for the classical capacity and entanglement-assisted capacities, and analytically determine the
regions where the quantum capacity of the channel vanishes. We then use a flag extension to find upper bound
for the quantum capacity and private capacity of these channels in the entire region of parameter space and also
obtain the lower bound for the quantum capacity by calculating the single-shot quantum capacity numerically.
In conjunction with previous results on depolarizing channels, our result is one step forward for determining the
capacities of the full Pauli channel.
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I. INTRODUCTION

For a wide range of tasks related to storing, processing,
and communicating information, protection of the carriers
of information from environmental noise is a central issue.
Many efforts have been made to realize and implement the
techniques of this protection and also to understand the fun-
damental limits of our ability to prevent the information from
being ruined by the noises. In the quantum domain, where
classical or quantum information are encoded into quantum
states, the effect of environmental noise is modeled by a
completely positive trace-preserving (CPTP) map or quantum
channel for short. The capacity of a channel then determines
the ultimate rate at which a sender can reliably transmit infor-
mation to a receiver over that channel, where it is taken into
account that the sender and the receiver can, respectively, use
arbitrary encoding and decoding procedures.

In contrast to classical information theory where there is
a unique definition of classical capacity [1], in the quantum
domain, depending on the auxiliary resources available (e.g.,
shared entanglement and classical communication), allowed
types of encoding and decoding (e.g., separable or entangled
encoding) and the types of information (e.g., classical or quan-
tum), which is to be transferred [2], we encounter different
operational definitions of capacity. There is usually a long
route from these operational definitions to closed formulas for
determination of these capacities. Generally for a quantum
channel �, the final expression of these capacities take the
form

Cr (�) = lim
n−→∞

1

n
�r (�⊗n), (1)

where the quantity �r depends on the type of capacity r,
which is to be calculated and �r (�) itself is obtained by an
optimization over an ensemble of states. In other words for
each kind of capacity, the function �r takes a specific form de-
rived from the operational definition of that kind of capacity.

Even then, calculation of these closed formulas are not always
tractable analytically, except in some special cases [3–14].
In fact the regularized capacity should be denoted by C∞

r to
emphasize the necessity of the limiting procedure, however
we follow the usual nomenclature and denote it simply by Cr .
The regularization, i.e., the limit n −→ ∞, is necessary since
in the encoding and decoding procedures at the beginning and
end of the channel, one can in principle use infinitely long
sequences of entangled states and entangled measurements,
respectively. Needless to say, this regularization procedures
is extremely difficult if not impossible. The superadditivity
problem refers to the situation where entangled input states
and entangled measurement can increase a specific type of ca-
pacity of a channel. When superadditivity holds, it means that
�r (�⊗n) �= n�r (�) and hence there is no way to bypass the
limiting procedure n −→ ∞. Investigation of superadditivity
and other properties such as superactivation and causal activa-
tion [15], which have no classical counterpart, comprises an
important chapter in the field of quantum information theory
with many interrelated contributions, a chapter that is still
growing. The main question of additivity is whether or not
a certain quantity � adds up when we take the tensor product
of two quantum channels, i.e., whether or not

�r (�1 ⊗ �2)
?= �r (�1) + �r (�2). (2)

The quantity �r can take different forms, depending on the
context, i.e., it can be the minimum output entropy, or it can
be the Holevo quantity or it can be a generalization of Holevo
quantity, where the Shannon entropy S(ρ) := −Tr(ρ log2 ρ)
is replaced [16] by the Renyi entropy Sp(ρ) := Trρ p

1−p . In an
extensive effort for the study of additivity conjectures, it has
been found that some of these conjectures are indeed equiva-
lent to each other [17] and some others have been disproved by
finding counterexamples [18–24]. The general result is that for
a generic quantity � and a generic channel �, the additivity
property does not hold and only in certain cases one can
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benefit the additivity property to calculate certain capacities
of certain channels [25–32]. For a review see Ref. [33]. In
most of the other cases, one has to suffice to compute upper
and lower bounds for the capacity. We will see examples of
this in future work.

Even if one restricts oneself to calculation of single-shot
capacities, C1

r , one is still faced with an obstacle, which is the
absence of concavity of �(�) for certain functions. In this
case there is no simple clue for finding the global maximum
and hence one should perform an optimization over a very
large set of parameters [18,34].

It is therefore no surprise that for a qubit channel as simple
and as ubiquitous as the Pauli channel

�(ρ) = p0ρ + p1XρX + p2Y ρY + p3ZρZ, (3)

nontrivial results exist only for special one-parameter classes,
such as the depolarizing channel [7], which has only one
parameter. It is therefore desirable to calculate these capacities
for a wider class of channels, which due to their symme-
try properties allow exact calculations. One can then hope
that these results, together with continuity property of the
capacity, will provide insight for the capacities of the full
three-parametric Pauli channel.

In this paper, we analyze the classical, entangled-assisted,
quantum, and private capacities of the covariant Pauli channel.
This is a subclass of Pauli channels defined as

�(ρ) = p0ρ + p1(XρX + Y ρY ) + p3ZρZ, (4)

subject to the trace-preserving condition, p0 + 2p1 + p3 = 1.
In contrast to the depolarizing channel, which is covariant un-
der the full SU(2) ∼ SO(3) rotations, this channel is covariant
only under rotations around the third axis, i.e.,

�[Uz(θ )ρU †
z (θ )] = Uz(θ )�(ρ)U †

z (θ ), (5)

where Uz(θ ) = eiθ Z
2 is an arbitrary rotation around the z axis.

