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Nonadiabatic holonomic quantum computation is a method used to implement high-speed quantum gates with
non-Abelian geometric phases associated with paths in state space. Due to their noise tolerance, these phases can
be used to construct error resilient quantum gates. We extend the holonomic dark path qubit scheme in [M.-Z.
Ai et al., Fundam. Res. 2, 661 (2022)] to qudits. Specifically, we demonstrate one- and two-qudit universality by
using the dark path technique. Explicit qutrit (d = 3) gates are demonstrated and the scaling of the number of
loops with the dimension d is addressed. This scaling is linear and we show how any diagonal qudit gate can be

implemented efficiently in any dimension.
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I. INTRODUCTION

The most common form of quantum computation is the
circuit model, which is analogous to the circuits used for
classical computers. Gates are replaced by unitary trans-
formations (quantum gates) and bits by qubits. To achieve
the computational advantage it is important to construct
robust, noise-resilient quantum gates. A candidate for this
is holonomic quantum computation [1,2], which is based
on non-Abelian (matrix-valued) geometric phases in adia-
batic [3] or nonadiabatic [4] evolution. Such holonomic gates
are only dependent on the geometry of the system’s state
space and thus are resilient to local errors in the quantum
evolution. Recent theoretical and experimental advances in
holonomic quantum computation can be found in Refs. [5—13]
and [14-21], respectively.

The idea that elements of computation should be limited to
qubits is sort of an arbitrary choice that most likely rose out
of convenience due to binary logic. So why binary logic? It is
simply the easiest nontrivial example: in binary logic, things
can be either O or 1, True or False, on or off, etc. Due to its
simplicity, it is no wonder that this is how the first computer
was designed. But are we limited to bits? As early as 1840, a
mechanical trinary (three-valued logic) calculation device was
built by Fowler [22], and in 1958 the first electronic trinary
computer was developed by the Soviet Union [23]. Although
the trinary computer had many advantages over the binary
one, it never saw the same widespread success. However,
there is nothing in theory that forbids a higher-dimensional
computational basis, even more so when it comes to quantum
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computers, where the implementation of the elements of
computation already surpasses the simplicity of on and off.
Indeed, qudits have been implemented experimentally and
shown definite advantages [24,25] as well as paving the way
for achieving large-scale quantum computation [26]. Thus,
one may consider d dimensional qudits as primitive units
of quantum information, with promising results that show
potential, some of them reviewed in Ref. [27].

Here, we develop a qudit generalization of the idea of dark
paths proposed in Ref. [21] for implementing nonadiabatic
holonomic qubit gates. By this, we combine the advantages of
improved robustness associated with the dark path approach
with the enlarged encoding space and improved gate effi-
ciency of higher-dimensional quantum information units [27].
In the next two sections, we extend the dark path idea to
the qutrit (d = 3). We examine the robustness of the d = 3
gates to systematic errors in the Rabi frequencies of the laser
induced transitions. The case of general d is examined in
Secs. IV and V. The paper ends with the conclusions.

II. DARK PATH SETTING

The key point of the qutrit dark path setting is to look
for a level structure with three ground states |k), k = 1, 2, 3,
encompassing a single fixed (time-independent) dark eigen-
state, as well as an extra fourth auxiliary lower level |a). As
the number of dark eigenstates in the computational qutrit
subspace Span{|1), |2), |3)} equals the difference between the
number of excited states and the number of ground states [28],
this amounts to coupling the ground state levels to two excited
states |e1), |e2). The desired coupling structure is described by
the Hamiltonian (see left panel of Fig. 1)

3 2
Qq()
HY = E E wy 11k){er| + az |a){ez] +H.c.,
=1 I=1

(D

with w3 | = 0. Laser-induced dipole transitions between hy-
perfine levels of trapped ions provide an ideal platform
for realizing such coupling structures [29]. The specific
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FIG. 1. Level setting for realizing a dark path holonomic qutrit
gate (left panel). The specific coupling structure may be realized
by inducing transitions between hyperfine levels in trapped ions. It
allows for a Morris-Shore transformation [30] applied to the qutrit
levels |1), |2), |3), resulting in a single dark energy eigenstate |D)
and two bright states |b;), |b,), while leaving the auxiliary state |a)
untouched (right panel).

