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Detecting quantum phase transition via magic resource in the XY spin model
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Quantum phase transition in the XY spin model with three-spin interaction is investigated using magic
resource (non-stabilizerness), which is crucial in universal fault-tolerant quantum computation. The magic
quantifier we employ here is defined straightforwardly via characteristic functions of quantum states, which
are well defined for all dimensional quantum systems (in sharp contrast to those defined by discrete Wigner
functions) and can be easily calculated. We show that the magic quantifier of both the reduced single-site spins
and two-site spins of the system ground state increase to their maximum around the critical points for quantum
phase transition. This indicates that the magic resource can be used to detect the critical phenomena in the XY
spin model and reveals a connection between quantum phase transition in many-body systems and quantum
resource in stabilizer quantum computation.
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I. INTRODUCTION

For a many-body quantum system, a variation in the
coupling or an external parameter of the Hamiltonian can
sometimes induce a qualitative change in the ground state of
the system at absolute zero temperature. This is the so-called
quantum phase transition [1,2], and the associated critical
phenomena for various specific systems such as quantum spin
chains have been extensively studied [3–6]. Quantum phase
transition is driven by quantum fluctuation and thus is intrinsi-
cally connected to quantum resources [7–10], in sharp contrast
to classical phase transition, which occurs when a system
reaches a state below a critical temperature characterized by
certain macroscopic order.

In the past two decades, quantum information theory has
undergone rapid development [11]. Many quantum informa-
tional quantities, such as entanglement [12], quantum discord
[13–17], Bell nonlocality [18], quantum coherence [19], etc.,
have been introduced and studied extensively, each with its
own merit and usage in different contexts. In particular, some
of these quantities have been employed in detecting quantum
phase transition in various models [20–41]. For example, Os-
borne and Nielsen studied the entanglement in the transverse
Ising model and showed that the next-nearest-neighbor (albeit
not the nearest-neighbor) entanglement achieves its maximum
value at the critical points [20,21]. Osterloh et al. explored the
entangling resources of a spin system close to its quantum
critical points and demonstrated that concurrence (a popu-
lar measure of entanglement) is maximal around the critical
points [22]. By using quantum discord, Dillenschneider in-
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vestigated the quantum phase transition of the transverse Ising
and antiferromagnetic XXZ spin chains and showed that the
amount of quantum correlations increases close to the criti-
cal points in contrast to the amount of classical correlations
[32]. Li and Lin illustrated the capability of pairwise quantum
discord and classical correlations in detecting quantum phase
transitions at both zero and finite temperatures in the XY spin
chain with three-spin interaction [39]. Ye et al. explored quan-
tum phase transitions in the spin-1/2 XX chain with three-spin
interaction in terms of local quantum Fisher information and
one-way quantum deficit [41].

The magic resource is crucial for universal fault-tolerant
quantum computation in the stabilizer formalism of quantum
computation [42–45], just like entanglement is a crucial re-
source for quantum communications. Due to its importance,
many different magic quantifiers have been introduced in the
last few years, including the sum negativity, mana, relative
entropy of magic, robustness of magic, etc. [46–55]. However,
most of these quantities rely heavily on intractable optimiza-
tion or the discrete Wigner formalism, which is only properly
defined for odd prime power dimensional quantum systems
[56–58]. Computation of these magic quantifiers are often
quite hard.

Recently, a magic quantifier in terms of characteristic func-
tions of quantum states is introduced [59]. Apart from its
direct physical significance, it is well defined in all dimensions
and can be easily calculated, in contrast to those defined via
discrete Wigner functions. In view of the utility of magic
resource in quantum computation and related foundational
issues, one may expect that the magic resource may also
be useful in other quantum contexts. In particular, it seems
desirable to investigate how the magic quantifier will change
near critical points of quantum spin systems.
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In this paper, we analyze the role magic resource plays in
detecting the critical points of quantum spin systems. By ana-
lyzing the dynamics of the magic quantifier of spins in a spe-
cific XY spin model with three-spin interaction [29,39–41],
we show that it displays abrupt changes around the critical
points, which indicates that the magic resource may be useful
in detecting the critical points. Compared with other corre-
lation measures such as entanglement and quantum discord,
the magic quantifier we employ here can be straightforwardly
computed.

