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Scalable quantum control and non-Abelian anyon creation in the Kitaev honeycomb model
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The Kitaev honeycomb model is a system allowing for experimentally realizable quantum computation with
topological protection of quantum information. Practical implementation of quantum information processing
typically relies on adiabatic, i.e., slow dynamics. Here we show that the restriction to adiabatic dynamics can be
overcome with optimal control theory, enabled by an extension of the fermionization of the Kitaev honeycomb
model to the time-dependent case. Moreover, we present a quantum control method that is applicable to large
lattice models due to subexponential scaling.
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I. INTRODUCTION

Nonabelian anyons are the foundational theoretical tools
for topological quantum computation. These generalizations
of bosons and fermions, which can only exist in two-
dimensional systems [1,2], allow for a topological form of
gate implementation due to their nontrivial braiding statistics
[3–5]. Logical qubits are encoded nonlocally and anyons may
be braided around one another and subsequently fused to carry
out computations and measurements, respectively, as part of
the overall implementation of a quantum algorithm [4,6].

The Kitaev honeycomb model is a notable example of a
relatively simply defined system with nontrivial topological
order [4,5]. The simplicity of the model’s definition has led to
multiple proposals in recent years for experimental realization
[7,8]. In this system, anyons manifest as vortices introduced
into the model which may be fused to create fermionic exci-
tations corresponding to anyonic fusion rules known as Ising
anyons [9,10]. Anyonic braiding itself, and indeed any form
of particles being interchanged, is generally assumed to be an
adiabatic process [11] so that unwanted excitations may be
safely suppressed.

In practice, however, the restriction to adiabatic dynam-
ics typically conflicts with the requirement to realize all
operations on a timescale that is short compared to the
system’s coherence time [12]. Quantum control has proven
successful in speeding up adiabatic evolution in a wide range
of scenarios [13–17], suggesting its suitability for anyon
creation in topological systems. Common optimal control
techniques, however, are limited in their applicability to the
Kitaev honeycomb model. Due to the exponential scaling of
composite quantum systems, numerical simulations of the
time-dependent Kitaev honeycomb model are only possible
for very small system sizes. Fermionization of the Kitaev
honeycomb model allows for improved scaling and solving
larger systems, but thus far this has been restricted to systems
with time-independent Hamiltonians. The scope of this article
is to use quantum control in applying fermionization within

the context of a time-dependent version of the model. This
will demonstrate that optimal control does indeed provide
access to faster-than-adiabatic anyon creation.

Section II of this paper provides a brief overview of anyons
in the Kitaev honeycomb model to setup the operators and
terminology required for the control problem. Section III
describes quantum control and pulse optimization for anyon
creation and sets up the key result on fermionization, which is
proven in the Appendix. Section IV presents explicit numeri-
cal results of the optimal control problem defined. An overall
summary of the results and conclusions are presented in the
final section.

II. ANYONS IN THE KITAEV HONEYCOMB MODEL

Numerous methods have been demonstrated which allow
for solving the Kitaev honeycomb model, including that of
Feng et al. [18] using the Jordan-Wigner transformation as
well as that of Kells et al. [19,20], which employed a more
specific Jordan-Wigner-type mapping that described the sys-
tem in terms of hard-core bosons which are then fermionized.
Such methods have many advantages and have applications
to other lattice structures [21]. The method most suitable for
our work in extending to a time-dependent model is Kitaev’s
original Majorana fermionization procedure, and in this sec-
tion we review this method [1,22]. This is followed by a
demonstration of how vortex creation is implemented within
the model [4,23] and how this corresponds to the creation of
nonabelian anyons.

Diagonalizing the honeycomb

Although diagonalization of the Kitaev honeycomb model
is not required for solving the time-dependent control problem
we define later, we still outline its strategy, as the opera-
tors and terminology introduced will also play a role in the
time-dependent version. The model takes its name from its
hexagonal lattice geometry consisting of spin-1/2 particles
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FIG. 1. A honeycomb lattice showing the three kinds of inter-
actions between neighboring spins which are on the vertices of
hexagonal plaquettes. Red, blue, and green links indicate σ xσ x ,
σ yσ y, and σ zσ z interactions, respectively. The hexagonal plaquette
operators correspond to many conserved quantities in the system. A
generic plaquette whose spin sites are numbered 1 to 6 is highlighted
in gray.

located at the vertices of hexagonal plaquettes, as shown in
Fig. 1. It is defined by the Hamiltonian

