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Spin-orbit maximally discordant mixed states
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We introduce a proposal to prepare spin-obit maximally discordant mixed states by a linear optical circuit,
with quantum bits (qubits) encoded in the polarization and transverse mode degrees of freedom of photons.
In particular, we discuss how to prepare nonbalanced spin-orbit entangled states, applying this technique to
obtain maximally discordant mixed states. We present a simulation of the optical circuit by using the Jones
matrix formalism. We performed a study of entanglement, classical, and quantum correlations. The results show
excellent agreement with the underlying theory and open an alternative experimental approach for addressing
quantum correlations in optical setups.
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I. INTRODUCTION

Quantum correlations are essential for the realization of
quantum information tasks, with entanglement being their
main resource [1]. In addition to entanglement, other (clas-
sical and quantum) correlations may play an important role in
quantum protocols, such as quantum discord (QD) [2,3]. QD
characterizes quantumness through the inability of a quantum
state to be kept undisturbed by a nonselective measurement.
QD has provided tools in several distinct scenarios, e.g., quan-
tum spin models [4] critical quantum systems [5], quantum
metrology [6], environment-induced sudden transitions [7],
and multiqubit systems [8]. In photonic systems, QD has
been measured in two-photon states, exploring linear optical
setups [9].

In the context of QD, quantum-correlated states inherently
present classical correlations. The total correlation, as pro-
vided by the mutual information, is typically divided into a
quantum contribution and a classical counterpart. A natural
question is then how to maximize the quantum contribution, as
measured by QD, for a fixed amount of classical correlation.
This maximization leads to the so-called maximally discor-
dant mixed state (MDMS) [10]. For a pure state, it is well
known that a MDMS is also a maximally entangled state, i.e.,
a Bell state. However, for mixed states, an unbalanced Bell
state can be used to construct a MDMS. The generation of the
MDMS of two qubits in the absence of quantum entanglement
has been recently proposed by using two dissipative schemes,
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which are based on the interaction between four-level atoms
and strongly lossy optical cavities [11].

From an architecture point of view, optical systems are
reliable sources of entanglement [12], with qubits easily
encoded in the degrees of freedom (DoF) of light. As ex-
amples of the use of DoF of light in optical systems to
realize quantum information protocols, we can mention the
implementation of quantum gates [13], quantum computing
protocols [14], teleportation [15], and quantum cryptography
[16]. Moreover, an efficient and scalable protocol for quantum
computing by using linear optical elements and projective
measurements in single-photon qubits has been proposed by
Knill, Laflamme, and Milburn [17], yielding an intense field
of research [18–20]. On the other hand, the encoding of qubits
in polarization and first-order Hermite-Gaussian (HG) modes
has given rise to the so-called spin-orbit modes. In turn, the
classical-quantum analogy of an intense laser beam allowed
for the implementation of quantum protocols with linear opti-
cal circuits for spin-orbit modes associated with intense laser
beams that emulate single-photon experiments. A remarkable
example was the topological phase predicted in the evolu-
tion of a pair of entangled qubits, which has been realized
in this scenario [21]. Further results include experiments for
bipartite systems showing violation of quantum inequalities
by spin-orbit maximally nonseparable modes, such as Bell’s
inequality [22,23] and contextuality [24,25]. By adding path
DoF to polarization and transverse modes, a tripartite system
can be emulated and Mermin’s inequality can be shown to
be violated [26]. Such an approach has been successfully em-
ployed and has demonstrated the power of spin-orbit modes
in quantum information tasks, with applications in the ex-
perimental study of environment-induced entanglement [27],
quantum cryptography [28], and quantum gates [29–31].