The paper is structured as follows. In Sec. II, we briefly
review the stabilizer formalism and the magic quantifier via
the characteristic functions of quantum states. In Sec. III, we
calculate the magic quantifier of both single-spin and two-spin
states in the XY spin model with three-spin interactions, reveal
the quantitative features of magic resource in detecting the
critical points. A brief comparison with other informational
quantities is presented in Sec. IV. Finally, we conclude with a
summary and discussion in Sec. V.

II. MAGIC RESOURCE (NON-STABILIZERNESS)

Since the magic resource is crucial for fault-tolerant
universal quantum computation, its characterization and quan-
tification have attracted considerable attention ever since
the inception of stabilizer formalism of quantum error cor-
rection and computation [42–55]. Quite recently, an easily
computable magic quantifier via characteristic functions of
quantum states was proposed in Ref. [59], which has several
nice features. In this section, we briefly review the stabilizer
formalism and the associated magic quantifier in terms of
characteristic functions, which will be used in detecting criti-
cal points for many-body quantum systems.

For any positive integer d , let Zd = {0, 1, . . . , d − 1} be
the ring of integers modulo d . For a d-dimensional Hilbert
space K (one may simply take K = Cd ) with the computa-
tional basis {| j〉 : j ∈ Zd}, the shift operator

X =
d−1∑
j=0

| j + 1〉〈 j|

and the phase operator

Z =
d−1∑
j=0

ω j | j〉〈 j|, ω = e2π i/d

are the generators of the discrete Heisenberg-Weyl group Pd ,

which is a subgroup of the full unitary group U (K ) (the set of
all unitary operators on K) [60].

Following the convention in Ref. [45], the discrete
Heisenberg-Weyl operators are defined as

Dk,l = τ kl X kZl , τ = −eπ i/d , k, l ∈ Zd ,

which are unitary and satisfy the orthogonality condition

tr
(
D†

k,l Ds,t
) = dδk,sδl,t , k, l, s, t ∈ Zd .

Moreover, the set of operators{
1√
d

Dk,l : k, l ∈ Zd

}

constitutes an orthonormal basis of the d2-dimensional opera-
tor Hilbert space L(K ) (which consists of all operators on the
system Hilbert space K) equipped with the Hilbert-Schmidt
inner product 〈A|B〉 = tr(A†B).

The discrete Heisenberg-Weyl group Pd is not a normal
(invariant) subgroup of U (K ). Its normalizer in U (K ) is called
the Clifford group [42,43], which can be explicitly expressed
as

Cd = {V ∈ U (K ) : VPdV † = Pd}.
Consequently, we have a hierarchy of groups

Pd ⊂ Cd ⊂ U (K ),

all consisting of unitary operators.
For prime dimensional systems K, any state of the form

V |0〉 (with V ∈ Cd ) is a pure stabilizer state [45], and the set of
stabilizer states is the convex hull of all pure stabilizer states.
Thus quantum states which cannot be expressed as a mixture
of pure stabilizer states are non-stabilizer states, which are
also called magic states. Thus magic resource refers to the
deviation of a state from stabilizer states.

For any quantum state (pure or mixed) ρ on K, its charac-
teristic function is defined as [58,59]

cρ (k, l ) = tr(ρDk,l ), k, l ∈ Zd .

The state ρ is uniquely determined by its characteristic func-
tion cρ (·, ·).

Since {Dk,l/
√

d : k, l ∈ Zd} constitutes an orthonormal
basis of the operator space L(K ), any quantum state ρ on K
can be expanded as

ρ =
∑
k,l

αρ (k, l )
Dk,l√

d
,

with the expansion coefficient

αρ (k, l ) = tr

(
D†

k,l√
d

ρ

)
= 1√

d
c∗
ρ (k, l ), k, l ∈ Zd ,

which is, up to a constant factor 1/
√

d , actually the complex
conjugate of the characteristic function of the quantum state
ρ. Consequently,

ρ = 1

d

∑
k,l

c∗
ρ (k, l )Dk,l .

With the above preparations, we now recall the following
magic quantifier:

M(ρ) =
∑
k,l

|cρ (k, l )| =
∑
k,l

|tr(ρDk,l )|

introduced in Ref. [59], which is actually the l1 norm of the
characteristic function and will play a key role in our approach
to quantum phase transition.