Calculation of capacities of this channel will bring us one step
closer to the calculation of the general Pauli channel [35] and
in fact every qubit channel. The latter statement is the result of
a theorem [36] according to which any qubit channel can be
twirled to a Pauli channel with no-higher quantum capacity.

The structure of this paper is as follows. In Sec. II, we
review the concepts of complement of a general quantum
channel, and relate the covariance properties of a channel
with that of its complementary channel. In Sec. III we restrict
ourselves to the qubit Pauli channel and analyze in detail its
U(1) ∼ SO(2) covariance properties. In particular this study
reveals some symmetries in the spectrum of the output states
for both the channel and its complement, which will play a
crucial role in determining exact expressions for the capaci-
ties. Finally, in Sec. IV we will investigate these capacities for
the covariant Pauli channel. In particular, we exactly calculate
the classical and entanglement-assisted capacities and use flag
extension to find upper and lower bounds for the quantum
and private capacity of this channel. The paper ends with a
discussion.

II. COMPLEMENT OF A GENERAL QUANTUM CHANNEL

Calculation of many types of capacities reduces to op-
timization of quantities related to both the channel and its

FIG. 1. Spaces of the input and output systems (S, S′) and envi-
ronments (E , E ′) and the channels transforming their states (�,�c)
[Eqs. (6) and (7)].

complement. Therefore in this section we review the concept
of the complement of a channel and investigate how the co-
variance and symmetry properties of a channel are reflected
in its complement.

For a Hilbert space H , we denote by L(H ) the space of
linear operators on H and by L+(H ) the set of positive op-
erators on H . A quantum channel is a completely positive
trace-preserving map with input system S and output system
S′ � : L+(HS ) −→ L+(HS′ ). If we denote the environment of
the input and output systems as E and E ′ as in Fig. 1, we can
write the channel’s expression in the Stinespring form:

�(ρ) = trE ′ (V ρV †), (6)

where V is an isometry from H+
S to H+

S′ ⊗ H+
E ′ . In this setup,

the complementary channel �c : L+(HS ) −→ L+(HE ′ ) is

�c(ρ) = trS′ (V ρV †), (7)

which is a map from the input system to the output environ-
ment (Fig. 1). The complement of a quantum channel is not
unique, but they are connected to each other by isometries
[37]. The Kraus operators of the channel � and its comple-
ment �c are related as follows [38]:

�(ρ) =
∑

α

KαρK†
α �c(ρ) =

∑
i

RiρR†
i

(Ri )α, j = (Kα )i, j . (8)

Degradable and antidegradable channels. The channel �

is called degradable if there exists another CPTP map ε :
L+(HS′ ) −→ L+(HE ′) such that ε ◦ � = �c. On the other
hand, � is said to be antidegradable if there exists a CPTP
map η : L(HE ′ ) −→ L(HS′ ) such that η ◦ �c = �. (Fig. 1). A
natural question is what type of covariance is induced on the
complement of a quantum channel by the covariance of the
channel itself. We present the answer to this question in the
following theorem.

Theorem 1. Let a general quantum channel �(ρ) =∑
α KαρK†

α be G covariant in the sense that

�[U (g)ρU †(g)] = V (g)�(ρ)V †(g) ∀ g ∈ G, (9)

where U (g) and V (g) are two representations of the group
element g in a group G. Then the complement channel is
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covariant in the following form:

�c[U †(g)ρU (g)] = 	†(g)�c(ρ)	(g) ∀ g ∈ G, (10)

where 	(g) is the representation defined in the following
form:

V †(g)KαU (g) =
∑

β

	α,β (g)Kβ. (11)

Proof. We start from (11), which is a consequence of the
covariance of the channel � and use the relation (8) between
the Kraus operators of the channel and its complement:

(Ri )α, j ≡ (Kα )i, j =
∑

β

	α,β (V KβU †)i, j . (12)

Expanding the right-hand side and once again using (8), we
find

(Ri )α, j =
∑
β,m,n

	α,βVim(Kβ )m,nU
†

n, j

=
∑
β,m,n

	α,βVim(Rm)β,nU
†

n, j

=
∑

m

(	RmU †)α, jVi,m. (13)

Inserting this in the Kraus representation of the complement
channel, we find

[�c(ρ)]α,β =
∑

i

(Ri )α, jρ jk (Ri )β,k

=
∑
i,m,n

(	RmU †)α, jVi,mρ jk (	RnU †)β,kVi,n.