Concerning QD, it appears in the scenario of spin-orbit
modes in the proposal of an optical circuit to prepare spin-
orbit X states, where QD has been derived for different classes
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of states [32]. However, the MDMS has not been explicitly
considered. In this work we present a proposal to prepare the
MDMS by using spin-orbit modes in linear optical circuits.
We then evaluate QD for the states resulting from the sim-
ulation of the circuit. The paper is organized as follows. In
Sec. II, we present the theoretical background. We present the
MDMS and the QD analysis. In Sec. III, we present in detail
the linear optical circuit proposed for the preparation of the
MDMS by using spin-orbit modes. Section IV is devoted to
presenting the results of numerical simulation of the optical
circuit by means of the Jones formalism. Finally, in Sec. V,
conclusions are discussed.

II. QD AND MDMS

Let us begin by reviewing the theoretical approach to com-
pute QD and the definition of the MDMS. Here, we used the
definition of entropic QD, following the steps developed in
Refs. [33,34]. In classical information theory, the uncertainty
about a random variable A, which can assume the values a
with the corresponding probability pa, is provided by the
Shannon’s entropy H (A) = −∑

a pa log2 pa. The joint un-
certainty about two random variables A and B is H (AB) =
−∑

a,b pa,b log2 pa,b, with pa,b being the joint probability
distribution. The total amount of correlation between A and
B is given by the difference in the uncertainty about A be-
fore and after the variable B is known, namely, J (A : B) =
H (A) − H (A|B), where H (A|B) = −∑

a,b pa,b log2 pa|b is the
conditional entropy, with pa|b being the probability for A = a
given that B = b. From Bayes rule, pa|b = pa,b/pb. Then,
we can rewrite J (A : B) in the equivalent form I (A : B) =
H (A) + H (B) − H (AB).

For the quantum case, we consider a bipartite system AB
described by a composite density operator ρ. Then, the total
amount of correlation between the two subsystems A and B
described by local density operators ρA and ρB, respectively,
is given by the quantum mutual information

Im(ρ) = S(ρA) + S(ρB) − S(ρ), (1)

where S(ρ) = −Tr[ρ log2 ρ] is the von Neumann entropy.
We can also generalize J (A : B) to the quantum realm by
considering a measurement over subsystem B, with measure-
ment operators denoted by {Bk}. The composite state ρ then
collapses to ρk with probability pk . The state after the mea-
surement ρk and the probability pk is given by

ρk = 1

pk
(I ⊗ Bk )ρ(I ⊗ Bk ), (2)

where

pk = Tr[ρ(I ⊗ Bk )], (3)

with

Bk = V �kV
† (4)

and

�k = |k〉〈k| (5)

denoting a projector in the computational basis, so k = 0 and
1, and V ∈ SU(2). Notice we are here restricting ourselves to

projective orthogonal measurements. The measurement-based
mutual information J (ρ|{Bk}) is then

J (ρ|{Bk}) = S(ρA) − S(ρ|Bk ), (6)

with the measurement-based conditional entropy read-
ing S(ρ|Bk ) = ∑

k pkS(ρk ). By optimizing over the least-
disturbing measurement basis, we define the classical corre-
lation C(ρ) as [2,35]

C(ρ) = max
{Bk}

J (ρ|{Bk})

= S(ρA) − min
{Bk}

∑

k

pkS(ρk ). (7)

Oppositely to the classical case, the quantities Im(ρ) and C(ρ)
are generally distinct in the quantum scenario. The difference
between Im(ρ) and C(ρ) is the QD

Q(ρ) = Im(ρ) − C(ρ). (8)

In order to explicitly compute Q(ρ), we can parametrize the
unitary V , from Eq. (4), as

V = |�〉〈�|, (9)

where |�〉 = cos ( θ
2 )|0〉 + sin ( θ

2 )eiφ|1〉. QD can then be ex-
plicitly obtained by performing an optimization over the
angles θ and φ [34].

