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The state-space structure for a composite quantum system is postulated among several mathematically
consistent possibilities that are compatible with a local quantum description. For instance, the unentangled
Gleason’s theorem allows a state space that includes density operators as a proper subset among all possible
composite states. However, bipartite correlations obtained in Bell-type experiments from this broader state space
are, in fact, quantum simulable [Barnum et al., Phys. Rev. Lett. 104, 140401 (2010)], and hence, such spacelike
correlations are no good for making a distinction among different compositions. In this work we analyze the
communication utilities of these different composite models and show that they can lead to distinct utilities
in a simple communication game involving two players. Our analysis thus establishes that a beyond quantum
composite structure can lead to beyond quantum correlations in the timelike scenario and hence welcomes new
principles to isolate the quantum correlations from the beyond quantum ones. We also prove a no-go theorem
that the classical information carrying capacity of different such compositions cannot be greater than that of the
corresponding quantum composite systems.
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I. INTRODUCTION

The tensor product postulate of quantum mechanics, also
called the “zeroth” axiom in the literature [1], describes the
Hilbert space of a composite system as the tensor product of
the components’ Hilbert spaces [2–4]. A recent study, how-
ever, logically derived this postulate from the state postulate
and the measurement postulate rather than taking it as an
independent one [5]. Nevertheless, within this tensor product
structure, the unentangled Gleason’s theorem assigns state
spaces for the composite systems that include density oper-
ators (the quantum states) as a proper subset [6–8]. In fact,
assuming individual systems’ descriptions to be quantum, sev-
eral mathematical models are possible for the composite state
and effect spaces that yield a consistent outcome probability.
Exploring this broader class of theories helps us to compare
and contrast the information-processing capabilities of quan-
tum theory with other theories and gain insights into the origin
of such capabilities.

The framework of generalized probability theory (GPT)
[9–14] is well suited to studying these different composite
models. Physical constraints, such as no signaling and local
tomography, limit the composite state spaces to be constrained
within two extremes [15–18]: the minimal tensor product
composition containing only separable states and the maximal
tensor product composition containing beyond quantum states
that are positive on product tests (POPT) and compatible with
the unentangled Gleason’s theorem. The corresponding effect
spaces are specified in accordance with the “no-restriction”

hypothesis [19] that includes all the mathematically consistent
effects in the theory.

A natural question is whether these different composite
models can lead to stronger than quantum correlations that
will in turn make them distinct from quantum state space
and put an embargo on their physical existence. In this work,
we ask and answer how the information-processing capabil-
ities of composite systems change when one uses different
mathematical structures to describe composition. For the bi-
partite case a negative response comes through the work of
Barnum et al. [20], which states that no such composition
can produce any beyond quantum spacelike correlations in a
Bell-type experimental scenario. While a maximal composi-
tion involving more than two subsystems can yield stronger
than quantum correlation in a typical Bell scenario [21], re-
cently, in Ref. [22] it was shown that even in the bipartite
case stronger than quantum correlations are possible if the
typical classical input–classical output Bell scenario is gen-
eralized to a quantum input–classical output semiquantum
scenario [23]. Although this quantum input scenario disallows
all the compositions having beyond entangled states, it re-
quires trustworthy verifiers in producing some predetermined
unentangled quantum inputs [22]. In a completely different
approach, recently, the authors in [24] showed that the bipar-
tite minimal composition can yield a stronger than quantum
correlation if a timelike scenario is considered. More specif-
ically, it has been shown that a communication game played
between two timelike separated players—a sender and a re-
ceiver in the sender’s causal future—cannot be won perfectly
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by communicating between two elementary quantum systems
(qubits) if the composite state space is considered to be the
standard quantum one, whereas the game becomes perfectly
winnable if the composition is assumed to be the minimal one.
Although the minimal composition consisting of only sepa-
rable states cannot produce any nonlocal correlation in the
Bell-like scenario, the existence of beyond quantum effects
in this theory results in beyond quantum correlations in the
timelike scenario. This result may lead to the impression that
beyond quantum effects are necessary to obtain beyond quan-
tum timelike correlations. In this work we, however, show
that such an intuition is, in fact, not true. More specifically,
we show that the maximal composition that allows only prod-
uct effects but permits beyond quantum states can also yield
beyond quantum correlations in the timelike scenario. Thus,
while Barnum et al.’s result [20] shows that spacelike corre-
lations are no good to establish the beyond quantum nature
of the bipartite maximal composition, our result establishes
that timelike correlations do serve the purpose here. We then
proceed to prove a no-go theorem that although the maximal
composition allows beyond quantum timelike correlations,
the classical information carrying capacity of such models
cannot be more than that of the corresponding quantum com-
posite systems. In fact, we prove a generic result regarding
the information capacity of composite systems in the GPT
framework.