H = −
∑

{ j,k}∈N2

Jsσ
s
j σ

s
k − K

∑
{ j,k,l}∈N3

σ x
j σ

y
k σ z

l , (1)

where N2 correspond to the honeycomb edges and N3 are
certain triplets described below. There are three types s =
x, y, z of the two-body nearest-neighbor Pauli interactions de-
termined by the position of the edge in the lattice, highlighted
in three colors in Fig. 1. The three-body terms act within each
hexagonal plaquette in the following way: three adjacent spins
contribute to a three-body interaction term with the middle
spin interacting through the Pauli operator corresponding to
the link pointing outwards from the plaquette, while each of
the two remaining spins interact through the Pauli operator
corresponding to their link to the middle spin. For example,
in the plaquette highlighted in Fig. 1, one of the three-body
interaction terms would be σ

y
1 σ x

2 σ z
3 , with five similar terms

following clockwise along the hexagonal plaquette. While
the two-body part of the Hamiltonian allows for the model
to be solved by a process of Majorana fermionization, the
three-body part preserves the solvability of the model while
also breaking time-reversal symmetry and it consequently
gives the system nontrivial topological order [1,4]. For ev-
ery hexagonal plaquette, a corresponding plaquette operator
Wp may be defined which acts on every spin with the Pauli
operator of the outward pointing interaction, so that, for ex-
ample, on the numbered gray plaquette in Fig. 1 we have
Wp = σ z

1σ x
2 σ

y
3 σ z

4σ x
5 σ

y
6 . Each plaquette operator squares to the

identity so that its eigenvalues adopt the values ±1 only. Since
the plaquette operators all commute with the Hamiltonian
and with one another, the system Hilbert space is naturally

partitioned into simultaneous eigenspaces of all plaquette op-
erators.

Negative plaquette eigenstates are known as vortices and
by a well-known theorem [24] it is known that the ground-
state eigenspace is in the no-vortex sector [4]. Different vortex
sectors relate to the presence of anyons localized at the respec-
tive vortex plaquettes.

While solving the system remains an intractable expo-
nential problem even after restriction to one vortex sector, a
mapping of the problem into a Majorana fermionic Hamilto-
nian provides a pathway towards diagonalization. For a more
detailed breakdown of diagonalization see [1,4]. The mapped
Majorana fermionic Hamiltonian is defined by replacing spin
qubit sites j with two fermionic sites and their corresponding
creation operators a†

j,1 and a†
j,2. For each site j, the real and

imaginary parts of the two fermionic modes constitute a total
of four Majorana modes per site. The Majorana creation and
annihilation operators are defined as

bx
j = a j,1 + a†

j,1, by
j = 1

i
(a j,1 − a†

j,1), (2)

bz
j = a j,2 + a†

j,2, c j = 1

i
(a j,2 − a†

j,2). (3)

Since with this mapping the Hilbert space is enlarged, a
projection is required to obtain vectors that correspond to
states in the original Hilbert space of the model. This requires
the stabilizer projector [1,4]

PD =
N∏
j

(
1 + Dj

2

)
, (4)

with Dj = bx
jb

y
jb

z
jc j .

The newly mapped Hamiltonian

Hf = iJ

2

∑
{ j,k}∈N2

û jkc jck + iK

2

∑
{ j,l},{k,l}∈N2

û jl ûkl c jck, (5)

is defined in terms of Majorana operators where we may also
define link operators û jk = ibs

jb
s
k in a system of L total links

and N spin qubits.
The eigenvalues ±1 of link operators allow for further

partitioning of each vortex sector into link sectors. To this end,
we can define a corresponding link sector projector

Pu =
L∏

{ j,k}∈N2

1 + u jkû jk

2
, (6)

which amounts to a tuple of chosen eigenvalues u jk ∈ {±1}.
Picking a certain link sector corresponds to fixing a gauge

for a specific vortex sector and leads to a quadratic fermionic
Hamiltonian PuHf Pu that is easily diagonalized [25]. The
trivial gauge would consist of setting all link eigenvalues to
u jk = 1, alongside the constraints imposed by their antisym-
metry û jk = −ûk j . This amounts to defining an orientation
which, for concrete purposes, we define as follows: a positive
orientation on an x link is directed from the bottom-left qubit
to the top-right one ( j to k), for a y link it is directed from the
bottom right to the top left, and for a z link it is directed from
top to bottom.

The Hamiltonian becomes diagonal in a certain quasiparti-
cle basis H = ∑

ω>0 ω jb
†
jb j − Eg and the ground state is the
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quasiparticle vacuum state. As previously stated, for physical
states of the original Hamiltonian, the states will need to be
projected; thus eigenstates of the spin Hamiltonian |�〉 are
related to eigenstates of the quadratic fermionic Hamiltonian
|ψ〉 by

|�〉 = PDPu|ψ〉. (7)

The energy gap in the system corresponding to the vortex
energy δ is simply the difference in ground-state energy Eg

between differing vortex sectors. In general, this is the energy
gap between pairs of vortices but in exceptional examples,
such as with the single plaquette lattice, this gap corresponds
to a single vortex.