Hamiltonian H® allows for a Morris-Shore transforma-
tion [30] applied to the qutrit levels [1), |2), |3) only, yielding
(see right panel of Fig. 1)

2
Q , Q
HY = :ge—"ﬁqbk)(m + 2(t)|a)(egl + He., (2)
k=1

with €2, being real-valued time-dependent Rabi frequencies
and ¢, time-independent phases, by employing the dark-
bright basis

|D) = cosO|1) + ¢'X sin 6 cos ¢|2) + € sin 6 sin ¢|3),
1

V1 =sin?6sin’ ¢
1

V1 =sin?6sin’ ¢

+ ¢ sin® 6 sin ¢ cos @|2) + € (sin” @ sin® ¢ — 1)|3)],

3)

where |D) is a dark energy eigenstate satisfying H®)|D) = 0.
Note that |D), |b;), |bs) span the computational subspace, i.e.,
Span{|D), |by), |b2)} = Span{|1), 2), |3)}. The original w
can be expressed in the parameters 0, ¢, x, £ by expanding
the bright states on the right-hand side of Eq. (2) in terms of
the original qutrit levels |k) and by comparing with Eq. (1).

A pair of dark path states |D;(t)), |[D,(t)) can now be
defined. These states should satisfy two conditions: (i) they
should be orthogonal to |D), and (ii) their average energy
(Dr(t)|Hy|Dy(2)), k =1, 2, should vanish along their evolu-
tion paths. Explicitly, one may check that

b)) = (—e % sin 6 cos @|1) + cos 6]2)),

|by) = [sin 8 cos @ sin ¢|1)

ID (1)) = cosu(t)e™ ™ |by) + isinu(t)|e,),
ID,(1)) = cosu(t)cos v(t)e *|by) — isinu(r)|es)
— cosu(t)sinv(t)|a) 4

satisfy the dark path conditions. In fact, these states
even satisfy the stronger condition [2] (D;(¢)|H;|Dy(t)) =
0, which opens up for holonomic gates provided the

n=4.0
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FIG. 2. Rabi frequencies in the qutrit scheme for zero and
nonzero value of 1. Note that only €2,(¢) and €2,(¢) change shape
with 7. This extends to the higher-dimensional case in that only the

pulse with the largest index and €2,(¢) depend on 7 for arbitrary d
[see Eq. (20) below].

parameters u(¢), v(t) are chosen such that the qutrit sub-
space Span{|D), |D(t)), |D(t))} evolves in a cyclic manner,
Le.,, that Span{|D),|Di(1)), |D2(7))} = Span{|1), 2), |3)}
for some run time 7. This is achieved provided u(r) = u(0) =
v(t) = v(0) = 0 so that each dark path starts in the respective
bright state and travels along a curve and returns to the same
bright state att = .

One may now use the Schrédinger equation to reverse
engineer the time-dependent parameters €2;(¢). A calculation
yields

Qi(r) = —2u(1),

Q,(t) = 2[v(t) cotu(t) sinv(t) 4 u(t) cos v(t)],

Q. () = 2[v(t) cotu(t)cosv(t) — u(t) sin v(t)]. 5)
We follow Ref. [21] and choose

T, mt
u(t) = Esm - v(t) = n[l — cos u(t)], (6)

which ensures cyclic evolution. The parameter n represents
the coupling strength to the auxiliary state in the sense that
|D,(t)) becomes independent of |a) when n = 0. The shape of
the Rabi frequencies with this choice of u and v are displayed
in Fig. 2. This completes the dark path construction in the
qutrit case.

III. HOLONOMIC DARK PATH ONE-QUTRIT GATES
A. Gate construction

The multipulse single-loop setting [31] is used for dark
path qutrit gates, thereby the loop is divided into two path seg-
ments by applying laser pulses. Explicitly, the pulses take the
subspace Span{|D), |b;), |b;)} into Span{|D), |e1), |e2)} and
back, by applying phase shifts y;, y» to the second segment
relative to the first one. Note that u(5) = 7, which implies
that the duration is 7 for both path segments. This results in
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the unitaries
U(%ﬁ) = |D)(DI — i(ler) (b1] + |b1){e1])
— i(le2) (b2 + [b2) (e2)),
U(f, %) = |D)(D| +ie” (|br)(er| + ler) (bi])

+ e (|b2){e2] + le2) (bal), (N

restricted to the part with nontrivial action on the computa-
tional subspace. By combining these unitaries, we obtain the
one-qutrit gate

v =u(r. E\u(to
3 72 27

= |DN(D| + €' |b1)(b1] + €7*|by) (bs]. ®)

The holonomy U;l) can be parameterized by
X, &,60, 9, y1, y2; however, these parameters are not enough
to construct all gates. For instance, X3 requires two loops.
The full gate is given by repeating Ugl) with a different set of
parameters,