II. PRELIMINARIES

A. Framework of the GPT

We start by briefly recalling the framework of the GPT.
For a detailed overview of this framework we refer to
Refs. [9–14]. In the recent past several interesting results
have been reported within this framework [25–31]. A GPT
is specified by a list of system types and the composition rules
specifying the combination of several systems, where a sys-
tem S is specified by identifying the three-tuple (�S, ES, TS )
of the state space, the effect space, and the set of transfor-
mations. In a prepare-and-measure scenario, which will be
considered in this work, it is sufficient to describe only �S

and ES .
State space �S. A state ωS for a system S is a mathe-

matical object that yields outcome probabilities for all the
measurements that can possibly be carried out on the system.
The collection of all allowed states forms the state space �S ,
and generally, it is considered to be a compact-convex set
embedded in some real vector space V . Convexity ensures that
if ω1 and ω2 are allowed states, then their classical mixture
pω1 + (1 − p)ω2 is also a valid state. On the other hand,
compactness ensures that there is no physical distinction be-
tween states that can be prepared exactly and states that can be
prepared to arbitrary accuracy [32]. The extreme points of the
set �S are called pure states or states of maximal knowledge.

Effect space ES. An effect e is a linear functional acting
on V such that e : �S → [0, 1]. The unit effect is defined
by u(ω) = 1, ∀ω ∈ �S . The set of all proper effects ES ≡
{e | 0 � e(ω) � 1, ∀ω ∈ �S} is the convex hull of the zero
effect, the unit effect, and the extremal effects and is em-
bedded in the vector space V � dual to V . A measurement

M is a collection of effects that sum to the unit effect, i.e.,
M ≡ {ei ∈ ES | ∑

i ei = u}.
State and effect cones. Sometimes it is mathematically

convenient to work with the notion of unnormalized states
and effects. The set of unnormalized states V+ ⊂ V is the
conical hull of �s, i.e., rω ∈ V+ for r � 0 and ω ∈ �S . The
set of unnormalized effects is its dual cone V �

+ ⊂ V �, i.e.,
V �

+ ≡ {e | e(ω) � 0, ∀ω ∈ V+}. The formulation generally as-
sumes the no-restriction hypothesis, which demands that the
state and effect cones are dual to each other [11].

Composite system. Given two systems with state spaces
�A ⊂ VA and �B ⊂ VB, the state space �AB for the composite
systems is embedded in the vector space VAB, which is the
tensor product of the component vector spaces, i.e., VAB =
VA ⊗ VB [5]. Although the choice of �AB is not unique, the
no-signaling principle and tomographic locality postulate [9]
bound the choices within two extremes: the minimal tensor
product space and maximal tensor product space [15]. More
formally,

�min
AB ≡

{
ωAB =

∑
i

piω
i
A ⊗ ωi

B

∣∣ωi
A ∈ �A,

ωi
B ∈ �B; pi � 0

∑
i

pi = 1

}
,

�max
AB ≡ {ωAB ∈ VAB|1 � eA ⊗ eB(ωAB) � 0,

∀eA ∈ EA&eB ∈ EB}.
It is not hard to see that the cone (V min

AB )+ is isomorphic to
the dual cone (V max

AB )+. Therefore, in accordance with the no-
restriction hypothesis for the case of minimal composition, the
effect cone (V min

AB )�+ ∼= (V max
AB )+, and for the case of maximal

composition, the effect cone (V max
AB )�+ ∼= (V min

AB )+. The symbol
∼= denotes isomorphism.

B. Quantum theory: A GPT

Quantum theory can be seen as a special instance of a
GPT. State space of a d-level quantum system associated with
complex Euclidean space Cd is the set of density operators
acting on Cd , i.e., �(Cd ) ≡ D(Cd ). The set D(Cd ) is a
convex compact set embedded in Rd2−1. The unnormalized
state cone is the set of all non-negative operators P (Cd ) :=
{λρ | λ � 0 & ρ ∈ D(Cd )}, which is also the unnormalized
effect cone. In other words, quantum theory is self-dual. The
minimal composition of two quantum systems associated with
Hilbert spaces CdA and CdB allows only separable states; we
call it the SEP composition and denote the resulting system as
the triplet SAB

SEP ≡ [CdA ,CdB ,
⊗

SEP]. Formally, the state space
for the SEP composition is given by

�SEP(CdA ,CdB ) :=
{

ρAB =
∑

i

piρ
i
A ⊗ ρ i

B

∣∣pi � 0

&
∑

i

pi = 1; ρ i
A ∈ D(CdA ), ρ i

B ∈ D(CdB )

}
.