Additionally the fermionic excitation gap is equivalent
to the smallest fermionic energy ω j within a chosen vortex
sector.

III. ANYON CREATION AS AN OPTIMAL
CONTROL PROBLEM

Let us first describe the usual adiabatic approach. Vor-
tex creation is implemented in terms of the time-dependent
Hamiltonian

H (t ) = H + t

T
H j,k

control, (8)

comprised of the original honeycomb Hamiltonian as a drift
combined with a control Hamiltonian

H j,k
control = 2Jjkσ

s
j σ

s
k + 2K

∑
j,k∈{a,b,c}

σ x
a σ

y
b σ z

c , (9)

where σ x
a σ

y
b σ z

c are those three-body terms such that two of
a, b, and c are j and k. There are four such three-body terms
for a chosen j, k pair due to the definition of the three-body
interactions described in the previous section. This amounts
to gradually reversing the sign of a specific s link, as well as
the sign of the nearby three-way interactions, using a linear
time dependence, with steepness and therefore adiabaticity
determined by the duration T of the adiabatic protocol. As we
will see in the numerical examples, T needs to be very large
to obtain a good fidelity.

We now want to set up anyon creation as an optimal control
problem in the hope that we can obtain similar fidelities in
much shorter times compared to the adiabatic evolution. To
this end, generalize the time dependence of Eq. (8) as

H (t ) = H + f (t )H j,k
control, (10)

where f (t ) is the ramp function defined such that f (0) = 0
at the initial point in time t = 0 and such that f (T ) = 1 at
the final point in time t = T . Typically, f (t ) is assumed to be
piecewise smooth or piecewise constant.

A typical figure of merit to be maximized is the state
fidelity F defined in terms of an initial state |�0〉, the propa-
gator U [ f (t ), T ] induced by the time-dependent Hamiltonian
H (t ), and a target state that is meant to be created. In the
present case, the initial state |�0〉 would usually be the ground
state of the Kitaev honeycomb model whereas the target state
|�target〉 is a state with an additional vortex-pair created.

While optimizing for such a state fidelity is a generally suc-
cessful approach, it has two flaws when it comes to the Kitaev

honeycomb model. Since topological stability only arises for
large lattice size, any practical application of the model re-
quires a vast number of qubits. Evaluating the time-evolution
operator therefore requires numerics in exponentially large
spaces. Second, even if the ground state is solvable analyti-
cally in the free fermion picture, we would have to translate
it back into the spin picture to evaluate F , which is again
exponentially hard. In the following, we will resolve both
problems to obtain a scalable optimization method.

A. Time-dependent fermionic picture

Let us first describe the time-independent case. In the
fermionic picture, the quadratic Majorana Hamiltonian can be
written in the most general form with a matrix Jjk that incor-
porates all interaction factors J as H = i

2

∑
jk Jjkc jck . When

written in terms of full fermionic creation and annihilation
operators this is

H = 1
2α†Mα (11)

where α = (a1, . . . , aN , a†
1, . . . , a†

N )T and the Hermitian ma-
trix M

M =
(

μ ν

−ν∗ −μ∗

)
(12)

may be defined in terms of a Hermitian matrix μ and an
antisymmetric matrix ν.

A canonical transformation T can then be found so that
T MT −1 = diag{ω,−ω} where ω is a diagonal 2N-by-2N ma-
trix. This allows for the Hamiltonian to be diagonalized in
terms of quasiparticle modes [25].

We now consider how, in the fermionic picture, we may
calculate the fidelity between a state evolved from an initial-
ized state by a time-dependent Hamiltonian towards a target
state. To this end, we write a ground state of H as |�0〉 ≡
A|vac〉, with the vacuum state |vac〉 satisfying the relation
aj |vac〉 = 0 ∀ j. The operator A is some appropriately chosen
function of the creation and annihilation operators. In the
Appendix, we show that the state fidelity in the fermionic
picture is given by

F (t ) = |〈�target|kPDPu V [ f (t ), t]A|vac〉|2 (13)

= |〈�target|kPDPuA(t )V [ f (t ), t]|vac〉|2. (14)

Here the projector Pu is given by Eq. (6), V [ f (t ), t] is the
evolution operator corresponding to the quadratic Hamilto-
nian PuH (t )Pu, and PD is given by Eq. (4), while k is a
real number which depends on the specific lattice (see the
Appendix for specific examples). A(t ) is a Heisenberg picture
operator A(t ) ≡ V [ f (t ), t]AV [ f (t ), t]†.