U =0 (1, &,0, ¢, v, U (X, E.0, 0, 71, 12). (9)

In this way, the following gates can be implemented:

Ug or) < (0055 0x)
-

0 1
0 0],
1 0
2w 4w ! (Zl 0
Z3:U 0000,?,? =10 e 0 ,
0 0 &7
10 0
v =2 2
T3=U<0,O,O,O,§,Tn)= 0 &% 0 |
0 0 €%

H; = U(6.41 x 107*,6.56 x 107*,0.48, 0.79, 1.58, 1.56)
x U(9.81 x 1073, 0.00, 1.187, 2.15, 0.00, 1.57)

ZEE
~— |1 &% T (10)
\/§ 1 i 61737

The set includes qutrit equivalents of the Hadamard and T
gate, which constitutes a universal set. Thus, no more than
two loops for each gate are needed to achieve single-qutrit
universality. Figures 3 and 4 show the population of the
computational, excited, and auxiliary states during imple-
mentation of Hz and Xj, respectively, plotted against the
dimensionless time ¢ /7. To this end, a linear combination of
|Di(t)), |D2(t)), and |D) is matched at ¢+ = 0 to a given initial
state, and the populations are thereafter identified by monitor-
ing the evolving state at f > 0. We have chosen n = 4.0 in the
simulations to allow for direct comparison with the qubit case
analyzed in Ref. [21].

All diagonal gates can be parameterized by a single loop
by fixing 6§ = ¢ = x = & = 0. The dark-bright basis states
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FIG. 3. The effect of the H; gate on the initial states %(H) +

[2) 4+ 13)) (upper panel) and |1) (lower panel) plotted as a function
of dimensionless time 7/t. The coupling to the auxiliary state is
n = 4.0. Note that since the plots show the populations of the com-
putational, excited, and auxiliary states, phases cannot be seen.

reduce to |D) = |1), |b1) = |2), and |b,) = —|3). By Eq. (8),
one can thus see that all diagonal unitaries can be specified by
y1 and y»:

1 0 0
U"(0,0,0,0,y,y)=|0 e 0 |. D
0 0 ¢n

B. Robustness test
We quantify gate robustness by means of fidelity

Fy, ) = (Y1), (12)

with ¢ and v the ideal and nonideal output states of the gate,
given the same input. The fidelity is averaged by sampling
initial states and letting them evolve with time by numerically
solving the Schrodinger equation using the SciPy implemen-
tation of backwards differentiation [32].
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FIG. 4. The effect of the X; gate on the initial states %(lZ) +
|3)) (upper panel) and \/%(5| 1) 4+ 3|2) + 2|3)) (lower panel) plotted
as a function of dimensionless time /7. The coupling to the auxiliary
state is 7 = 4.0. Note that since the plots show the populations of the
computational, excited, and auxiliary states, phases cannot be seen.

We introduce systematic errors by shifting the Rabi fre-
quencies £, Q,(1 +4) for p=1,2,a in Eq. (2) and
compare to the exact solution obtained by applying the ideal
gate to the initial state. The calculated fidelities are shown
in Fig. 5. In the plots, it can be seen that coupling to the
auxiliary state (again with n = 4.0) improves the robustness to
Rabi frequency errors compared to the standard nonadiabatic
holonomic scheme (n = 0). This result is similar to that found
in Ref. [21] for the qubit case, and it is reasonable to expect
that it applies for higher d as well. As qudits offer enlarged
encoding space and improved gate efficiency [27], this result
demonstrates potential for dark path holonomic qudit compu-
tation.

IV. QUDIT GENERALIZATION

To generalize the dark path scheme to arbitrary dimension
d, we extend the above qutrit scheme by using d ground states
|k), d — 1 excited states |e;), and an auxiliary state |a). The
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FIG. 5. Robustness test, average fidelity of the Tj, X3, H3, and
Z; gates. The averages are calculated by sampling over 500 ran-
domized initial states with a perturbation 2 — (1 4 §)S2 of the Rabi
frequency.

dark path Hamiltonian

d
H@ — Z

k=1 I=1

d—1

f)
a)k1|k (e;| + la)(eq_1| +H.c. (13)

is a direct extension of Eq. (1). As before, the relation between
the number of excited states and qudit ground states is chosen
so as to define a single fixed dark eigenstate |D). The coupling
structure has the following pattern: the /th excited state |e;)
is connected to ground states |1), |2), ..., |l + 1), except the
one with the largest index [ = d — 1, which is connected to all
ground states and the auxiliary state |a). Thus, w41, = 0.
Just as in the qutrit case discussed above, dipole transitions
between hyperfine levels in trapped ions is the ideal platform
for implementing H@.