Since �SEP(CdA,CdB ) contains only separable states, the cor-
responding effect space ESEP(CdA,CdB ) contains effects that
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are not allowed in quantum theory. Entanglement witness
operators yielding positive probability on separable states are
valid effects in this composition, although they are not allowed
in quantum theory. On the other extreme, the maximal com-
position, which we will call SEP, and the resulting system
denoted as SAB

SEP
≡ [CdA ,CdB ,

⊗
SEP], has the state space

�SEP(CdA,CdB ) := {WAB ∈ Herm(CdA ⊗ CdB )|
Tr(WAB) = 1, Tr[WAB(πA ⊗ πB)] � 0

∀πA ∈ P (CdA ), πB ∈ P (CdB )}.
Here Herm(X ) denotes the set of Hermitian operators act-
ing on the space X , and normalization demands Tr(WAB) =
1 ∀WAB ∈ �SEP(CdA,CdB ). The unnormalized effect cone
corresponding to ESEP(CdA,CdB ) is identical to the unnor-
malized state cone corresponding to the set �SEP(CdA,CdB ).
For the quantum case SAB

Q ≡ [CdA,CdB ,
⊗

Q] we have
�Q(CdA ,CdB ) = D(CdA ⊗ CdB ), and the effect cone is iden-
tical to the state cone which represents the self-duality of
quantum theory. The following set-inclusion relations are im-
mediate:

�SEP(CdA,CdB ) ⊂ �Q(CdA,CdB ) ⊂ �SEP(CdA,CdB ),

ESEP(CdA,CdB ) ⊂ EQ(CdA,CdB ) ⊂ ESEP(CdA,CdB ).

In between SEP and SEP, many other compositions can be
defined by appending (deducting) suitable states (effects).
Among these, quantum composition is the only one that is
self-dual.

C. Operational notions of dimension

The dimension of the vector space V in which the set �S is
embedded is a well-defined concept, but it does not carry any
operational signature. However, an operationally motivated
notion of dimension can be defined through the concept of
state distinguishability. For the purpose of our work, in the
following, we recall a few relevant definitions [33].

Definition 1. Perfect distinguishability. Two states ω1, ω2 ∈
�S are perfectly distinguishable whenever there exists
some measurement M = {e1, e2 ∈ ES | e1 + e2 = u} such that
ei(ω j ) = δi j .

For instance, two quantum states |ψ〉 , |φ〉 ∈ Cd are per-
fectly distinguishable if and only if they are orthogonal, a fact
which follows from the seminal no-cloning theorem [34]. On
the other hand, in discrete classical probability theory the state
spaces are simplexes, and any two extreme points are perfectly
distinguishable [35].

Definition 2. Operational dimension. Operational dimen-
sion O(S) of a system S is the maximum cardinality of the set
of states �n := {ω1, . . . , ωn} ⊂ �S such that all the states in
�n are perfectly distinguishable in a single measurement.

For instance O(Cd ) = d , although the dimension of the
vector space in which D(Cd ) is embedded is d2 − 1. The
operational dimension of a system quantifies its classical in-
formation carrying capacity [9,36] (see also [37,38]); that is,
by sending a system with operational dimension O(S) through
a noiseless channel a sender can send log2 O(S) bits of clas-
sical information to a receiver.

Definition 3. Information dimension. The information di-
mension I(S) of a system S is the maximum cardinality of the
set of states �n := {ω1, . . . , ωn} ⊂ �S such that all the states
in �n are pairwise perfectly distinguishable.

Note that in defining O(S) a single measurement is allowed
to distinguish the states in the set �n. On the other hand,
I(S) deals with the pairwise distinguishability, and for dif-
ferent pairs of states {ωi, ω j} in �n, different measurements
Mi j can be performed to distinguish the pairs. Therefore, it
clearly follows that I(�) � O(�) for an arbitrary GPT system,
and accordingly, one can define a quantity called dimension
mismatch, �(�) := I(�) − O(�). For classical and quantum
systems it follows from simple arguments that both these
dimensions are equal. However, as shown in [33], for the
hypothetical toy model of box world (�) the information
dimension is strictly greater than the operational dimension.
While I(�) = 4, one has that O(�) = 2.

III. RESULTS

As already mentioned, the state space of the maximal
composition strictly contains the quantum state space, i.e.,
D(CdA ⊗ CdB ) ⊂ �SEP(CdA,CdB ). In particular, an entangle-
ment witness operator W /∈ D(CdA ⊗ CdB ), whereas W ∈
�SEP(CdA,CdB ). Although the state space of the SEP theory is
bigger than the quantum state space, the “nonlocal strength”
of the bipartite system SAB

SEP
is no more than SAB

Q . This follows
from a generic result by Barnum et al. [20], who proved
that any no-signaling bipartite input-output probability dis-
tribution P(ab|xy) obtained from SAB

SEP
can also be obtained

from SAB
Q ; here a and b denote Alice’s and Bob’s outputs

corresponding to their respective inputs x and y. For a state
W ∈ �SEP(CdA ,CdB ) the correlation P(ab|xy) is obtained as

P(ab|xy) = Tr
[
W

(
πa

x ⊗ πb
y

)]
,

πa
x ∈ P (CdA ),

∑
a

πa
x = 1dA &πb

y ∈ P (CdB ),
∑

b

πb
y = 1dB .