In analogy to Eqs. (11) and (12) it is useful to decompose
PuH (t )Pu as

PuH (t )Pu = Pu
1
2α†M(t )α. (15)

Since A depends on the annihilation and creation operators,
we may write it as A(α). It can then be shown [25] that

V [ f (t ), t]A(α)V †(t ) = A(W [ f (t ), t]α), (16)
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where W (t ) is the 2N-by-2N the time-ordered product solving
the differential equation

Ẇ [ f (t ), t] = iM[ f (t )]W [ f (t ), t]. (17)

This solves the problem of an exponentially sized evolution
operator, as W (t ) scales linearly in the system size. We will
refer to calculations in this picture as the Heisenberg picture
since it is directly obtained from the Heisenberg equations of
motions of α. However, the problem of expressing the initial
and target states in the spin picture remains. This will be
tackled next.

B. Heisenberg fidelity as optimization target

In the previous paragraph we show that the evolution is
fully determined by the Heisenberg picture of the quadratic
Hamiltonian. If we knew a good target evolution, rather than
target state, we could therefore free ourselves from the state
picture and obtain all quantities directly in the Heisenberg
picture. The key idea here is to get back to the adiabatic evo-
lution to find such good evolution. We phrase such evolution
directly in the Heisenberg picture. To this end, let Wad be the
solution of Eq. (17) for the adiabatic ramp Eq. (8) with some
suitably large duration Tad. This can be computed efficiently
without having to refer to states. We define a corresponding
Heisenberg fidelity

FH = 1

2N
|Tr{W †

adW [ f (t ), T ]}|. (18)

This quantity obtains its maximum of 1 if and only if the
evolutions match up to a phase and it can be used for efficient
numerical optimization. In Appendix B, we show that

1 − FH � 1

32N3
(1 −

√
F ). (19)

This shows that FH is a good surrogate for F and may be op-
timized instead. To appropriately compare very high fidelities
and plot them logarithmically we give our results in terms of
infidelity IH = 1 − FH .

IV. NUMERICAL RESULTS

Here, we use the QUTIP [26] implementation of the
gradient-ascent pulse engineering (GRAPE) algorithm [27,28]
using the limited memory version of the Broyden-Fletcher-
Goldfarb-Shanno method (BFGS) as an optimizer with
exact gradients [29–32]. The optimization takes place over
piecewise-constant functions, which means that the number of
time steps becomes an additional parameter of our numerics.
This algorithm begins with a random choice of initial pulse.
Using BFGS, exact gradients of the infidelity are calculated
and parameters within the pulse are varied as the infidelity
goes down in the optimization space. This is done by cal-
culating the second derivatives of the infidelity with respect
to the parameters, using this to approximate a parabola, and
descending to the minima of this approximation until reaching
a tolerable minimum infidelity. The limited memory version
of this algorithm (L-BFGS) does not require calculation of
the entire Hessian matrix of second derivatives and so is not
computationally intensive [33].

FIG. 2. Logarithmic comparison of infidelity between initial and
adiabatic target states for linear control pulses and optimized con-
trol pulses, at various timescales, for the simplest six-qubit lattice.
100 time steps were used in both cases. We can see more clearly
the dramatic improvement in fidelity at approximately T = 0.8. The
minimum infidelity reached by optimized pulses, on the order of
10−9 is reached at time T ≈ 0.9, many orders of magnitude less
than the time to reach this infidelity with the linear ramp, which is
at T ≈ 1350.

A. Optimized nonadiabatic pulse in a simple lattice

While the timescale of anyon creation through adiabatic
evolution can be very long, if instead of using linear ramps
we use nonlinear time dependence in the Hamiltonian which
are specially designed, then we can achieve high fidelities
at shorter timescales. The well-tested aforementioned GRAPE

algorithm is used to develop such time-dependent control
functions also known as pulses. The explicit Hamiltonians
used in our optimizations incorporate interaction factors J of
magnitude 1 with the effective magnetic field interaction term
equaling J/100, and thus all times are considered to be in units
of J−1 to be applicable to the general case.

The results of using this procedure for a single plaquette
of six spins are depicted in Fig. 2 showing infidelities as a
function of the ramp time T . The infidelities obtained with a
linear ramp are depicted in blue. There is a slight improvement
with increasing ramp time, but the fidelity of about 90%
achieved with a ramp time of T = 1 is only a very small
improvement compared to the initial fidelity at time T = 0.
This is consistent with an estimate based on the spectral gap
condition [34] that implies ramp times T 
 δ−2 = 3.480 . . .

are required for high-fidelity operations. With a value of J = 1
this spectral gap is calculated from the vortex gap of δ =
| − 4J − (−2

√
3J )| ≈ 0.536. This is a narrower gap than the

first fermionic excitation energy penalty which is 2J . While
in general the fermionic excitation gap is a function of J , and
K and so can be narrower than the vortex gap, in this special
case of the single plaquette lattice this is not the case.