Let us write the dark state fully residing in the computa-
tional subspace as

1D) = cill) + 212) + ¢313) - - - 4 cqld). (14)
This defines d — 1 bright states |b;) of the form

b)) = —————(—c3|1) +cf|2)),
b1) = o (e + 12D

|b2) = Na(ci|1) + 212) + A3(3)),

|ba—1) = Ng—i(c1|1) +

with N,, ..., Ny—; being normalization factors. By construc-
tion, |b;) is orthogonal to the dark state and all other bright
states. For k > 2, |b;) contains k 4+ 1 basis vectors, where
the coefficient Ay is chosen such that |b;) is orthogonal to
|D). This in turn makes any |b;~) orthogonal to |by) as they
have the same states and coefficients as |D) for all the states
involved in the inner product, which implies that (b~ |by)
(D|by). Therefore, by choosing the A’s such that these inner
products are zero, the construction ensures an orthonormal

~+cg1ld — 1) + Agld)).  (15)
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FIG. 6. Qudit setting in the Morris-Shore basis [30] applied to
the qudit levels |1),...,|d). As in the qutrit case, the auxiliary
state |a) is untouched and a single dark state |D) emerges in the
computational qudit subspace Span{|1), ..., |d)}.

dark-bright basis spanning the qudit subspace. Explicitly, for
k > 2, one finds

Apy1 = (16)

k+11]

p —-1/2
(Z lerf? + |Ak+1|2>

and

N

X X 21—1/2
2 1 2
. 17
l;w +|Ck+1|2<121|cz|> (17)

In the dark-bright basis, the Hamiltonian can be written as

Gl o) Q
HD = k§=j KO 0t ) ey | + 2(”|a><ed_1|+H-c.,
(18)

with € being real-valued time-dependent Rabi frequen-
cies and ¢, time-independent phases. This form of H®
is depicted in Fig. 6 and can be used to define d —
1 independent dark paths |Dy(¢)); as above, these states
must satisfy (Dy(#)|Hy|Dy(¢)) =0,k=1,...,d — 1, and
(D (£)|D;(2)) = 6. The dark paths are traced out by the states

|Dr()) = cos u(t)e ™ |by) + isinu(t)|ey),
k=1,...,d -2,
[Dy_1 (1)) = cosu(t)cos v(t)e " |by_y) — isinu(t)|es_;)
—cosu(t)sinvla), (19)
each of which starts and ends in one of the bright states pro-

vided u(t) = u(0) = v(r) = v(0) = 0. By using these states,
one can reverse engineer the Hamiltonian to determine €2; and

Q,, yielding
Qi) = Q@)= =Qu201) = —2a,
Qu_1(t) =2 cotusinv + ucosv),

Q,() =2(vcotucosv — usinv). (20)

Holonomic one-qudit gates can be implemented by using
the same u(¢), v(z) as in the qutrit setting and by using the
single-loop multipulse technique [31]. This results in the gate

d—1
U = 1DNDI+ ) e |b) (bl 1)
k=1

acting on the qudit subspace Span{|D), |b;), ..., |bs—1)}. The
unitary is parameterized by 3(d — 1) parameters for d > 2,
ie.,

v =0, S Vd-1),

(22)

5 0a-1, 01, ., Qa—1, Y15 - - -

where we have assumed the ¢;’s are parameterized by the
Euclidean components of the radius of the unit (d — 1) sphere
with added phase factors:

c) = cosby, ¢, = e sinf cosby,
sin6;_, cosO,y_1,

sin Qd_Q sin Gd_l . (23)

Ci—1 = €% 2sinfy ...
Cqg = e'%-1gin 0r...

By applying the holonomy with different parameters in
sequence up to n times is enough to create any desirable gate.
To determine n, we use that the qudit state space is isomorphic
to the special unitary group SU(d). By using dim[SU(d)] =
d?> — 1, we deduce that n must satisfy 3(d — 1)n > d*> — 1,
which 1mphes n > %+l Thus, the number of loops needed
to create any unltary scales linearly since some gates can
be created with fewer loops. In particular, n = % when
d =3j4+2, j €N, which are optimal qudit dimensions in
the sense that they require the smallest number of loops per
dimension, and these qudits could therefore be regarded as
optimal carriers of information since the same number of
loops must be carried out while higher dimension has higher
information capacity.