(14)

Using the unitarity of V , the right-hand side is simplified and
we find

[�c(ρ)]α,β =
∑
m,n

(	RmU †)α, jρ jk (UR†
m	†)k,β , (15)

which leads to the final result, namely

�c(ρ) = 	�c(U †ρU )	†. (16)

This proves the theorem. �
With the same type of calculation, one can prove the fol-

lowing theorem.
Theorem 2. Let a channel have the property that

�(ρ∗) = �(ρ)∗, (17)

where ∗ means complex conjugation. Then the complement
of the channel has the following property:

�c(ρ∗) = ST �c(ρ)∗S∗, (18)

where S is a matrix, which effects the following:

K∗
α =

∑
β

SαβKβ. (19)

Proof. Let the Kraus operators of the channel be as before.
Property (17) means that∑

α

Kαρ∗K†
α =

∑
α

K∗
αρ∗KT

α , (20)

which is true only if the two sets of Kraus operators are related
by a unitary transformation as in (19). The correspondence (8)
then imposes the following condition:

(Ri )
∗
α j =

∑
β

S∗
αβ (Ri )β j, (21)

which after inserting into the definition of the complementary
channel and straightforward calculations proves (18). �

We now discuss the properties of the covariant Pauli chan-
nel and its complement.

III. COVARIANT PAULI CHANNEL AND
ITS SYMMETRIES

Consider first the general Pauli channel, defined as

�(ρ) = p0ρ + p1XρX + p2Y ρY + p3ZρZ, (22)

where X,Y and Z are the Pauli matrices and p0 + p1 + p2 +
p3 = 1. This channel is covariant under the discrete Pauli
group, that is �(gρg†) = g�(ρ)g†, where g ∈ {±1,±i} ×
{I, X,Y, Z}. This covariance entails that the spectrum of the
output state of the channel and its complement are invari-
ant under inversions with respect to all the three axes, that
is Spect[�(ρ(x, y, z)] = Spect[�(ρ(−x,−y, z)] and similarly
for the other two axes. Moreover, the channel has also the
symmetry (17), which is due to the property σ ∗

i = ±σi. The
combination of these two symmetries entails that the spectrum
of the output state of the channel and its complement are
invariant under the transformation r −→ −r. When p1 = p2,
which is the case under study in this work, the channel (22),
has a larger covariance under a continuous one-parameter
group,

�(Uz(θ )ρUz(θ )†) = Uz(θ )�(ρ)Uz(θ )† ∀ Uz(θ ) ∈ SO(2),
(23)

where Uz(θ ) = e
iθZ
2 . This extra covariance, then implies a

further symmetry in the spectrum of the channel and its com-
plement, namely that for any input state with Bloch vector
r = (x, y, z), the eigenvalues of the output state of � and its
complementary depend only on

√
x2 + y2 and z.

Furthermore if we temporarily denote this channel by
�p0,p3 , it is readily seen that it has the nice property that

�p3,p0 (ρ) = Z �p0,p3 (ρ) Z. (24)

These symmetries will be important in the optimization,
which is needed for the calculation of capacities. Furthermore,
the symmetry (24) implies that all the capacities of the channel
are symmetric with respect to the exchange of p0 and p3. For
future reference, here we state the explicit form of the output

state of the channel for an input state ρ = 1
2 (

1 + z x − iy
x + iy 1 − z

):

�(ρ) = 1

2

[
1 + (p0 + p3 − 2p1)z (p0 − p3)(x − iy)

(p0 − p3)(x + iy) 1 − (p0 + p3 − 2p1)z

]
.

(25)
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The eigenvalues of this output state will be needed in the
calculation of capacities, and are given by

Spec(�(ρ))

= 1
2 ]1 ±

√
(p0 − p3)2(x2 + y2) + (2p0 + 2p3 − 1)2z2].

(26)

It is in order to find the complement of this channel and deter-
mine its symmetries. Using (8), we find the Kraus operators
of the complement of the covariant Pauli channel

R1 =

⎡
⎢⎣

√
p0 0

0
√

p1

0 −i
√

p1√
p3 0

⎤
⎥⎦, (27)

R2 =

⎡
⎢⎣

0
√

p0√
p1 0

i
√

p1 0
0 −√

p3

⎤
⎥⎦, (28)

which maps the same input state onto

�c(ρ)=

⎡
⎢⎣

p0
√

p0 p1x
√

p0 p1y
√

p0 p3z√
p0 p1x p1 −ip1z i

√
p1 p3y√

p0 p1y ip1z p1 −i
√

p1 p3x√
p0 p3z −i

√
p1 p3y i

√
p1 p3x p3

⎤
⎥⎦.

(29)

Relation (10) now indicates that this channel has the covari-
ance

�c(ρx′,y′,z ) = 	†�c(ρx,y,z )	, (30)

where (x′, y′) = (x cos θ + y sin θ,−x sin θ + y cos θ ) and

	 =

⎡
⎢⎣

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤
⎥⎦ (31)

IV. CAPACITIES OF THE COVARIANT PAULI CHANNEL

For a quantum channel, one can define at least four dif-
ferent capacities [39]. These are the ultimate rates at which
classical or quantum information can be transferred from a
sender to a receiver per use of the channel by using different
kinds of resources. There is a long route for converting these
operational definitions to concrete and closed formulas for the
capacities. Here we do not start from the operational definition
for which the reader can refer to many good reviews [39–41],
rather we start from the closed formulas, which have been
obtained for the calculation of capacity in each case [34,42–
44]. Even after having these closed formulas, it is in general
very difficult to find explicit values for the capacities in terms
of the parameters of the channel. Besides superadditivity, the
important property whose presence (or absence), simplifies
(or not) the calculation of some of these capacities is the
concavity of the relevant quantity, which is to be maximized.
We will see this in the following sections, where we discuss
the four capacities of the covariant Pauli channel.