The behavior with optimized ramps, depicted in orange,
is fundamentally different. In the range T < 0.2 there is a
much faster decrease of infidelity with increasing ramp time
than in the case of linear ramps. This decrease is a bit less
pronounced in the range 0.2 � T � 0.4, but for ramp time
T > 0.4 this decrease becomes increasingly pronounced with
increasing ramp time. For ramp times T � 0.8, there is a
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FIG. 3. Six-qubit lattice: Heisenberg infidelities based on dif-
fering targets (circles) are compared with their corresponding state
fidelities (squares). These are compared overall with state fidelities
achieved from linear ramp pulses (triangles). Different colors rep-
resent different values of Tad, which are the timescales of 100 (red,
e.g., upper squares), 200 (orange, middle squares), and 300 (green,
lower squares) that define the target unitary Wad. All optimized pulses
are comprised of 200 time steps. There is a significant improvement
at times between T = 2 and T = 4. Thereafter, there is effectively
perfect fidelity with the presence of numerical noise. It confirms that
both Heisenberg and state infidelities improve markedly at the same
time T and this is an improvement on the fidelities achieved with a
linear ramp pulse.

rapid drop in the infidelity, and for ramp times exceeding the
threshold value of T = Td � 0.85, the deviations between the
numerically obtained infidelities and the ideal value of 0 are
consistent with noise due to finite numerical accuracy.

It is by no means surprising that even with an optimized
ramp a finite ramp time is required to reach perfect fidelities.
This is due to the constant part in the system Hamiltonian
Eq. (10) that defines a natural timescale of the system. This
effect is also referred to as the quantum speed limit [35,36]
and we will refer to the threshold value Td of ramp dura-
tions at which fidelities drop to values close to their ideal
value as the drop time. Apart from the limitations imposed
by finite-dimensional parametrization of the ramp function,
the numerical optimization routine, and numerical accuracy,
this drop time coincides with the minimal duration required to
reach perfect fidelity.

The example of a single plaquette with six qubits is also
a good test case to compare optimization of state-fidelity and
Heisenberg fidelity. Figure 3 depicts the Heisenberg fidelity
obtained with various ramp functions as a function of the ramp
time T .

The black triangles represent state fidelity data obtained
with linear ramps. Consistently with Fig. 2, there is only
a moderate decrease of the infidelity with increasing ramp
time. The circles correspond to ramp functions optimized for
Heisenberg fidelity, and the different colors correspond to
different chosen adiabatic target times with T = 100, 200, and
300 for red, orange, and green, respectively. Similarly to the
observations in Fig. 2 there is a clear drop of the infidelities
at a drop time Td � 3. The fact that the numerically observed
drop time is essentially the same in all three cases indicates

FIG. 4. Ten-qubit lattice: Heisenberg infidelities between opti-
mized unitaries and an optimized target are shown (orange), as
compared with infidelities between the target and a unitary defined
by a linear ramp control (blue). Each optimized pulse consists of
200 time steps. The drop time is T ≈ 10, later than for the six-qubit
lattice.

that the drop time is not dependent on the length of the
adiabatic target time that is chosen.

The squares depict the state infidelity obtained from the
ramp functions that were optimized for Heisenberg infidelity
to see numerical evidence that, when implementing our proce-
dure, good fidelity is achieved in the one case which ensures
a good infidelity in the other.

Here also is a clear drop of the infidelities and it occurs
at the same drop time as for the Heisenberg infidelities. The
fidelities obtained for ramps with a longer ramp time than the
drop time Td , however, are not merely limited by numerical
accuracy, but they are indeed finite. Their exact value de-
pends on the parametrization of the ramp function, with finer
parametrizations resulting in lower infidelities. Since state
fidelity and Heisenberg fidelity are not strictly equivalent, it
is not surprising that a ramp that is optimized for one of these
fidelities does not yield the optimally achievable value of the
other fidelity. The results in Fig. 2, however, clearly show
that the ramps optimized for the Heisenberg fidelity result
in high state fidelities and, in particular, in infidelities that
are between three and four orders of magnitude lower than
infidelities obtained with linear ramps.