As can be seen from the above definition, the magic quan-
tifier M(ρ) can be rather directly computed. Moreover, it
possesses some nice properties, which render it to be a mean-
ingful witness of magic resource, as elaborated in Ref. [59].
For example, it is invariant under the Clifford operations in the
sense that M(ρ) = M(V ρV †) for V ∈ Cd . Among all states,
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pure or mixed, it achieves the minimal value 1 if and only
if ρ is the maximally mixed state. Among all pure states, it
achieves the minimal value d if and only if ρ is any stabilizer
state. It is convex with respect to ρ. From the last two proper-
ties, we obtain the following simple and convenient criterion
for magic resource: If M(ρ) > d, then the quantum state ρ

must be magic.
Another remarkable physical feature of the magic quanti-

fier M(ρ) is that it serves as a bridge connecting the stabilizer
states and SIC fiducial states in the sense that

d � M(|φ〉〈φ|) � 1 + (d + 1)
√

d − 1

for any pure state |φ〉, with the lower bound achieved by
any stabilizer state and the upper bound achieved by any
SIC-POVM fiducial state (assuming its existence) [59], that is,
the stabilizer states and the SIC-POVM fiducial states occupy
the two extremes in terms of magic resource, which reveals
an unexpected connection between stabilizerness and the out-
standing Zauner conjecture for the existence of SIC-POVM
[61,62]. Recall that a pure state | f 〉 is called a SIC-POVM
fiducial state if

{| fk,l〉 = Dk,l | f 〉 : k, l ∈ Zd}
constitutes a symmetric informationally complete positive
operator valued measure (SIC-POVM) [61,62]. Although a
plethora of analytical and numerical evidences indicate that
SIC-POVM exists in any dimension (Zauner’s conjecture)
[61–67], the issue remains open.

In the following, we present some illustrative examples
which shall be used in the paper. First, consider a qubit sys-
tem, i.e., d = 2. For the qubit state with the standard Bloch
representation

ρ = 1
2 (1 + rxσx + ryσy + rzσz ),

where σx, σy, σz are the Pauli matrices, since

D0,0 = σ0 = 1, D1,0 = σx, D0,1 = σz, D1,1 = −σy,

the characteristic function of ρ, expressed in the matrix form,
reads(

cρ (k, l )
) =

(
cρ (0, 0) cρ (0, 1)
cρ (1, 0) cρ (1, 1)

)
=

(
1 rz

rx −ry

)
,

it follows that the magic quantifier can be readily obtained as

M(ρ) = 1 + |rx| + |ry| + |rz|. (1)

The n-qubit Heisenberg-Weyl group is generated by the
tensor product of the constituent single-qubit Heisenberg-
Weyl operators, and the magic quantifier for any n-qubit state
ρ can be defined analogously as

M(ρ) =
∑

k

|tr(ρσk )| (2)

with σk=σk1 ⊗ · · · ⊗ σkn for k=(k1, . . . , kn), k j = 0, x, y, z.

III. DETECTING QUANTUM PHASE TRANSITION
VIA MAGIC RESOURCE

The XY spin chain with three-spin interaction (XY T ),
which is an exactly solvable model exhibiting phase transition

[3–6], is governed by the following Hamiltonian (assuming
the periodic boundary condition σ

j
μ = σ

N+ j
μ ):

H = −
N∑

j=1

(
1 + γ

2
σ j

x σ j+1
x + 1 − γ

2
σ j

y σ j+1
y + λσ j

z

)

−
N∑

j=1

α
(
σ j−1

x σ j
z σ j+1

x + σ j−1
y σ j

z σ j+1
y

)
, (3)

where N is the number of spins in the chain (assumed to be
an odd number for convenience), γ describes the anisotropy
of the system arising from the spin-spin interaction, λ is the
external magnetic field, and α denotes the strength of the
internal three-spin interaction.