A. Classical capacity

This is the ultimate rate that classical messages, when
encoded into quantum states, can be transmitted reliably over
a channel. It is given by [42]:

Ccl (�) = lim
n−→∞

1

n
χ∗(�⊗n), (32)

where χ∗(�) = maxpi,ρi χ{pi,�(ρi )} [40] and χ{pi, ρi} is
the Holevo quantity of the output ensemble of states {pi, ρi},
which is defined as

χ ({pi, (ρi )}) := S

(∑
i

piρi

)
−

∑
i

piS(ρi ). (33)

Here S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy [45].
In general χ∗ is superadditive, meaning that nχ∗(�) �
χ∗(�⊗n), which makes the regularization in Eq. (32) nec-
essary for the calculation of the capacity [18]. However
for unital qubit channels, which is the case at hand, it has
been shown [29] that χ∗(�) is additive, and hence Ccl (�) =
χ∗(�). It has been shown in Ref. [40] that one can only maxi-
mize χ{pi,�(ρi )} over ensembles of pure input states. To find
this ensemble, we proceed as follows. Let |φ〉 be a state, which
minimizes the output entropy, i.e., S[�(φ)] � S[�(ρ)] ∀ ρ.
Then in view of the explicit form of �(ρ) in (25) (or the in-
variance of its spectrum under r −→ −r), it is clear that |φ⊥〉
is also a minimum output entropy with exactly the same value.
Therefore we take the ensemble to be an equal mixture of |φ〉
and |φ⊥〉. For this ensemble the first term of the expression of
χ{pi,�(ρi )} is maximized, since 1

2 |φ〉〈φ| + 1
2 |φ⊥〉〈φ⊥| = I

2
and � being a unital channel maps this state to I

2 . Therefore
the problem reduces to finding the single-state |φ〉, which
minimizes the output entropy. In view of the SO(2) covariance
of the channel, we take the Bloch vector of this state to lie in
the xz plane, i.e., r = (sin θ, 0, cos θ ), then from (26) we find
the eigenvalues of the output state

λ1,2 = 1
2 (1 ±

√
(p0 − p3)2sin2θ + (2p0 + 2p3 − 1)2cos2θ ).

(34)
Minimization of the output entropy is equivalent to maximiz-
ing the expression under the square root or the function

f (θ ) = (2p0 + 2p3 − 1)2

+ sin2 θ [(p0 − p3)2 − (2p0 + 2p3 − 1)2]. (35)

This gives the optimum value of θ as

θopt =
{

π
2 , if (p0 − p3)2 � (2p0 + 2p3 − 1)2

0, π, otherwise
, (36)

which leads to the expression of the capacity as

Ccl (�) = 1 − h(ξ ), (37)

where h(ξ ) = −ξ log2 ξ − (1 − ξ ) log2(1 − ξ ) is the binary
entropy and

ξ =
{

1+p0−p3

2 if (p0 − p3)2 � (2p0 + 2p3 − 1)2

p0 + p3 otherwise
. (38)

The two regions are shown in Fig. 2.
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FIG. 2. Two different regions for the classical capacity (36), (37).
In each region, the classical capacity is given Ccl = 1 − h(ξ ) where
h(ξ ) is the binary entropy function.

B. Entanglement-assisted capacity

This is the ultimate rate for transmitting classical informa-
tion over a quantum channel when the sender and receiver
share an unlimited source of entanglement. Fortunately, it has
been proved that finding this type of capacity does not need a
regularization and only needs a finite and convex optimization
[43]:

CE (�) = max
ρ

I (ρ,�), (39)

where

I (ρ,�) = S(ρ) + S[�(ρ)) − S(�c(ρ)], (40)

is the quantum mutual information. The eigenvalues of ρ,
�(ρ), and �c(ρ) are all invariant under the transforma-
tion covariance and symmetries of the channel, leads to
symmetries of the spectrum of output states under the trans-
formation r −→ −r. In conjunction with the concavity of
the mutual information λ1I (ρ1,�) + λ2I (ρ2,�) � I (λ1ρ1 +
λ2ρ2,�), this implies that the optimal state is nothing but
the completely mixed state. In fact from the symmetry it is
evident that if a state ρ(r) maximizes the mutual information,
then the state ρ(−r) also does, and from concavity one finds
that the maximally mixed state 1

2 [ρ(r) + ρ(−r)] = I
2 , is the

global maximum of the mutual information. This gives

CE (�) = I

(
I

2
,�

)

= 2 + p0 log p0 + (1 − p0 − p3)log
1 − p0 − p3

2

+ p3log p3. (41)

C. Quantum capacity

This is the ultimate rate for transmitting quantum informa-
tion and preserving the entanglement between the channel’s
input and a reference quantum state over a quantum channel.
This quantity is described in terms of coherent information
[34]:

Cq(�) = lim
n→∞

1

n
J (�⊗n), (42)

where J (�) = maxρ J (ρ,�) and J (ρ,�) := S[�(ρ)] −
S[�c(ρ)]. It is known that J is superadditive, i.e., J (�1 ⊗
�2) � J (�1) + J (�2), rendering an exact calculation of the
quantum capacity extremely difficult and at the same time
providing a lower bound in the form C(1)

q (�) � Cq(�) where
C(1)

q := J (�) is the single-shot capacity. However, if the chan-
nel is degradable, then the additivity property is restored
Cq(�) = C(1)

q (�) [44], and the calculation of the quantum
capacity becomes a convex optimization problem.