In order to build a MDMS, we have to maximize the
amount of QD when compared with its classical correlation. A
suitable strategy in this direction is to sacrifice some amount
of entanglement to optimize QD. As show in Ref. [10], this
can be achieved by the family of states

ρMDMS = ε|�+(p)〉〈�+(p)| + (1 − ε)[m|01〉〈01|
+ (1 − m)|10〉〈10|], (10)

where

|�+(p)〉 = √
p|00〉 +

√
1 − p|11〉 (11)

is a partial (unbalanced) Bell state. For p = 1
2 , we recover a

maximally entangled Bell state. If we set the value m = 1,
Eq. (10) is reduced to a (p, ε) family of rank-2 states:

ρ (R2) = ε|�+(p)〉〈�+(p)| + (1 − ε)|01〉〈01|. (12)

On the other hand, for p = 1
2 , Eq. (10) yields a (m, ε) family

of rank-3 states:

ρ (R3) = ε|�+〉〈�+| + (1 − ε)[m|01〉〈01|
+ (1 − m)|10〉〈10|]. (13)

Equation (13) provides rank-3 states for different choices
of parameters. A first rank-3 subset is m ∈ [0, 1] and ε ∈
[0, 1

3 ]. A second rank-3 subset is given by m = 1/2 and ε ∈
[1/3, 0.385]. Equation (13) can also provide rank-2 states by
taking ε in the interval ε ∈ [0.408, 1].

III. SPIN-ORBIT MAXIMALLY DISCORDANT
MIXED STATES

A spin-orbit mode is described by polarization and trans-
verse mode DoF. The polarization of light is defined as
the oscillation direction of the electric magnetic field. The
circular polarization (σ±) is associated with the intrinsic
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angular momentum of the photon (spin). The transverse
modes are solutions of Helmholtz’s paraxial equation and
are responsible, for example, for the transverse shape of a
laser beam. For a Cartesian coordinate system, the solutions
are the well-known Hermite-Gauss [HGm,n(x, y)] modes.
For a cylindrical coordinate system, the solutions are the
Laguerre-Gauss [LGl

p(ρ, φ)] modes, which can present or-
bital angular momentum [36]. Therefore, a transverse DoF
of light is associated to orbital angular momentum. In
the first-order subspace, LG±1

0 can be written as a lin-
ear combination of HG01 and HG10 [37]. Given the linear
polarization basis {êH , êV } and the first-order HG modes
{HG01(x, y), HG10(x, y)}, the most general first-order spin-
orbit mode can be written as [21]

�ESO(�r) = c1HG10(x, y)êH + c2HG10(x, y)êV

+ c3HG01(x, y)êH + c4HG01(x, y)êV , (14)

where ci are the complex numbers, with i = 1, 2, 3, and 4.
Such a basis can be used for the quantization of the electro-
magnetic field. Denoting êH ≡ H , êV ≡ V , HG01(�r) ≡ h, and
HG10(�r) ≡ v, the general quantum state of a photon can be
written as

|ψSO〉 = aHh|Hh〉 + aHv|Hv〉 + aV h|V h〉 + aV v|V v〉, (15)

where ai j is the probability amplitude of the normalized basis
element |i j〉, with i = H and V and j = h and v. Equation (15)
represents a general two-qubit state in DoF of polarization
and transverse modes, with the computational basis defined
as {|0〉 = |H〉, |1〉 = |V 〉} and {|0〉 = |h〉, |1〉 = |v〉}, respec-
tively. For aHh = aV v = 1/

√
2 and aHv = aV h = 0, we have

|�+
SO〉 = 1√

2
(|Hh〉 + |V v〉), (16)

which is a Bell state with maximal entanglement between
internal DoF of a single photon (spin-orbit Bell state) [21].
For aHv = aV h = 0 and different arbitrary real aHh and aV v ,
we have a spin-orbit partially entangled state, as described in
Eq. (11). To produce |�+(p)〉, which is an essential ingredient
for preparation of ρMDMS, we need to coherently superpose the
single-photon states |Hh〉 and |V v〉 with different weights. It is
important to stress that spin-orbit product states |Hv〉 = |01〉
and |V h〉 = |10〉 [the needed states for the second part of the
MDMS on the right-hand side of Eq. (10)] are not difficult to
prepare. Then, if we have these three ingredients, we can per-
form an incoherent superposition controlling the population of
each one in order to produce ρMDMS. We can obtain the inco-
herent superposition by using three independent single-photon
sources to produce each one of the three required states.