As can be seen from the Hamiltonian given by Eq. (3), the
model degenerates into the XY spin model when λ = α = 0.
The XY T model is exactly solvable. Actually, via the Jordan-
Wigner transformation [1,2]

σ j
x = (c†

j + c j )
∏
i< j

(1 − 2c†
i ci ),

σ j
y = −√−1(c†

j − c j )
∏
i< j

(1 − 2c†
i ci ),

σ j
z = 1 − 2c†

j c j,

where c†
j and c j are the mapped spinless fermionic creation

and annihilation operators, respectively, the associated Hamil-
tonian can be transformed to the form

H = −
N∑

j=1

[c†
j c j+1 + c†

j+1c j + γ (c†
j c

†
j+1 + c jc j+1)

+ 2α(c†
j−1c j+1 + c†

j+1c j−1) + λ(1 − 2c†
j c j )].

Furthermore, assuming odd N , putting K = (N − 1)/2, and
employing the discrete Fourier transform of fermionic opera-
tors determined by

c j = − 1√
N

K∑
k=−K

ĉkei2πk j/N , j = 1, 2, . . . , N,

one obtains the Bogoliubov transformation

d̂k = ĉk cos
θk

2
− iĉ†

−k sin
θk

2
, k = −K, . . . , K,

where θk are determined via εk cos θk = Ak with

Ak = λ − cos
2πk

N
− 2α cos

4πk

N
, (4)

εk =
(

A2
k + γ 2 sin2 2πk

N

)1/2

. (5)

Now via the above transformation, the original Hamiltonian
H can be further diagonalized in the momentum k space as
[24]

H =
K∑

k=−K

2εk

(
d̂†

k d̂k − 1

2

)
.
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With this diagonal form, the finite-temperature equilibrium
thermal state

ρ(T ) = e−H/T

tre−H/T

can be easily evaluated, with T being the temperature and the
Boltzmann constant kB being taken to be 1.

The reduced two-spin states ρi, j (T ) of the thermal equilib-
rium state at two spin sites i and j can be readily obtained
from ρ(T ) by tracing out all spins except those at sites i and j
as [25,33]

ρi j (T ) = tr î jρ(T ) =

⎛⎜⎜⎝
u+

T 0 0 y−
T

0 zT y+
T 0

0 y+
T zT 0

y−
T 0 0 u−

T

⎞⎟⎟⎠, (6)

where tr î j denotes partial trace over all spins except those at
sites i and j, and the matrix elements are given by

u±
T = 1

4

(
1 ± 2〈σz〉T + 〈

σ i
zσ

j
z

〉
T

)
,

zT = 1
4

(
1 − 〈

σ i
zσ

j
z

〉
T

)
,

y±
T = 1

4

(〈
σ i

xσ
j

x 〉T ± 〈
σ i

yσ
j

y 〉T
)
.

The mean magnetization at temperature T is

〈σz〉T = tr(σzρi(T )) =
K∑

k=−K

Ak tanh (εk/T )

Nεk
,

with ρi(T ) = tr̂iρi, j (T ) being the reduced single-spin state (at
site i), and the correlation functions at temperature T are given
by [4,68,69]

〈
σ i

xσ
j

x

〉
T = tr

(
σ i

xσ
j

x ρi, j (T )
) =

∣∣∣∣∣∣∣∣
a−1 a−2 · · · a−r

a0 a−1 · · · a−r+1
...

...
...

...

ar−2 ar−3 · · · a−1

∣∣∣∣∣∣∣∣,

〈
σ i

yσ
j

y

〉
T = tr

(
σ i

yσ
j

y ρi, j (T )
) =

∣∣∣∣∣∣∣∣
a1 a0 · · · a−r+2

a2 a1 · · · a−r+3
...

...
...

...

ar ar−1 · · · a1

∣∣∣∣∣∣∣∣,〈
σ i

zσ
j

z

〉
T = tr

(
σ i

zσ
j

z ρi, j (T )
) = 〈σz〉2

T − ara−r,

where r = |i − j| and

al = −
K∑

k=−K

(
Ak cos 2πkl

N + γ sin 2πkl
N sin 2πk

N

)
tanh

(
εk
T

)
Nεk

,

for l = 0,±1, . . . ,±r.
From Eq. (6), the reduced single-spin state (at site i)

ρi(T ) = tr̂iρi, j (T ) = 1

2

(
1 + 〈σz〉T 0

0 1 − 〈σz〉T

)
(7)

of the thermal equilibrium state can be readily derived from
ρi, j (T ) by taking further partial trace. Due to the periodic
boundary condition imposed on the Hamiltonian (3), there is
shift invariance and the single-spin reduced state ρi is inde-
pendent of the site i.