As pointed out in [21], the result of Barnum et al. can be
seen as follows. According to Choi-Jamiołkowski (CJ) iso-
morphism [39,40], any W ∈ �SEP(CdA ,CdB ) \ D(CdA ⊗ CdB )
can be written as [I ⊗ �](φ+), where � is a positive map, I
is the identity map, and φ+ is the projector on the maximally
entangled state. Furthermore, any such witness can also be
written as [I ⊗ �t p](ψ ), where �t p is positive and trace pre-
serving and ψ is a projector onto a pure bipartite state [41].
Therefore, we have

P(ab|xy) = Tr
[
W

(
πa

x ⊗ πb
y

)]
= Tr

{[
I ⊗ �t p

]
(ψ )(πa

x ⊗ πb
y )

}
= Tr

{
ψ

(
πa

x ⊗ ��
t p[πb

y

])}
= Tr

[
ψ

(
πa

x ⊗ π̃b
y

)]
.

Here �� is the adjoint map of �, and since the adjoint of a
positive trace-preserving map is positive and unital, {π̃b

y :=
��

t p[πb
y ]}b forms a valid quantum measurement.

We will now proceed to show that the system SAB
SEP

can yield
a stronger than quantum correlation in the timelike domain.
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At this point we would like to mention that the study of
the stronger than timelike correlation was introduced in a
recent paper by Dall’Arno et al., in which the authors pro-
posed an interesting principle called no hypersignaling [42].
However, we will follow a little different approach as studied
in [24] and recall below a communication game introduced
there.

Pairwise distinguishability game P [n]
D . The game involves

two players (Alice and Bob) and a referee. In each run of
the game, the referee provides a classical message η to Al-
ice, randomly chosen from some set of messages N , where
|N | := n. In the same run Bob is asked a question Q(η, η′):
whether the message given to Alice is η or η′, where η′ �= η.
The winning condition demands Bob answer all questions cor-
rectly. Alice can help Bob by sending some information about
the message she received. It is not hard to see that perfect
winning demands Alice to encode the message on the states of
some physical system that are pairwise distinguishable. With
this game we are now in a position to prove one of our main
results.

Theorem 1. The game P [8]
D cannot be won if Alice uses

the system [C2,C2,
⊗

Q] to encode her message, whereas the
[C2,C2,

⊗
SEP] system yields a perfect winning strategy.

Proof. Perfect winning of the game P [n]
D requires Alice

to communicate to Bob a physical system which has an in-
formation dimension of at least n. For the two-qubit system
[C2,C2,

⊗
Q], the information dimension is the same as its

operational dimension, which is 4, and therefore, the P [8]
D

game cannot be won perfectly by communicating two qubits.
We now provide an explicit strategy to win the game P [8]

D
using the system [C2,C2,

⊗
SEP]. Let Alice use the set $[8] ≡

{�±, �±,�±, �±} ⊂ �SEP(C2,C2) of eight different states
to encode her messages, where χ := |χ〉 〈χ |, |�±〉 := (|00〉 ±
|11〉)/

√
2, |�±〉 := (|01〉 ± |10〉)/

√
2, and χ := I ⊗ T(χ ),

with I denoting the identity map and T denoting the trans-
position map (in the computational basis). It remains to be
shown that the states in $[8] are pairwise distinguishable
with measurements constituted by the effects from the set
ESEP(C2,C2).

Consider the pair of states �+ and �+ and the measure-
ment

M ≡
⎧⎨
⎩

Eeven := |0〉 〈0| ⊗ |0〉 〈0| + |1〉 〈1| ⊗ |1〉 〈1|,
Eodd = I − Eeven := |0〉 〈0| ⊗ |1〉 〈1|

+ |1〉 〈1| ⊗ |0〉 〈0|.
Clearly, M is a valid measurement on the system
[C2,C2,

⊗
SEP] as Eodd, Eeven ∈ ESEP(C2,C2), where Eeven

is the projector of even numbers of up spins and Eodd is
the projector of odd numbers of up spins. A straightforward
calculation yields

Tr(�+Eodd ) = 1, Tr(�+Eeven ) = 0,

Tr(�+Eodd ) = 0, Tr(�+Eeven ) = 1.

Therefore, the measurement M perfectly distinguishes the
states �+ and �+. To show the same for any pair of
states in $[8], let us denote as M[U ⊗ V ] the mea-
surement obtained from M through the unitary rota-
tion U ⊗ V , i.e. M[U ⊗ V ] := {U ⊗ V EoddU † ⊗ V †,U ⊗

TABLE I. The unitaries required to construct the measurement
M[U ⊗ V ] for pairwise distinguishability of the states in $[8] are
given. The states in the horizontal upper (lower) diagonal can be
distinguished from the states in the vertical upper (lower) diagonal
using the corresponding unitaries. For instance, the measurement to
distinguish the pair {�+, �−} and the pair {�+, �−} is given by the
entry in the third row and fourth column, i.e., M[Ay ⊗ Ay], whereas
the pair {�+, �+} is distinguished by the measurement given in
seventh row, third column, i.e., M[Ax ⊗ Ax]. NA means that a state
cannot be distinguished from itself.