For a channel such as the covariant Pauli channel in (22),
where we know that is not degradable [46], we have to be
content with partial results. In what follows we proceed to find
partial and yet important information on the quantum capacity.
First we determine the regions where the channel has zero
capacity and then in the complement of this region, we find
lower and upper bounds for the quantum capacity.

1. Zero-capacity region

It is known that entanglement-breaking channels cannot
preserve quantum correlations and thus their quantum ca-
pacity is equal to zero [47]. We remind the reader that an
entanglement-breaking channel (EB) is one, which when act-
ing on a state, breaks its entanglement with any other state. It
is known that a channel � is entanglement breaking if its Choi
matrix defined as J� = 2(� ⊗ I )|φ+〉〈φ+| is a separable state
for |φ+〉 a maximally entangled state |φ+〉 = 1√

2
(|00〉 + |11〉).

For checking this property, we use the Peres criteria [48] to
determine the region where the following state is separable:

J� = 2� ⊗ I (|φ+〉〈φ+|)

=

⎡
⎢⎣

p0 + p3 0 0 p0 − p3

0 2p1 0 0
0 0 2p1 0

p0 − p3 0 0 p0 + p3

⎤
⎥⎦. (43)

The partial transpose of this matrix is

(I ⊗ T )J� =

⎡
⎢⎣

p0 + p3 0 0 0
0 2p1 p0 − p3 0
0 p0 − p3 2p1 0
0 0 0 p0 + p3

⎤
⎥⎦.

(44)

whose eigenvalues (in view of the normalization p0 + 2p1 +
p3 = 1) are given by

{p0 + p3, p0 + p3, 1 − 2p3, 1 − 2p0}. (45)

This shows that in the region(
p0 � 1

2

) ∧ (
p3 � 1

2

)
, (46)
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FIG. 3. Zero-capacity regions: the entanglement-breaking (EB)
and antidegradable (AD) regions are shown in the parameters space.
The curved dotted line indicates the solution of inequality (49).

the capacity of the channel is zero. This region is shown in
Fig. 3. It turns out, however, that the zero-capacity region is
slightly larger than this. To this end we use another theorem
[49] according to which any channel that is antidegradable has
zero capacity [49]. To check the antidegradability of �, we
use a criterion first proposed in Ref. [50]. According to this
criterion, a channel is antidegradable, if

tr(J�)2 − 4
√

det(J�) � tr[�(I )2], (47)

where J� = d (� ⊗ I )|φ〉〈φ| is the Choi matrix. In our case:

J� =

⎡
⎢⎣

p0 + p3 0 0 p0 − p3

0 2p1 0 0
0 0 2p1 0

p0 − p3 0 0 p0 + p3

⎤
⎥⎦, (48)

whose trace and determinant are, respectively, given by
tr(J 2

�) = 4p2
0 + 4p2

3 + 8p2
1, and det(J�) = 16 p0 p3 p2

1. Using
(47), the antidegradability condition becomes:

2
(
p2

0 + p2
3

) + (1 − p0 − p3)2 − 4(1 − p0 − p3)
√

p0 p3 � 1.

(49)

The region where this inequality holds is shown in Fig. 3,
which includes the entanglement-breaking region.

2. Flag extension and upper bounding the quantum capacity

Outside the zero-capacity region, the quantum capacity can
only be upper bounded. A novel technique for upper bound-
ing the quantum capacity is flag extension, which has been
successfully used for investigating various channels’ quantum
capacities [5–7]. For any channel written as the convex com-
bination of other channels,

�(ρ) =
∑

i

pi�i(ρ), (50)

we can construct a new channel with a higher-dimensional
output Hilbert space:

� f (ρ) =
∑

i

pi�i(ρ) ⊗ σi, (51)

where σi ∈ L+(HF ) are the flag states, HF is called the flag
space, and � f is called the flagged channel. Since trF � f = �,
one has:

Cq(�) � Cq(� f ). (52)

Therefore by constructing a flag extension for the channel,
which is degradable, one can find the quantum capacity of the
flagged channel and upper bound the capacity of the original
channel. In this regard, the following theorem is notable [8]:

Theorem 3 [8]. Suppose we have the channel

�(ρ) =
∑

i

pi�i(ρ), (53)

where all the �i’s are degradable channels. Then the flag
extension

� f (ρ) =
∑

i

pi�i(ρ) ⊗ |i〉〈i|, (54)

is a degradable channel and:

Cq(�) � Cq(� f ) =
∑

piCq(�i ). (55)

To use this theorem we need an appropriate convex de-
composition of the covariant Pauli channel. One possible
decomposition is

� = (p0 + p3)�0 + 2p1�1, (56)

where

�0(ρ) = 1

p0 + p3
(p0ρ + p3ZρZ ), (57)

and

�1(ρ) = 1
2 (XρX + Y ρY ). (58)

First, we prove that these channels are degradable and then
we use Theorem 1 to obtain an upper bound for the quantum
capacity. We can analyze the degradability of �0 indirectly by
checking the antidegradability of its complementary channel.
The output state of the channel and its complementary and the
Choi matrix of the complementary channel are, respectively,