As is well known, in the thermodynamic limit N → ∞,

the system undergoes quantum phase transition at the critical

value α = αc = 1/2 for fixed λ = 0 and any γ , and at λ =
λc = 1 for fixed α = 0 and any γ [20,39–41]. In the following
discussion, we set γ to be zero. Starting from the thermal
equilibrium state, by taking the limit T → 0, and setting N
to be a large odd number (in our numerical calculations, we
set N = 20 001), we can numerically approximate the ground
state of the XY T model. By calculating the magic quantifier of
the reduced single-spin states and two-spin states, we numeri-
cally plot their dynamics and illustrate their dramatic changes
at the critical points. This indicates the physical significance
of magic resource in detecting quantum phase transition.

A. Magic quantifier of single-spin states

Here we consider only a single-spin in one site of the chain
described by the XY T model. By taking the limit T → 0 in
Eq. (7), the reduced single-spin state turns out to be

ρi = lim
T →0

ρi(T ) = 1

2

(
1 + 〈σz〉 0

0 1 − 〈σz〉
)

, (8)

where

〈σz〉 = lim
T →0

〈σz〉T =
K∑

k=−K

Ak

Nεk
=

K∑
k=−K

Ak

N |Ak| . (9)

The last equality holds since for γ = 0, we have

εk = |Ak| =
∣∣∣∣λ − cos

2πk

N
− 2α cos

4πk

N

∣∣∣∣
in view of Eqs. (4) and (5).

For the reduced state given by Eq. (8), from the expression
of magic quantifier for any qubit state given by Eq. (1), we
immediately get

M(ρi ) = 1 + |rx| + |ry| + |rz|
= 1 + |〈σz〉|. (10)

Substituting the expression of 〈σz〉, Eq. (9), into Eq. (10),
the magic quantifier M(ρi ) can be expressed as an explicit
function of the parameters N , λ, and α. We remark here that
throughout the paper, all quantities involved are regarded as
dimensionless.

To gain an intuitive understanding of the magic quantifier
M(ρi ) in identifying quantum phase transition, we plot the
magic quantifier M(ρi ) versus the three-spin interaction pa-
rameter α in Fig. 1 for N = 20 001, λ = 0. As can be seen, the
magic quantifier increases to its maximum around the critical
point, then decreases. The critical point αc = 1/2 can also be
recognized by the abrupt change in the derivative of the magic
quantifier with respect to α, which is also plotted in Fig. 1.

Similarly, we can analyze the effectiveness of magic quan-
tifier M(ρi ) in detecting quantum critical phenomena with
regard to the external magnetic-field parameter λ. By setting
N = 20 001 and α = 0, we plot the single-spin magic quan-
tifier M(ρi ) and its derivative dM(ρi )/dλ versus the external
magnetic-field parameter λ in Fig. 2. We see that there is an
abrupt change in the derivative of the magic quantifier with
respect to λ around the critical point λc = 1.
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FIG. 1. Single-spin magic quantifier M(ρi ) and its first-order
derivative dM(ρi )/dα versus the three-spin interaction parameter
α for N = 20 001, λ = 0. We see that the magic quantifier M(ρi )
achieves its maximum around the critical point αc = 0.5, while the
derivative dM(ρi )/dα changes dramatically around the critical point
αc = 0.5.

B. Magic quantifier of two-spin states

In the above section, we have illustrated the usage of magic
resource in detecting quantum phase transition in the XY T
model. Since the magic quantifier we employed can be defined
for arbitrary dimensional quantum system [59], we can also
analyze the role of magic resource of multispin sites in the
chain. For simplicity, we only consider the reduced states
consisting of two nearest neighbor spins in the chain. For
other two-spin states or multispin states, the calculations can
be directly adjusted, and the qualitative results are similar.