V EevenU † ⊗ V †}. As shown in Table I, choosing U and V
appropriately from the set{

1 :=
(

1 0
0 1

)
, Ax := 1√

2

(
1 −i
−i 1

)
,

Ay := 1√
2

(
1 −1
1 1

)}
,

any pair of states in $[8] can be distinguished perfectly by the
measurement M[U ⊗ V ]. This completes the proof. �
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Theorem 1 thus establishes that the SEP composition of
two elementary qubits can result in a correlation that cannot
be achieved with a two-qubit quantum composition. As an im-
mediate corollary we have a lower bound on the information
dimension of the system [C2,C2,

⊗
SEP].

Corollary 1. The information dimension of the system
[C2,C2,

⊗
SEP] is at least 8, i.e., I[C2,C2,

⊗
SEP] � 8.

At present we do not know whether the above bound is
tight and leave this question open for future research. Rather,
we proceed to find the operational dimension of the systems
obtained through the SEP composition. To this aim, we first
prove the following proposition.

Proposition 1. Every POPT state WAB ∈ �SEP(CdA,CdB )
can be written as (IA ⊗ �R→B)(ρAR), where � is a positive,
unital map and ρAR ∈ CdA ⊗ CdR is a pure quantum state
independent of WAB.

Proof. We start by defining the following [43]:

W ′
AB := WAB + 1A ⊗ P⊥

B , P⊥
B := 1B − PB,

PB := projector onto the support of WB,

WB := TrA (WAB), W ′
B := TrA (W ′

AB).

W ′
AB is a POPT state (unnormalized) as for any sep-

arable effect πA ⊗ πB we have Tr [(W ′
AB)(πA ⊗ πB)] =

Tr [(WAB)(πA ⊗ πB)] + Tr (πA) Tr (P⊥
B πB) � 0. Thus, W ′

B is a
full-rank positive operator, and hence, we can define

W ′′
AB := [1A ⊗ (W ′

B)−1/2]W ′
AB[1A ⊗ (W ′

B)−1/2],

where (W ′
B)−1/2, being a positive operator, implies that

W ′′
AB is a POPT: Tr [(W ′′

AB)(πA⊗πB)]= Tr{W ′
AB[πA⊗

(W ′
B)−1/2πB(W ′

B)−1/2]}� 0. Further, TrA (W ′′
AB) =∑

i(W
′

B)−1/2 〈i|A W ′
AB |i〉A (W ′

B)−1/2 = (W ′
B)−1/2W ′

B(W ′
B)−1/2 =

1B.
Using the CJ isomorphism, we can write W ′′

AB = IA ⊗
US→B(|χ+〉AS 〈χ+|), where |χ+〉AB := ∑

i |i〉A |i〉B is the un-
normalized maximally entangled state and US→B is a positive
map. More explicitly, the action of US→B is given by
US→B(MS ) = TrS [(MT

S ⊗ 1B)(W ′′
SB)]. US→B is unital since

US→B(1S ) = TrS (W ′′
SB) = 1B. Furthermore, it is easy to check

that WAB = (1A ⊗ V †
B )W ′′

AB(1A ⊗ VB), where VB := (W ′
B)1/2PB.

Let us now define a new completely positive, unital map

YBC→B(MBC ) := V †
B 〈0|C M |0〉C VB + V ′†

B 〈1|C M |1〉C V ′
B,

where V ′
B is chosen so that it satisfies the condition V †

B VB +
V ′†

B V ′
B = 1B and HC := C2. The above map is the adjoint of

the completely positive, trace-preserving map with the Kraus
operators {VB ⊗ |0〉C ,V ′

B ⊗ |1〉C}; it has the property

IA ⊗ YBC→B(MAB ⊗ |0〉C 〈0|) = (1A ⊗ V †
B )MAB(1A ⊗ VB).

This further leads us to

WAB = (1A ⊗ V †
B )W ′′

AB(1A ⊗ VB)

= IA ⊗ YBC→B(W ′′
AB ⊗ |0〉C 〈0|)

= IA ⊗ YBC→B[(IA ⊗ US→B)(|χ+〉AS 〈χ+|) ⊗ |0〉C 〈0|]
= (IA ⊗ YBC→B) ◦ (IA ⊗ US→B ⊗ IC )

× [|χ+〉AS 〈χ+| ⊗ |0〉C 〈0|]
= IA ⊗ (YBC→B ◦ U ′

SC→BC )[|χ+〉AS 〈χ+| ⊗ |0〉C 〈0|],

where U ′
SC→BC := US→B ⊗ IC . Let dS := dim(HS ),

�SC→B := 1
dS
YBC→B ◦ U ′

SC→BC , |ψ〉ASC := 1√
dS

|χ+〉AS |0〉C ,
and HR := HS ⊗ HC . Thus, we have

WAB = (IA ⊗ �R→B)(|ψ〉AR 〈ψ |),
where �R→B is the composition of a completely positive unital
map and a positive unital map; therefore, it is positive and
unital. This completes the proof. �

We are now in a position to prove another important result
of this work. The classical information carrying capacity of
bipartite systems allowing maximal tensor product composi-
tion equals the classical capacity of quantum composition.