�0(ρ) = 1

2

[
1 + z p0−p3

p0+p3
(x − iy)

p0−p3

p0+p3
(x + iy) 1 − z

]
, (59)

�c
0(ρ) =

[
p0

p0+p3

√
p0 p3

p0+p3
z√

p0 p3

p0+p3
z p3

p0+p3

]
, (60)

J�c
0
=

⎡
⎢⎢⎣

α2 αβ 0 0
αβ β2 0 0
0 0 α2 −αβ

0 0 −αβ β2

⎤
⎥⎥⎦, (61)

where α =
√

p0

p0+p3
and β =

√
p3

p0+p3
. One can easily see that

tr(�c
0(I )2) = 4 p2

0+p2
3

(p0+p3 )2 , tr(J 2
�c

0
) = 2, and det(J�c

0
) = 0. The

condition (47), reduces to the valid inequality (p0 − p3)2 � 0.
This shows that �c

0 is antidegradable, which implies that �0 is
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degradable. Also, since the channel �1 is unitarily equivalent
to �0(p0 = p3), (i.e., �1 = X�0(p0 = p3)X , this channel is
also degradable. Therefore the flag extension

� f = (p0 + p3)�0 ⊗ |0〉〈0| + 2p1�1 ⊗ |1〉〈1|, (62)

is a degradable extension and Eq. (55) applies to our channel.
The single-shot quantum capacity of �0 is found from

Cq(�0) = max
ρ

[S(�0(ρ)) − S(�c
0(ρ))]. (63)

The explicit form of �0(ρ) and �c
0(ρ) in (59) and (60) now

show that the output states of these channels are invariant
under the transformation (x, y, z) −→ (−x,−y,−z), which
implies that the output state is ρopt = I

2 , leading to

Cq(�0) = S(�0(I/2)) − S(�c
0(I/2)) = 1 − h

(
p0

p0 + p3

)
,

(64)

where h(x) = −xlog(x) − (1 − x)log(1 − x) is the binary en-
tropy. Also, this calculation directly shows that Cq(�1) = 0.
So, using (55), an analytic upper bound is derived for the

covariant Pauli channel:

Cq(�) � (p0 + p3)Cq(�0)

= (p0 + p3)

(
1 − h

(
p0

p0 + p3

))
=: A. (65)

One can write this in a more informative way by redefining
ε := p0−p3

p0+p3
, which indicates the amount of asymmetry of the

channel. This leads to the following expression:

Cq(�) � (p0 + p3)

(
1 − h

(
1 + ε

2

))
. (66)

Incidentally we note that for ε = 0, the upper bound is
0, which shows that the symmetric Pauli channel �(ρ) =
p0(ρ + ZρZ ) + p1(XρX + Y ρY ) has zero capacity. This is in
accord with our previous result on zero-capacity region shown
in Fig. 3.

Note however that (56) is not the only convex decom-
position of the channel. The channel has indeed another
decomposition, the other one being

� = (p0 + p1)�2 + (p1 + p3)�3, (67)

where

�2(ρ) = 1

p0 + p1
(p0ρ + p1XρX ), (68)

�3(ρ) = 1

p1 + p3
(p1Y ρY + p3ZρZ ). (69)

The output of �2 and its complementary channel are, respectively,

�2(ρ) = 1

2(p0 + p1)

[
1 + (p0 − p1)z (p0 + p1)x − i(p0 − p1)y

(p0 + p1)x + i(p0 − p1)y 1 − (p0 − p1)z

]
. (70)

�c
2(ρ) = 1

p0 + p1

[
p0

√
p0 p1x√

p0 p1x p1

]
. (71)

By the same procedure followed for �0, the degradability
condition of �2 reduces to the condition (p0 − p1)2 � 0,
which shows that �2 and thus its equivalent channel �3 [�3 =
Y �2(p0 = p1, p1 = p3)Y ] are both degradable. According to
the invariance of the spectrum of (70) and (71) with respect to
(x, y, z) −→ (−x,−y,−z) the optimal state is the completely
mixed state and

Cq(�2) =
[

1 − h

(
p1

p0 + p1

)]
, (72)

Cq(�3) =
[

1 − h

(
p1

p3 + p1

)]
. (73)

This leads to the upper bound:

Cq(�) � (p0 + p1)Cq(�2) + (p1 + P3)Cq(�3)

= (p0 + p1)

[
1 − h

(
p1

p0 + p1

)]

+(p1 + p3)

[
1 − h

(
p1

p3 + p1

)]
=: B. (74)

Before comparing A and B, we note that the classical capacity
Ccl is also an upper bound on the quantum capacity, so the
upper bound for the quantum capacity is the following:

Cq(�) � min{A, B,Ccl}, (75)

where A, B, and Ccl are given, respectively, in (65), (74), and
(37). Figure 4 shows the region where one of these capacities
is the upper bound. It is seen that B is never lower than the
other two capacities and hence the comparison is between
A and Ccl . The regions are almost similar but not identical
to those of exact classical capacity. The curved boundary is
the solution of the equation Ccl = A or more explicitly the
following equation:

(p0 + p3)

(
1 − h

(
p0

p0 + p3

))
= 1 + (p0 + p3)log (p0 + p3)

+ (1 − p0 − p3)log

× (1 − p0 − p3), (76)
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FIG. 4. Two different regions for the best upper bound. In one
region the best upper bound is given by A as in Eq. (65) or (66) and
in the other region, the classical capacity Ccl (�) = 1 − h(ξ ), with
ξ = 1+p0−p3

2 is the best upper bound. The curved dotted boundaries
depicts the solution of Eq. (76).