B. Optimized pulses for larger lattices

Since numerical optimizations of state fidelity rapidly be-
come infeasible with increasing system size, the subsequent
examples for larger systems feature only Heisenberg fidelities
with ramps that are optimized for this Heisenberg fidelity.
Figure 4 shows the Heisenberg infidelity as a function of ramp
time for linear ramps (blue) and for optimized ramps (orange)
for a lattice consisting of two adjacent plaquettes made up
of 1ten spins. Similarly to the cases discussed above, there
is a clearly identifiable drop time Td , but its value Td � 10 is
larger than in the examples of smaller systems. The abscissa
depicts that ramp time on the log scale, highlighting that linear
ramps with durations exceeding the drop time by many orders
of magnitude are required to achieve any sizable decrease in
infidelity. The specific adiabatic timescale is a consequence
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FIG. 5. Thirty-qubit lattice with open boundary conditions and
pulses with 400 time steps. Heisenberg infidelities between opti-
mized unitaries and an optimized target are shown. The spectral gap
condition requires that Tad 
 30 calculated analogously to the six-
and ten-qubit lattices. The results show that Td is within the order
of magnitude of 30 rather than many orders of magnitude larger as
required by adiabaticity, highlighting the improvement in timescale
achieved.

of the energy gap between vortex pairs. This is calculated
in the same way as for the single-plaquette system and with
the parameters being set at J = 1 and K = J/100 this gap is
δ = 0.375 . . ., requiring a timescale of T 
 δ−2 ≈ 7.070.

The inset depicts a zoomed-in look into the domain around
the drop time. It highlights that, on top of the rapid drop of
infidelity, there is also a finite noise level. When we compare
the optimization results of a system made up of ten spin-qubits
and one with 30 qubits whose optimized infidelities are shown
in Fig. 5, we see again the marked increase in drop time
that is achieved. The geometry of the 30-qubit spin lattice
is identical to the lattice systems presented in the Appendix
and is subject to open boundary conditions. As detailed in
Appendix A, lattices with periodic boundary conditions re-
quire up to four times as much optimization to be carried out
compared with the same geometry without periodicity, there-
fore, showing results for open boundary conditions is the most
efficient choice given limited computational resources. Here
the spectral gap condition, calculated analogously as with the
six- and ten-qubit systems, requires the adiabatic timescale for
this system to be T 
 δ−2 ≈ 30. In the 30-qubit lattice the
vortex gap remains smaller than the lowest fermionic energy
gap, but for larger systems this may not necessarily be the
case. Additionally, the smallest gap may not be the vortex
gap as compared with the fermionic gap in scenarios where
vortices are created from a nonzero vortex sector.

The observation that the drop time increases with the
system size is depicted more systematically in Fig. 6. Gen-
erally, the practically achievable drop time depends on the
parametrization of the ramp function and the number of free
parameters that can be optimized. Only for a ramp function
with sufficiently many piecewise constant elements is the drop
time independent of the number of free parameters. Figure 6
depicts the shortest achievable drop time together with the
minimal number of piecewise constant elements in the ramp
function that is required to achieve this drop time. In both
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FIG. 6. Drop time (above) and minimum required time steps (be-
low) compared with lattice size by number of qubits. These quantities
are defined as the earliest time T and minimum number of time
steps in an optimized piecewise-constant pulse, respectively, where
Heisenberg infidelity drops below 10−6. They are compared with
quadratic growth curves (blue) to show subexponential growth.

subplots the scaling is consistent with a quadratic increase
(blue line) with system size.

Within the validity of extrapolation from numerically ac-
cessible system sizes, there is thus a very moderate scaling
with system size, highlighting that numerical optimizations
based on the framework of fermionization can be performed
efficiently.

V. CONCLUSION

It is well known that the Kitaev honeycomb model is a
useful system for the encoding of quantum information using
nonabelian anyons. Our use of quantum control techniques
allows us to create anyons not only in adiabatic timescales,
but to overcome the necessity for such a restriction through the
use of gradient ascent pulse engineering to construct nonlinear
ramps whose timescales are many orders of magnitude faster
than adiabatic. These ramps achieve very high fidelities at
these much faster timescales and thus are more useful for the
encoding of quantum information and quantum algorithm im-
plementation given that decoherence times entail a preference
for shorter timescales.

Along with the drawback of requiring long timescales with
adiabatic control, the other chief drawback we encounter with
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nonadiabatic quantum control is the difficulty in completely
determining the dynamics of honeycomb lattices with large
numbers of spin qubits. The method we develop allows us to
overcome this obstacle by solving a matrix control problem
where the matrices grow linearly in the number of lattice
spin-qubits, allowing for the implementation of nonlinear
pulse engineering and the optimization of a related matrix
or Heisenberg fidelity. This, alongside the analytic expression
directly comparing the state fidelity and Heisenberg fidelity,
allows us to be assured of the success of these optimized
ramps and allows us to have confidence in the successful
implementation of our procedure for use in the experimental
realization of the model. Given the various avenues suggested
for experimental implementation of the Kitaev honeycomb
model such as in solid-state materials [8] and with polar
molecules in optical lattices [37], as well as the success in
observing topological order in quantum spin liquids using the
Rydberg blockade mechanism [38,39] we believe our control
methods would be a useful for a realization within a setup that
allows for varying spin-qubit interactions in a time-dependent
manner.