Furthermore, any diagonal gate only requires one loop.
Explicitly, by setting 6, =--- =6y_1=¢1 = - =@q-1 =
0 the unitary reduces to the form

d
0,V vae) = DA+ Y e kK] (24)

k=2

v, ...
This corresponds to the choice ¢ = &;.

V. HOLONOMIC DARK PATH TWO-QUDIT GATES

To complete the set of universal gates, we demonstrate
a conditional dark path based holonomic gate that can en-
tangle pairs of qudits. The scheme is adapted to trapped
ions with their internal states encoding qudits interacting via
the vibrations in the harmonic trap. Similar schemes have
been developed for standard nonadiabatic holonomic quantum
computation [33,34].
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A conditional qudit gate has the generic form

@ _ (ler—a
up= (")

with V,; a unitary acting on the target qudit provided the con-
trol qudit is in the state |d). The (d> — d) x (d*> — d) 1dent1t2y
matrix /;,2_, acts on the remaining states of the qudit pair. U
can be realized by designing the effective Hamiltonian

(25)

d d-—1

HE = ld)ea- 1|®(ZZwk1|k Jerl + (”|a><ed1|)

k=1 I=1

+H.c. =|d){eq_1| @H® +H.c., (26)

which, upon use of the multipulse single-loop technique [31]

applied to the dark path, implies that

e HAN — (4 —ayd) @ 1+ |d)d] @ UL,
(27)

U =7

with 7~ time ordering and Ug) given by Eq. (21).

The effective Hamiltonian in Eq. (26) can be implemented
in a Sgrensen-Mglmer-type [35] setup, where the single-ion
transitions are driven by two-color lasers, all with the same
detuning A to the red and blue of the corresponding resonance
frequency. By denoting the single-ion Rabi frequencies as wy
for the control ion and as wy, ..., wy, w,, N = %(d2 +d)—
1, for the target ion, we obtain the Hamiltonian

HD = ing(be™ +b'e™) ® [wo(t)|d)(eq—1| ® 1
+1® (o1]1){e1] + wal2) (e + w3l 1) {ea] + - -
-+ onld)(eq—1] + wqla){eq—1])] cos At

+H.c. (28)

responsible for the qudit-qudit interaction. Here, b (b") is the
annihilation (creation) operator of the vibrational mode with
frequency v and 7y, is the Lamb-Dicke parameter satisfying
the Lamb-Dicke criterion n; < 1. In the large detuning limit,
single-ion transitions are strongly suppressed and one may use
the technique developed in Ref. [36] to derive the effective
Hamiltonian

H = HG + HY (29)
with
d d—1
Q1)
d 1
H = —|d)(eq- 1|®<k2”21wk,|ez (Kl + =2 |ed_1><a|>
+H.c. (30)

up to Stark shift contributions that can be compensated for by
applying additional laser pulses. Here,

w11 = klwowi €', w12 = klwgwn|e'?”, ...,
Wa.d—1 = kloowy]e?, @, = 2k|wow,|e™ (31)
with
v i¢—g)
k—nLAz 2, = |w;le"? , j=0,1,...,N,a.

(32)

We note that % commutes with 49, which implies
Te—iJo Hidt' _ qp=i Jy M dt' = =i [y Hdr' (33)

The second factor of the right-hand side of Eq. (33) acts
trivially on the computational subspace Span{|kl), k, [ =
., d}, thus effectively reducing H. (d) to H; (d)

As a final remark, up to the laser pulses needed to compen-
sate for Stark shlfts there is only one additional laser needed
to implement u? p ) as compared to U(') Thus, the resources
to implement the one- and two- qudlt holonomic gates are
roughly the same.

VI. CONCLUSIONS

We have shown how to explicitly create a quantum me-
chanical system, which could be used to emulate a qutrit and
corresponding universal set of one-qutrit holonomic gates.
This is done by expanding the dark path qubit scheme [21]
into three dimensions. We have shown how it generalizes in
the one- and two-qudit case and how the use of auxiliary states
can improve the robustness of the gates.

The qutrit gates have high fidelity and their robustness is
improved by the inclusion of the auxiliary state in a similar
way as for the qubit, which suggests that the dark path method
can be beneficial for higher-dimensional qudits to improve
robustness. In the general qudit case, we have shown how any
one-qudit diagonal unitary could be created by a single multi-
pulse loop in parameter space and that nondiagonal unitaries
scale linearly in the number of loops required for control of
each loop. The possibility that the scheme expands efficiently
into certain dimensions has been discussed.
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