3. Lower bounding the quantum capacity

A natural lower bound for the quantum capacity is the
single-shot capacity

C(1)
q (�) = max

ρ
J (ρ,�), (77)

where J (ρ,�) = S[�(ρ)] − S[�c(ρ)]. Due to the superaddi-
tivity of the coherent information of the channel, we know that
C(1)

q (�) � Cq(�). The problem, however, is that for �, which
is nondegradable, the coherent information is not concave
and the covariance of the channel does not entail a simple
form for the optimal state, as it did for the degradable chan-
nels �0 and �1. Therefore we have to resort to numerical
calculations.

The eigenvalues of the channel’s output are given in (26),
which due to the covariance, depend only on r =

√
x2 + y2.

The same is also true for the eigenvalues of the comple-
mentary channel (29), due to the induced covariance (30).
Denoting the eigenvalues of �c(ρ) by μi, we can search for
the optimum state among all Bloch vectors, which have the
same value of r =

√
x2 + y2. The expression that we will

maximize is

J = −
2∑

i=1

λilog λi +
4∑

i=1

μilog μi, (78)

and the maximization needs to be done over r and z:

C(1)
q (�) = max

r,z
J (p0, p3, r, z). (79)

By doing this optimization numerically, we obtain a lower
bound for the quantum capacity of the channel. Figure 5
shows this the upper and lower bound for various values of
ε as functions of p0 + p3.

FIG. 5. In all the figures, the upper curves show the best upper
bound Eq. (75) and the lower curves show the best lower bounds
Eq. (79) of quantum capacity vs. p0 + p3 for fixed values of ε :=
p0−p3
p0+p3

.

D. Private capacity

This is the ultimate rate for transmitting classical informa-
tion encoded in quantum states without leaking information to
the environment [34]:

Cp = lim
n−→∞

1

n
P(�⊗n), (80)

with P(�) = maxpi,ρi (χ{pi,�(ρi )} − χ{pi,�
c(ρi )}). As

proved in Ref. [51], this quantity is superadditive and can not
be obtained explicitly. In comparison with quantum capacity,
Cp(�) � Cq(�) but for degradable channels we know that
Cp(�) = Cq(�) [44]. So, the upper bound for the quantum
capacity of the channel (66) is also a valid upper bound for
the private capacity.

V. DISCUSSION

The theory of quantum communication is much richer than
that of classical communication, due to the possibility of
entangled input states, entangled measurements, and shared
entanglement between the sender and the receiver. This opens
up completely new phenomena, such as superadditivity, su-
peractivation and causal activation, which have no counterpart
in the classical world [15]. In the present paper, our aim has
been very limited. We have tried to study the four conventional
capacities of a specific class of quantum channels, which
are of great interest. This is the family of of Pauli channels,
defined by

�(ρ) = p0ρ + p1(XρX + Y ρY ) + p3ZρZ,

p0 + 2p1 + p3 = 1, (81)

which we call the covariant Pauli channel, due to its co-
variance with respect to the group of rotations around the
z axis, Eq. (5) and its Z2 symmetry, Eq. (22). These family
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of channels include the depolarizing channel as a subset for
which similar studies have been carried out in Ref. [7]. This
study therefore is an intermediate step toward the study of the
full Pauli channel.

We were interested in four conventional types of capac-
ities of this channel, which needed entropic optimizations.
These are the classical capacity C(�), entanglement-assisted
capacity CE (�), quantum capacity Q(�), and private capac-
ity Cp(�). As the complementary channel’s output entropy
appears in most of these optimizations, we proved a general
theorem, Theorem 1, on the connection between the covari-
ance properties of a channel and its complement. This theorem
may find applications in other similar studies, even in contexts
other than calculation of capacities. Using this theorem and
invoking the properties of unitality, covariance, and symmetry
of the channel, we could

(i) calculate exact expressions for Ccl (�), Eq. (37),
(ii) calculate an exact expression of CE (�), Eq. (41),
(iii) find lower and upper bound for the Cq(�) and Cp(�),

Fig. 5,
(iv) determine large regions in the parameter space, where

Cq(�) is exactly zero, Fig. 4.
Usually it is extremely difficult or impossible to calculate

capacities of quantum channels due to the superadditivity
problem, However, in certain cases, the superadditivity ob-
stacle is alleviated. This is the case for the classical capacity
of unital channels and the entanglement assisted capacity,
which we invoked for (i) and (ii). The important quantum
capacity Cq(�), however, lies beyond exact calculation due
to the superadditivity issue. Therefore for the quantum ca-
pacity, we used flag-extension technique [5] and invoked the
covariance of the channel and its complement, combined with
a brute-force search to obtain upper and lower bounds, shown
in Fig. 5. Finally we used a theorem in Ref. [49] to find
the regions where the channel is antidegradable and hence

its quantum capacity is exactly zero. It will be interesting to
extend these results to the general Pauli channel in higher di-
mensions. Also, one can slightly deform the Landau-Streater
channel