We propose in Fig. 1(a) a linear optical circuit to produce
ρMDMS. Let us start with a partially entangled state. A first
single-photon source (SPS1) prepares a photon horizontally
polarized (|H〉) with probability pI [38]. A spatial light mod-
ulator (SLM) is used to prepare an HG transverse mode (|h〉).
The photon state is then |Hh〉. A half-wave plate with an
angle θ with respect the horizontal (HWP1@θ ) produces the
superposition

|Hh〉 −→ cos(2θ )|Hh〉 + sin(2θ )|V h〉. (17)

FIG. 1. Proposed optical circuit. SPS stands for single-photon
source, SLM for spatial light modulator, HWP@θ for half-wave
plates with fast axis performing an angle θ with the horizontal, PBS
for polarizer beam splitters, DP@45 for Dove prism rotated by 45◦,
PZT for piezoelectric transducer, NF for neutral filter, M2 and M3
for holographic masks for preparation of the HG0,1 and HG1,0 modes,
and M for mirrors.

This superposition enters in a Mach-Zehnder (MZ)-like inter-
ferometer mounted with two polarizer beam splitters (PBS)
and two mirrors. The arm of the reflected incident beam in
PBS1 (vertical polarization) has a Dove prism rotated by 45◦
with respect to the horizontal direction (DP@45◦) in order to
transform |h〉 → |v〉. The mirror of this arm is mounted in
a piezoeletric ceramic transdutor (PZT) to control the phase
difference with respect to the other arm of the interferometer.
Both arms are recombined in PBS2 and we have the state

|�(θ )〉 = cos(2θ )|Hh〉 + eiφ sin(2θ )|V v〉, (18)

where φ is the difference of phase in the MZ interferometer.
By setting φ = 2nπ , n as an integer, and

√
p = cos(2θ ), we

recover the partially entangled state of Eq. (11). Note that if
the SLM prepares the transverse photon state |v〉, we have a
possibility to build an odd partially entangled state (|�±〉 =
cos(2θ )|Hv〉 ± sin(2θ )|V h〉). The signal ± is set by φ [2nπ

for + and (2n + 1)π for −].
The output of the interferometer passes through a neutral

filter (NF1) with amplitude transmission t1 = √
ε and will

control the population of the state |�+(θ )〉 in the spin-orbit
DoF for ρMDMS. After NF1, the photon arrives at a balanced
beam splitter (BS) responsible for the incoherent mixture
(BSMIX) that will transmit or reflect the photon with probabil-
ity 1/2. The transmitted output of the BSMIX is blocked (BB)
and only the reflected output is used. In the output of BSMIX

we have ε|�+(θ )〉〈�+(θ )| with probability pI/2.
To obtain the part of the product state in ρMDMS, we need

to use a second independent single-photon source (SPS2) that
produces a horizontally polarized photon state (|H〉) with
probability pII. This will be able to yield the product state
|Hv〉 = |01〉. We also need a third independent single-photon
source (SPS3) that produces a photon vertically polarized
(|V 〉) with probability pIII. The holographic masks M2 and
M3 will produce the transverse mode photon states |v〉 and
|h〉, respectively. Then SPS2 (SPS3) will give rise to the state
|Hv〉 = |01〉 (|V h〉 = |10〉). The photon prepared by SPS2
passes through NF2, which has an amplitude transmission
t2 = √

m, and will be transmitted by PBS3 with probabil-
ity 1. On the other hand, the photon prepared by SPS3
passes through NF3, which has an amplitude transmission
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t3 = √
1 − m, and will be reflected in PBS3 with proba-

bility 1. Then, both photons pass through NF4, which is
adjusted with the amplitude transmission t4 = √