The nearest neighbor reduced two-spin state ρi,i+1 of the
ground state at two nearest sites i and i + 1 can be approxi-
mated from ρi j (T ) given in Eq. (6) by taking the limit T → 0

FIG. 2. Single-spin magic quantifier M(ρi ) and its derivative
dM(ρi )/dλ versus the external magnetic-field parameter λ for
N = 20 001, α = 0. We see their distinctive behaviors around the
critical point λc = 1.

and setting j = i + 1. The nearest neighbor correlation func-
tions can be expressed as〈

σ i
xσ

i+1
x

〉 = lim
T →0

〈
σ i

xσ
i+1
x

〉
T

= −
K∑

k=−K

Ak

Nεk
cos

2πk

N
, (11)〈

σ i
yσ

i+1
y

〉 = lim
T →0

〈
σ i

yσ
i+1
y

〉
T

= −
K∑

k=−K

Ak

Nεk
cos

2πk

N
, (12)〈

σ i
zσ

i+1
z

〉 = lim
T →0

〈
σ i

zσ
i+1
z

〉
T

= 〈σz〉2 − 〈
σ i

xσ
i+1
x

〉〈
σ i

yσ
i+1
y

〉
. (13)

For the reduced two-spin state ρi,i+1, which is a two-qubit
state, its magic quantifier can be calculated from Eq. (2) as

M(ρi,i+1) =
∑
s,t

|cρi,i+1 (s, t )|,

where s, t ∈ {0, x, y, z}, and

(cρi,i+1 (s, t )) = (
tr
(
ρi,i+1σ

i
s ⊗ σ i+1

t

))
is a 4×4 matrix composed of characteristic functions of ρi,i+1.
After straightforward calculations, we obtain

(
cρi,i+1 (s, t )

) =

⎛⎜⎜⎝
1 0 0 〈σz〉
0

〈
σ i

xσ
i+1
x

〉
0 0

0 0
〈
σ i

yσ
i+1
y

〉
0

〈σz〉 0 0
〈
σ i

zσ
i+1
z

〉
⎞⎟⎟⎠,

from which the magic quantifier of ρi,i+1 can be readily eval-
uated as

M(ρi,i+1) = 1 + ∣∣〈σ i
xσ

i+1
x

〉∣∣+ ∣∣〈σ i
yσ

i+1
y

〉∣∣ + ∣∣〈σ i
zσ

i+1
z

〉∣∣ + 2|〈σz〉|.
Substituting the expressions given by Eqs. (9), (11)–(13)

into the above equation, we get the analytical expression of
magic quantifier M(ρi,i+1), which is also an explicit function
of N , λ, and α.

To analyze the usage of the two-spin magic quantifier
M(ρi,i+1) in detecting the critical points, we plot, in Fig. 3,
M(ρi,i+1) and its derivative dM(ρi,i+1)/dα versus the three-
spin interaction parameter α for N = 20 001 and λ = 0.
While the corresponding quantity M(ρi,i+1) and its deriva-
tive dM(ρi,i+1)/dλ versus the magnetic-field parameter λ for
N = 20 001 and α = 0 are plotted in Fig. 4. From these fig-
ures, we see that although the magic quantifier of two-spin
states displays different dynamical pattern with regard to the
parameters α and λ, as compared with the magic quantifier of
single spin, they are also effective in detecting the quantum
phase transition.

Another interesting observation from Fig. 4 is that, except
for the critical point λc = 1, the magic quantifier also exhibits
a nonsmooth change when the magnetic-field parameter λ is
around 0.64, which seems unrelated to the quantum phase
transition. It is certainly interesting and important to find out
the implication of this unusual feature. At present we do not
have a physical explanation of this numerical observation, and
have to leave it as an open issue for further investigation.
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FIG. 3. Two-spin magic quantifier M(ρi,i+1) and its derivative
dM(ρi,i+1)/dα versus the three-spin interaction parameter α for
N = 20 001, λ = 0. Both exhibit apparent singular behaviors around
the critical point αc = 0.5.

IV. COMPARISON WITH OTHER
INFORMATIONAL QUANTITIES

The effectiveness of quantum correlations (e.g., entan-
glement and quantum discord) in revealing quantum phase
transition has been verified in various models [20–38].
However, as is well known, the calculations of quantum
correlations, including both the entanglement and quantum
discord, are usually quite complicated due to the optimization
involved, analytical results can be obtained only for quite
special situations [12–17].