�LS (ρ) = 1

j( j + 1)
(JxρJx + JyρJy + JzρJz ),

where Ja, a = x, y, z are the spin j rotation operators [52].
The quantum informational properties, including degradabil-
ity and two types of capacities of this channel, which has full
SU(2) covariance, has already been studied in Ref. [12]. One
can slightly deform this channel and retain its covariance with
respect to a subgroup of SU(2), and make similar studies as in
the present work. Furthermore, as Fig. 4 shows, the covariant
Pauli channel is degradable on the line p0 + p3 = 1. This
means that near this line, the channel may be approximately
degradable [53], implying that there exists a degrading chan-
nel �, which upon composition with the channel � is ε close
in the diamond norm to the complementary channel �c, i.e.,
‖�c − � ◦ �‖♦ � ε. Therefore, it may be possible to obtain
slightly better bounds for the quantum capacity near the line
p0 + p3 = 1. We leave these investigations to future research.
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[38] M. Smaczyński, W. Roga, and K. Życzkowski, Selfcomple-
mentary quantum channels, Open Syst. Info. Dyn. 23, 1650014
(2016).

[39] L. Gyongyosi, S. Imre, and H. V. Nguyen, A survey on quan-
tum channel capacities, IEEE Commun. Surv. Tutor. 20, 1149
(2018).

[40] M. M. Wilde, Quantum information theory (Cambridge Univer-
sity Press, Cambridge, 2013).

[41] S. Lloyd, Capacity of the noisy quantum channel, Phys. Rev. A
55, 1613 (1997).

[42] B. Schumacher and M. D. Westmoreland, Sending classical
information via noisy quantum channels, Phys. Rev. A 56, 131
(1997).

[43] C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal,
Entanglement-assisted capacity of a quantum channel and the
reverse shannon theorem, IEEE Trans. Inf. Theory 48, 2637
(2002).

[44] I. Devetak and P. W. Shor, The capacity of a quantum channel
for simultaneous transmission of classical and quantum infor-
mation, Commun. Math. Phys. 256, 287 (2005).

[45] M. A. Nielsen and I. Chuang, Quantum Computation and Quan-
tum Information (Cambridge University Press, Cambridge,
2002).

[46] T. S. Cubitt, M. B. Ruskai, and G. Smith, The structure
of degradable quantum channels, J. Math. Phys. 49, 102104
(2008).

[47] M. Horodecki, P. W. Shor, and M. B. Ruskai, Entanglement
breaking channels, Rev. Math. Phys. 15, 629 (2003).

[48] A. Peres, Separability Criterion for Density Matrices, Phys.
Rev. Lett. 77, 1413 (1996).

[49] G. Smith and J. A. Smolin, Detecting Incapacity of a Quantum
Channel, Phys. Rev. Lett. 108, 230507 (2012).

[50] C. Paddock and J. Chen, A Characterization of Antidegradable
Qubit Channels, arXiv:1712.03399.

[51] K. Li, A. Winter, X. B. Zou, and G. C. Guo, Private Capacity
of Quantum Channels is Not Additive, Phys. Rev. Lett. 103,
120501 (2009).

[52] L. J. Landau and S. F. Streater, On birkhoff’s theorem for
doubly stochastic completely positive maps, Lin. Algebra Appl.
193, 107 (1993).

[53] B. Volkher, B. Scholz, A. Winter, and R. Renner, Approximate
degradable quantum channels, IEEE Trans. Inf. Theory 63,
7832 (2017).

062408-10

https://doi.org/10.1007/s00220-003-0981-7
https://doi.org/10.1038/nphys1224
https://doi.org/10.1007/s11128-007-0051-8
https://doi.org/10.1088/0305-4470/38/45/L02
https://doi.org/10.1063/1.2746128
https://doi.org/10.1063/1.1498491
https://doi.org/10.1007/s00220-008-0624-0
https://doi.org/10.1007/s00220-008-0625-z
https://doi.org/10.1134/S0032946006020013
https://doi.org/10.1103/PhysRevA.75.060304
https://doi.org/10.1080/09500340008244045
https://doi.org/10.1016/S0375-9601(02)00735-1
https://doi.org/10.1063/1.1500791
https://doi.org/10.1109/TIT.2002.806153
https://doi.org/10.1016/j.laa.2005.02.035
https://doi.org/10.1109/18.904522
https://doi.org/10.1007/s00220-010-0996-9
https://doi.org/10.1109/TIT.2004.839515
https://doi.org/10.1007/s00220-009-0833-1
https://doi.org/10.1103/PhysRevA.60.1888
https://doi.org/10.1007/s11128-006-0021-6
https://doi.org/10.1142/S1230161216500141 
https://doi.org/10.1109/COMST.2017.2786748
https://doi.org/10.1103/PhysRevA.55.1613
https://doi.org/10.1103/PhysRevA.56.131
https://doi.org/10.1109/TIT.2002.802612
https://doi.org/10.1007/s00220-005-1317-6
https://doi.org/10.1063/1.2953685
https://doi.org/10.1142/S0129055X03001709
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1103/PhysRevLett.108.230507
http://arxiv.org/abs/arXiv:1712.03399
https://doi.org/10.1103/PhysRevLett.103.120501
https://doi.org/10.1016/0024-3795(93)90274-R
https://doi.org/10.1109/TIT.2017.2754268