1 − ε. After
NF4 these photons are sent to BBMIX and are transmitted with
probability 1/2 each one. Then, from the contribution of the
three SPS we have

ρMDMS
SO = ε|�+(θ )〉〈�+(θ )| + (1 − ε)[m|Hv〉〈Hv|

+ (1 − m)|V h〉〈V h|, (19)

with probability pI pII pIII/8.
In order to prepare a rank-2 state with p = 1/2, we need

to set θ = 22.5◦ and m = 1, leading to t2 = 1 and t3 = 0,
yielding

ρ
(R2)
SO = ε|�+

SO〉〈�+
SO| + (1 − ε)|Hv〉〈Hv|, (20)

where |�+
SO〉 is given by Eq. (16).

In order to prepare a rank-3 state with p = 1/2, we need to
set θ = 22.5◦ to obtain

ρR3
SO = ε|�+

SO〉〈�+
SO| + (1 − ε)[m|Hv〉〈Hv|

+ (1 − m)|V h〉〈V h|]. (21)

In the next section we show the results for the simulation of
these circuits and the QD calculations for each class of states.

IV. SIMULATIONS OF OPTICAL CIRCUITS

The MDMS preparation was proposed to be implemented
through a linear optical circuit. In this case, the action of
the optical elements composing the circuit over the spin-orbit
photon state can be modeled by Jones matrix formalism [39].
For polarization states, the Jones matrices for the optical el-
ements, such as HWP, PBS, and BS, are well known. For
transverse modes, this is a nontrivial task. However, as we are
limited to the first-order transverse modes (HG01 and HG10

modes), the analogy of this basis with the linear polarization
basis {êH , êV } is straightforward. Indeed, we can construct a
Poincaré-like sphere for first-order transverse modes, where a
first-order Laguerre-Gaussian beam plays the role of circular
polarization [37]. Recently this powerful geometrical repre-
sentation was extended for higher-order modes [40]. Then,
we can represent a transverse mode state as a Jones vector
and write unitary matrices for optical elements acting in the
transverse mode. For example, the Jones matrix for a Dove
prism acting on first-order HG modes is analogous to a HWP
Jones matrix acting in the {êH , êV } basis [32].

By using the Jones formalism, we construct a simulation of
the optical circuit of Fig. 1 with MATLAB. Each Jones matrix
for an optical element acts on the photon spin-orbit state ac-
cordingly. The resulting spin-orbit state is characterized by a
two-qubit tomography for spin-orbit DoF, which is described
in Ref. [32]. Once we obtain the density matrix, we can
calculate the classical correlation (C), pairwise entanglement
as measured by concurrence (C′) [41], and QD (Q) as shown
in Sec. II.

Let us now present the simulation results. Figure 2 exhibits
the transverse density probability of photon detection that is
related with the transverse profile the photon was prepared
with. For rank-2 (R2) states, we have a pure state for ε = 0
(product state) and ε = 1 (spin-orbit entangled state). For

0.0 1/3 1.03/4

R2

R3
(m=1/4)

FIG. 2. Density probability of detection of a photon in the output
transverse plane of the preparation circuit for different weights ε. The
calculation was performed for rank-2 (R2) and rank-3 (R3) states. We
used m = 1/4 for the rank-3 state.

intermediate ε values we have a mixed state with the mixing
of the density probabilities. For rank-3 states (R3), we set
m = 1/4. In this case, for ε = 0 we have a mixed state of
the two product states |Hv〉 and |V h〉. Then, we have the
prevalence of the |V h〉 mode, given the chosen m. For ε = 1,
we also have a spin-orbit entangled state.