Furthermore, we saw that there is indeed subexponential
growth in the computational difficulty of our control problem
with growing system size, and so carrying out our methods on
lattices on the order of hundreds of qubits is possible, as is
necessary for scalable topological robustness.

ACKNOWLEDGMENTS

O.R. acknowledges funding from EPSRC Quantum Sys-
tems Engineering Hub and support from MQCQE. D.B.
acknowledges funding by the Australian Research Council
(Projects No. FT190100106, No. DP210101367, and No.
CE170100009). Financial support from the QuantERA ER-
ANET Cofund in Quantum Technologies implemented within
the European Union’s Horizon 2020 Programme under the
project Theory-Blind Quantum Control TheBlinQC and from
EPSRC under the Grant No. EP/R044082/1 is gratefully
acknowledged.

APPENDIX A: DYNAMICS OF THE TIME-DEPENDENT
HAMILTONIAN IN THE FERMIONIC PICTURE

Previous work on the Kitaev honeycomb model primarily
focused on time-independent Hamiltonians, yet for quantum
control we required time-dependent Hamiltonians. Examples
of such investigations of a time-dependent Kitaev honeycomb
model included those focused on periodic driving [40,41],
which used Floquet theory, allowing for periodic driving to
be mapped to an effectively time-independent system [42].
Other studies used Jordan-Wigner transformations without
projections to look at specific time-dependent behavior such
as the Kitaev honeycomb model with a quenched magnetic
field [43].

Here we show that in regular lattices with open, periodic,
or half-periodic lattices, the fermionization procedure with
projections is still possible in the time-dependent case.

First let us recall the projections onto a link sector u

Pu =
L∏

{ jk}

1 + u jkû jk

2
, (A1)

defined by an L-tuple of link eigenvalues ujk ∈ {±1}; the
projector onto a vortex sector w

Pw =
P∏
j

1 + w jŵ j

2
, (A2)

defined by a P-tuple of plaquette eigenvalues w j ∈ {±1}; and
the projector onto the physical subspace of the fermionic
space given by

PD =
N∏
j

1 + Dj

2
, with Dj = bx

jb
y
jb

z
jc j . (A3)

Since

ŵ j =
∏

{k,l}∈wβ

ûkl , (A4)

Pu and Pw commute, and moreover w is fully determined by
u. We denote this relationship as w = ω(u) and thus have
PwPu = δw,ω(u)Pu and

Pw = Pw

∑
u

Pu =
∑

u:ω(u)=w

Pu. (A5)

Pw commutes with PD, Pu, and the time-dependent fermionic
Hamiltonian Hf (t ), so it will suffice to restrict ourselves to
a single plaquette sector w. While PD is the projection that
determines physicality, Pu will turn the fermionized Hamil-
tonian into a quadratic (and thereby easy to solve) one. A
difficulty arises from the fact that PD does not commute with
Pu. We can, however, find another useful relationship between
these projectors. Let N be the number of qubits of the original
spin lattice and {�k|k = 1, . . . , 2N } be the set of all possible
products of stabilizer operators Di on the qubits, without
repetition, where we take an arbitrary but fixed order. For
our fixed w consider the corresponding preimage ω−1(w) of
link sectors. We define an equivalence relationship ∼ on this
set by u ∼ v :⇔ ∃k : Pu = �kPv�k . Let κ be the number of
equivalence classes. Let us choose an arbitrary but fixed set of
representatives u1, . . . , uκ and define Pū = ∑κ

i=1 Pui .

Upon expanding PD in terms of stabilizers, we obtain

PDPūPD = 1

2N
PD

κ∑
i=1

2N∑
k=1

�kPui�k. (A6)

To understand the right-hand side better, we make a counting
argument. First, it follows from the anticommutation rela-
tionships between link operators and the Dj that the �kPui�k

are again link projectors. Since we sum over all �k and by
definition of the equivalence classes, we know that every
u ∈ ω−1(w) appears at least once on the right-hand side, and
that there are no overlaps between the classes of fixed i. Fur-
thermore, the equality �Pu� = Pu holds if and only if � = 1
or � = ∏

i Di. Therefore, there are 2N−1 distinct projectors for
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each i. It follows that

PDPūPD = 1

2N
2PD

∑
u:ω(u)=w

Pu = 1

2N−1
PDPw. (A7)

From the commutativity relation [Hf (t ), PD] = 0 it also fol-
lows that

V (t )PDPw = 2N−1V PDPūPD = 2N−1PDPūV (t )PūPD, (A8)

where V (t ) is the propagator corresponding to Hf (t ). Hence,
the evolution can be computed in the subspace Pū. To con-
clude the argument, we need to know the value of κ as this
determines how many link sectors we need to consider. As
long as κ is not exponential, we can efficiently simulate the
dynamics.