Theorem 2. The operational dimension of the system
[CdA ,CdB ,

⊗
SEP] is dAdB.

Proof. The proof is similar in spirit to Lemma 24 of
Ref. [37]. However, while the assumption of “transitivity” is
used there, here we use Proposition 1.

Let the operational dimension of the system
[CdA ,CdB ,

⊗
SEP] be N . N must be lower bounded

by d := dAdB, as there exists d quantum states that
can be perfectly distinguished by a single separable
measurement. For instance, the set of pure states
{|i j〉 | i = 1, . . . dA & j = 1, . . . dB} can be distinguished
by the separable measurement {|i〉〈i| ⊗ | j〉〈 j|}dA,dB

i, j=1. As
we have considered the operational dimension of the
system [CdA ,CdB ,

⊗
SEP] to be N , there must exist N

POPT states {W1, . . . ,WN } and a separable measurement
{E1, . . . , EN | ∑N

i=1 Ei = 1AB} such that Tr(EiWj ) = δi j ∀ i, j.
According to Proposition 1, ∀ j, Wj = (I ⊗ � j )(ρ) for some
positive, unital map � j : L(HR) → L(HB) and pure state
ρ ∈ L(HA ⊗ HR). Denoting the projector on the orthogonal
support of ρ as P := 1AR − ρ, we have

d = Tr(1AB) =
N∑

i=1

Tr(Ei ) =
N∑

i=1

Tr[Ei(I ⊗ �i )(1AR)]

=
N∑

i=1

Tr[Ei(I ⊗ �i )(ρ + P)]

=
N∑

i=1

Tr[Ei(I ⊗ �i )(ρ)] +
N∑

i=1

Tr[Ei(I ⊗ �i )(P)]

=
N∑

i=1

Tr[EiWi] +
N∑

i=1

Tr[(I ⊗ �∗
i )(Ei )P],

where �∗
i is the adjoint map of �i and hence positive. Fur-

thermore, (1 ⊗ �∗
i )(Ei ) are positive operators since Ei’s are

separable. Therefore, we have

d �
N∑

i=1

Tr[EiWi] =
N∑

i=1

δii = N.

Since we know that N � d , we conclude that N = d . This
completes the proof. �

While in Theorem 1 we showed that the SEP composi-
tion of two elementary qubits can yield a stronger timelike
correlation than their quantum composition (i.e., two qubit),
Theorem 2 establishes that such a composition is not strong
enough to show the superadditive feature of the information
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carrying capacity [44]. In this regard, a more generic result is
presented in the next proposition.

Proposition 2. The operational dimension of any bipartite
composition (with the normalized state space denoted as �AB)
of two elementary quantum systems CdA and CdB is dAdB if
(1AB − WAB) lies within the unnormalized state cone ∀WAB ∈
�AB.

Proof. Let N be the operational dimension of the compos-
ite system. Then, there must exist a set containing N states
{W1, . . . ,WN } and measurement {E1, . . . , EN | ∑N

i=1 Ei =
1AB} such that Tr(EiWj ) = δi j ∀ i, j. Manifestly, it follows that
N � d := dAdB since �SEP ⊆ �AB ⊆ �SEP and ESEP ⊆ EAB ⊆
ESEP. As argued in the proof of Theorem 2, there always exist
dAdB product states that can be perfectly distinguished by a
separable measurement. On the other hand,

N∑
i=1

Tr[Ei(1 − Wi )] =
N∑

i=1

Tr(Ei ) −
N∑

i=1

Tr(EiWi )

= d −
N∑

i=1

δii = d − N.

Since (1AB − WAB) is an unnormalized state by assumption,
d − N � 0 or d � N , which completes the proof. �

While Proposition 2 assumes elementary systems are quan-
tum, it can, however, be further generalized within the GPT
framework.