Compared with the above approaches, our method for em-
ploying the characteristic functions in detecting the critical
points, apart from its direct physical significance connected
with the magic resource in quantum computation, has the

FIG. 4. Two-spin magic quantifier M(ρi,i+1) and its deriva-
tive dM(ρi,i+1)/dλ versus the magnetic-field parameter λ for
N = 20 001, α = 0. Both exhibit apparent singular behavior around
the critical point λc = 1. It is interesting to note that they also exhibit
special behavior at λ ≈ 0.64, which might indicate some unusual
feature therein awaiting for further investigation.

advantage that the magic quantifier M(ρ) for either single or
composite quantum systems can be quite easily calculated. In
the XY T model, their analytical expressions can be straight-
forwardly derived and analyzed, and they pinpoint the critical
points rather easily.

As we have mentioned before, there are some other magic
quantifiers, such as the sum negativity, mana, etc. [45]. One
may wonder whether these quantities can be employed to
study critical points in the model we considered. Here we
take the sum negativity and mana for examples. Their defi-
nitions rely heavily on the discrete Wigner function, which
is well-defined only for odd prime power dimensional quan-
tum systems (that is d = pn for some prime number p > 2)
[56–58]. For the cases we studied, the single-spin is a qubit
with dimension two, while the two-spin states reside in a
22-dimensional Hilbert space. Thus neither the sum negativity
nor the mana can be applied here. Moreover, if we formally
define a Wigner function for d = 2 following the approach
there [56–58], that is, if we define

Wρ (k, l ) = 1

d
tr(ρAk,l ), k, l ∈ Z2,

where Ak,l = Dk,l A0,0D†
k,l , and A0,0 = 1

d

∑
k,l Dk,l is the dis-

crete parity operator determined by

A0,0|k〉 = | − k〉, k ∈ Z2,

then

A0,0|0〉 = |0〉, A0,0|1〉 = | − 1〉 = |1〉,
it follows that A0,0 = 1 (the identity operator), which implies
that

Ak,l = Dk,l A0,0D†
k,l = 1.

Therefore, for any qubit state ρ, the Wigner function turns
out to be Wρ (k, l ) = 1/2 for any k, l, which is useless since
nothing about the quantum state can be inferred from it.

V. CONCLUSION

In this paper, we have explored the role magic resource
plays in detecting the quantum phase transition in the XY T
model. We have used the magic quantifier defined via the
characteristic functions, which are well defined and can be
rather easily calculated for all dimensional quantum systems
[59]. After detailed calculations of magic quantifier for both
single-spin and two-spin system, we have shown that the
dynamics of magic quantifier display abrupt changes around
the critical points in the XY T model, thus it may be regarded
as an indicator for the critical phenomena in the studied
spin systems. Actually for some other spin models, like the
XXZ spin model, we have verified that the magic quantifier
via the characteristic functions can still reveal the critical
points.

Compared with other quantum informational quantities
such as the entanglement and quantum discord, an apparent
advantage of our approach is that the magic quantifier we
employed can be straightforwardly calculated.

One may argue that for detecting critical points, any rea-
sonable and continuous function of the state will do the work
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since across the critical points, the state undergoes a rad-
ical change, which will certainly induce an abrupt change
of the quantity. Why use magic resource (or entanglement,
discord, coherence) to detect the critical points? The issue
here is that we not only are interested in detecting critical
points but also are interested in the physical meaning of the
quantities. Furthermore, apart from indicating critical points,
it is also desirable to study the changing behavior of magic
or other quantum resources around the critical points for the
purpose of quantum information processing and many-body
physics.

Since magic resource is crucial for quantum computation,
our present results reveal certain intrinsic connections be-
tween quantum phase transition and quantum computing, and
indicate an alternative way for studying many-body systems
from the perspective of quantum resource and quantum com-
puting.

Inspired by the significant role played by magic resource
in fault-tolerant quantum computation, and supported by the
above observation that magic resource can be used to detect
quantum phase transition in certain systems, we hope that the
magic quantifier defined via characteristic functions may be
a valuable figure of merit in studying many other quantum
phenomena. It would be interesting to further elucidate the
role of magic resource in other contexts.
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