The results for the correlations evaluated for R2 states
are presented in Fig. 3 by setting p = 0.5. The circles dots
are the results for the classical correlation C calculated as a
function of ε. The dashed line is the theoretical prediction for
the classical correlation C calculated as a function of ε. The
squares are the results for the concurrence C′ as a function
of ε and the dotted line is the prediction of the concurrence
by quantum theory. Finally, triangles dots are the results of
quantum discord (Q) as a function of ε and the solid line is the

FIG. 3. Correlations for rank-2 states (p = 0.5) as a function
of the weight ε. Dots are the results for the calculation from the
state simulated by the preparation optical circuit using the Jones
formalism. The lines are theoretical predictions of quantum theory.
Classical correlation C: Circles dots and dashed line. Concurrence
C′: Squares dots and dotted line. Quantum discord Q: Triangles dots
and solid line.
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FIG. 4. Correlations for rank-3 states (p = m = 0.5) as function
of the weight ε. Dots are the results for the calculation from the
state simulated by the preparation optical circuit using the Jones
formalism. The lines are theoretical predictions of quantum theory.
Classical correlation C: Circles dots and dashed line. Concurrence
C′: Squares dots and dotted line. Quantum discord Q: Triangles dots
and solid line.

discord predicted by quantum theory. The error bars were ob-
tained by including typical realistic sources of noise of linear
optical circuits through optical components such as half-wave
plate angles (±1◦) and transmission and reflection in beam
splitters of the tomographic circuit (R = 48%, T = 49%).
For this, we performed simulation varying the parameters in
this error range and performed a statistical analysis of the
results for different circuit runs, each with different sensitive
parameters. As it can be seen, the error predicted for typical
noise sources in optical devices is very small. In addition, it is
worth stressing the very good agreement between the results
calculated from the simulated state by the preparation circuit
and the predictions of quantum theory for MDMS.

For ε = 0 we have a product state and all correlations are
vanishing, as expected. On the other hand, for ε = 1, we have
a maximally entangled Bell state and all correlations are equal
to 1. Notice that all the correlations increase with ε being the
concurrence dominant over QD and classical correlation.

The results for the R3 states are presented in Fig. 4 for
p = m = 0.5. For this case, we have a mixing of a maxi-
mally entangled spin-orbit state and a balanced |Hv〉 and |V h〉
product mixed state. As we can see, for ε from 0 to 0.5, the
concurrence is vanishing but not QD. It is worth mentioning
that, for 1/3 � ε � 0.385, we have found the minimal value
for classical correlation and the local maximum for QD, which
is the characteristic property of the MDMS. Again, the pre-
dicted errors for realistic optical devices are small and the
agreement between the results for discord calculated from the
simulated state by the preparation circuit and the predictions
of quantum theory for MDMS is remarkable.

FIG. 5. Quantum discord versus classical correlation for a sam-
ple of rank-2 (gray dots) and rank-3 (black circles) states.

A global analysis can be performed by looking for QD as
a function of the classical correlation, as shown in Fig. 5. The
results were obtained by varying p in steps of 0.01. Gray dots
are the results for R2 states [Eq. (19) for m = 0] and the black
circles are the results for the R3 states [Eq. (19) for m = 0].
For a low value of the classical correlation, the QD for R3
states (θ = 22.5◦ → p = 1/2, upper bound of black circles)
is higher than the QD for R2 states (θ = 22.5◦ → p = 1/2,
upper bound of gray dots). On the other hand, when the
classical correlation increases, R2 states present QD higher
than that of R3 states. This result shows excellent agreement
with the theoretical predictions presented in Ref. [10].

V. CONCLUSIONS

We have proposed an optical circuit to produce classes of
rank-2 and rank-3 spin-orbit mixed states as well as others
classes of mixed states, including MDMS. This optical circuit
provides a useful tool to probe states with optimized quan-
tum correlations for a fixed amount of classical correlation.
Remarkably, for the case of rank-3 states, the circuit allows
one to explore the optimization of quantum correlations (as
measured by QD) in the absence of pairwise entanglement.
The circuit has been simulated in a realistic experimental sce-
nario, with the theoretical and simulated correlations showing
excellent agreement. As a further development, we expect to
provide an experimental realization of the circuit. This will
allow for the explicit investigation (and control in certain
cases) of decoherence as well as its impact on each kind of
correlation. This is left for a future work.
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