Proposition 3. Let SAB ≡ (�AB, EAB) be a composite sys-
tem consisting two elementary systems SA ≡ (�A, EA) and
SB ≡ (�B, EB) with operational dimensions NA and NB, re-
spectively. The operational dimension of SAB is NANB if
∃ ω′

AB ∈ �AB such that (NANBω′
AB − ωAB) is an unnormalized

state ∀ωAB ∈ �AB.
Proof. The operational dimension NAB of the composite

system SAB is always greater than the product of the opera-
tional dimension of the elementary systems, i.e., NAB � NANB.
This simply follows from the fact that any valid composition
includes the products states and product effects in its descrip-
tion. Now we have

NAB∑
i=1

ei(NANBω′ − ωi ) = NANB

NAB∑
i=1

ei(ω
′) −

NAB∑
i=1

ei(ωi )

= NANBu(ω′) −
NAB∑
i=1

δii

= NANB − NAB � 0

since, by assumption, (NANBω′ − ωi ) is an unnormalized state
∀ωi. Therefore, NAB � NANB, which completes the proof. �

From Theorems 1 and 2 we can conclude that
�[C2,C2,

⊗
SEP] � 4, where � refers to the dimension mis-

match of the theory. On the other hand, we can also conclude
that the gap between the information dimensions of the sys-
tems [C2,C2,

⊗
SEP] and [C2,C2,

⊗
Q] is at least 4, i.e.,

I[C2,C2,⊗SEP] − I[C2,C2,⊗Q] � 4.

Our next result shows that this gap can be increased further by
considering more elementary systems.

Theorem 3. The information dimension of the system
[C2,C2,C2,

⊗
SEP] is at least 24.

Proof. The proof is constructive and similar to the proof of
Theorem 1. Consider the following set of 24 states:

$[24] := {χ, χ, χ} ⊂ �SEP[C2,C2,C2],

χ := I ⊗ T ⊗ I (χ ),

χ := I ⊗ T ⊗ T(χ ),

|χ〉 ∈
{

|�±
000〉 := 1√

2
(|000〉 ± |111〉),

|�±
001〉 := 1√

2
(|001〉 ± |110〉),

|�±
010〉 := 1√

2
(|010〉 ± |101〉),

|�±
011〉 := 1√

2
(|011〉 ± |100〉)

}
.

We aim to show that the states in $[24] are pairwise distin-
guishable by fully separable measurements of the form

M ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eodd := |m〉 〈m| ⊗ |n〉 〈n| ⊗ |p〉 〈p|
+ |m〉 〈m| ⊗ |n⊥〉 〈n⊥| ⊗ |p⊥〉 〈p⊥|
+ |m⊥〉 〈m⊥| ⊗ |n〉 〈n| ⊗ |p⊥〉 〈p⊥|
+ |m⊥〉 〈m⊥| ⊗ |n⊥〉 〈n⊥| ⊗ |p〉 〈p|,

Eeven = 1 − Eodd

= |m〉 〈m| ⊗ |n〉 〈n| ⊗ |p⊥〉 〈p⊥|
+ |m〉 〈m| ⊗ |n⊥〉 〈n⊥| ⊗ |p〉 〈p|
+ |m⊥〉 〈m⊥| ⊗ |n〉 〈n| ⊗ |p〉 〈p|
+ |m⊥〉 〈m⊥| ⊗ |n⊥〉 〈n⊥| ⊗ |p⊥〉 〈p⊥|,

where |r〉, and |r⊥〉 are “up” and “down” eigenstates of spin
measurement (r̂ · σ ) along the r̂ direction for r̂ ∈ {m̂, n̂, p̂}.
Eodd comprises an odd number of up spins, and Eeven com-
prises an even number of up spins. Clearly, M is an allowed
measurement as Eodd, Eeven ∈ ESEP(C2,C2,C2). The m, n,
and p required to distinguish between different pairs of states
are given in the first column of Table II. For instance, the pair
of states {�+

000,�
−
000} can be perfectly distinguished by choos-

ing (m, n, p) = (y, y, x). The measurement M{�+
000,�

−
000} ≡

{Eodd, Eeven} is given by

Eodd := |y〉 〈y| ⊗ |y〉 〈y| ⊗ |x〉 〈x|
+ |y〉 〈y| ⊗ |y⊥〉 〈y⊥| ⊗ |x⊥〉 〈x⊥|
+ |y⊥〉 〈y⊥| ⊗ |y〉 〈y| ⊗ |x⊥〉 〈x⊥|
+ |y⊥〉 〈y⊥| ⊗ |y⊥〉 〈y⊥| ⊗ |x〉 〈x|,

Eeven = 1 −Eodd

:= |y〉 〈y| ⊗ |y〉 〈y| ⊗ |x⊥〉 〈x⊥|
+ |y〉 〈y| ⊗ |y⊥〉 〈y⊥| ⊗ |x〉 〈x|
+ |y⊥〉 〈y⊥| ⊗ |y〉 〈y| ⊗ |x〉 〈x|
+ |y⊥〉 〈y⊥| ⊗ |y⊥〉 〈y⊥| ⊗ |x⊥〉 〈x⊥|.

062406-6



TIMELIKE CORRELATIONS AND QUANTUM TENSOR … PHYSICAL REVIEW A 106, 062406 (2022)

TABLE II. Pairwise distinguishability of the set $[24]. Using
a particular separable measurement given in the first column, any
state in the odd-number up-spin column can be distinguished from
any state in the even-number up-spin column. For instance, the

pair {�+
000, �

+
001} (last row) is perfectly distinguishable via the

separable measurement consisting of POVM elements given by
M ≡ {Eodd, Eeven}, where Eodd and Eeven are rank-four projectors
comprising an odd number of spin-up outcomes and an even num-
ber of spin-up outcomes, respectively, for the Pauli measurement
(σZ , σY , σZ ) ≡ (z, y, z).

Measurement Odd number of up spins Even number of up spins

(y, y, x) �−
000, �

−
001, �

+
010, �

+
011 �+

000,�
+
001, �

−
010,�

−
011

�+
000, �

+
001, �

−
010, �

−
011 �−

000,�
−
001, �

+
010,�

+
011

�+
000, �

+
001, �

−
010, �

−
011 �−

000,�
−
001, �

+
010,�

+
011

(y, x, y) �−
000, �

+
001, �

−
010, �

+
011 �+

000,�
−
001, �

+
010,�

−
011

�−
000, �

+
001, �

−
010, �

+
011 �+

000,�
−
001, �

+
010,�

−
011

�+
000, �

−
001, �

+
010, �

−
011 �−

000,�
+
001, �

−
010,�

+
011

(x, x, x) �+
000, �

+
001, �

+
010, �

+
011 �−

000,�
−
001, �

−
010,�

−
011

�+
000, �

+
001, �

+
010, �

+
011 �−

000,�
−
001, �

−
010,�

−
011

�+
000, �

+
001, �

+
010, �

+
011 �−

000,�
−
001, �

−
010,�

−
011

(x, y, y) �−
000, �

+
001, �

+
010, �

−
011 �+

000,�
−
001, �

−
010,�

+
011

�+
000, �

−
001, �

−
010, �

+
011 �−

000,�
+
001, �

+
010,�

−
011

�−
000, �

+
001, �

+
010, �

−
011 �+

000,�
−
001, �

−
010,�

+
011

(y, z, z) �+
000, �

−
000, �

+
011, �

−
011 �+

001,�
−
001, �

+
010,�

−
010

�+
000, �

−
000, �

+
011, �

−
011 �+

001,�
−
001, �

+
010,�

−
010

�+
000, �

−
000, �

+
011, �

−
011 �+

001,�
−
001, �

+
010,�

−
010

(z, z, y) �+
000, �

−
000, �

+
001, �

−
011 �+

010,�
−
010, �

+
011,�

−
011

�+
000, �

−
000, �

+
001, �

−
001 �+

010,�
−
010, �

+
011,�

−
011

�+
000, �

−
000, �

+
001, �

−
001 �+

010,�
−
010, �

+
011,�

−
011

(z, y, z) �+
000, �

−
000, �

+
010, �

−
010 �+

001,�
−
001, �

+
011,�

−
011

�+
000, �

−
000, �

+
010, �

−
010 �+

001,�
−
001, �

+
011,�

−
011

�+
000, �

−
000, �

+
010, �

−
010 �+

001, �
−
001,�

+
011, �

−
011

A straightforward calculation yields

Tr(�−
000Eodd ) = 1, Tr(�−

000Eeven ) = 0,

Tr(�+
000Eodd ) = 0, Tr(�+

000Eeven ) = 1.

Therefore, the measurement M{�+
000,�

−
000} perfectly distin-

guishes the states �−
000 and �+

000. As we show in Table II, any
pair of states in $[24] can be distinguished perfectly by such a
measurement. This completes the proof. �

Theorem 3 thus establishes that the P [24]
D game can be

won with three elementary qubits if the SEP composition
is considered among them, whereas if we consider quantum
composition, five elementary qubits are required.

Discussion. The need to understand quantum mechanics
results in investigating theories other than itself. Comparisons
among the information processing capabilities in the various
theories leads to insights about the underlying cause for such
capabilities which led to the motivation for this paper. While
Barnum et al. [20] showed that in the spacelike scenario, the
bipartite maximal tensor product structure of local quantum
systems cannot generate beyond quantum correlations, the au-
thors of [22] showed that in a generalized Bell scenario every
beyond quantum state can produce beyond quantum correla-
tions. In this work, we have used a different approach wherein
timelike scenarios are considered instead of the traditional
spacelike Bell scenarios. We have provided concrete results
which can be experimentally verified and can be used as
principles to single out the quantum composition rule. While
Corollary 1 and Theorem 2 establish that the phenomenon of
dimension mismatch occurs in the SEP composition, it has
been shown [24,38] that dimension mismatch occurs in the
SEP composition as well. A natural question, then, is to ask
what other compositions can be ruled out using dimension
mismatch. Another interesting direction to explore is relaxing
the assumption of quantum subsystems. Propositions 2 and
3 provide some preliminary results in the GPT framework
which may be useful in this regard. Our study forms an im-
portant piece of the quantum reconstruction program in which
we seek to derive quantum theory from physical principles
[9–11].
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