To this end, we need another counting argument. To sim-
plify the analysis, we only consider three different regular
lattice types dubbed open (o), periodic (p), and half-periodic
(h), and find their corresponding values of κ .

To do this, we first find relationships for the number of link
operators L, the number of plaquettes P, and the number of
qubits N for the various lattices. Simple but rather tedious
counting of such regular lattices shows that L − P = N − 1
in the open case and L − P = N in the other two cases. Next,
we compute the size of ω−1(w). We show in the lemma below
that |ω−1(w)|o,h = 2L−P and |ω−1(w)|p = 2L−P+1. Since each
equivalence class has exactly 2N−1 elements, we must have

|ω−1(w)| = 2N−1κ,

such that κo = 1, κh = 2, κp = 4.
Lemma A.1. For all w, |ω−1(w)|o,h = 2L−P and

|ω−1(w)|p = 2L−P+1.

Proof. Consider first the case of a lattice with open bound-
ary conditions. Since there are no boundary constraints, all
possible configurations of plaquette eigenvalues {
 j} are pos-
sible and

|{
 j}|o = 2P. (A9)

From the above, for each u, we can find 2N−1 other v with
ω(v) = ω(u) by conjugation with �k . Since in the open lattice
the number of qubits N follows the relation N − 1 = L − P,
we can conclude that, for each w, the inequality |ω−1(w)|o �
2L−P holds. Since there are by definition 2L different link
sectors, we have

2L =
∑
w

|ω−1(w)|o � 2L−P2P = 2L (A10)

so the equality holds and the statement follows.
Next consider a lattice with full periodic boundary condi-

tions. Any link eigenvalue change leads necessarily to exactly
two plaquette eigenvalues being flipped. Therefore, only an
even numbers of vortices may ever be present and the number
of plaquette eigenvalue configurations is

|{
 j}|p = 2P−1. (A11)

Now, for each u, we can find 2N−1 other v with ω(v) = ω(u)
by conjugation with �k , but for each of these we can find
four inequivalent link sectors. Since L − P = N for periodic

boundaries, we obtain

2L =
∑
w

|ω−1(w)|p � 4 × 2L−P−12P−1 = 2L (A12)

and the statement follows again.
Finally, in the half-periodic case we only have two inequiv-

alent link sectors, but |{
 j}|p = 2P is twice as big as in the
periodic case and the same counting argument holds. �

1. Inequivalent sectors: Periodic boundary conditions

We now consider the case of a lattice with periodic bound-
ary conditions in both the a and b directions (that is, both
vertically and horizontally as on a torus). We consider the
no-vortex sector and any arbitrary link sector associated with
it which we call Pu0 . We already showed that Pu0 is gauge
equivalent, that is, equivalent up to conjugation by �k oper-
ators, with 2N−1 link sector projectors.

Acting on a nonzero eigenstate of Pu0 with any stabilizer
operator Dj will change three link sector eigenvalues at a time
due to Dj overlapping with the three types of links that contain
spin site j. The same is, therefore, also true of �k operators.
On the other hand, acting on spin sites with a Pauli operator
such as Zj , which in the fermionic picture is

Z̃ j = ibz
jc j (A13)

will flip the sign of only the z link corresponding to that site
and no others. In general a Pauli operator σ̃ α will only flip the
sign of the α link containing spin site j. This is due to the fact
that

{σ̃ j, û jk} = {
ibσ

j c j, ibσ
j bσ

k

} = 0, (A14)

[σ̃ j, ûkl ] = [
ibσ

j c j, ibσ
k bσ

l

] = 0, j /∈ {k, l}. (A15)

Thus we have that

Z̃αPuj = Puk Z̃α, (A16)

and thus

Puj = Z̃αPuk Z̃α, (A17)

where, in general, ω(u j ) �= ω(uk ).
Flipping a single link eigenvalue will change the vortex

sector as a pair of vortices are introduced on adjacent plaque-
ttes. Taking ζ to be an arbitrary product of Z̃ Pauli operators,
then to have

Puj = ζPuk ζ (A18)

such that ω(u j ) does equal ω(uk ), we require ζ to consist of a
pair of link-flipping Z̃ operators for each plaquette.

To return to the no-vortex sector, vortices need to be an-
nihilated and so the vortex string must form a closed loop.
Algebraically speaking, while each σ̃ j will commute with all
overlapping and nonoverlapping Dj operators, as

[σ̃ j, Dj] = [
ibα

j c j, bx
jb

y
jb

z
jc j

]
(A19)

= 0, (A20)

and

[σ̃ j, Dk] = [
ibα

j c j, bx
kby

kbz
kck

]
(A21)

= 0, (A22)
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(a)

(b)

FIG. 7. Simple sets of y (above) and z (below) link flips that
preserve the vortex sector while being gauge inequivalent to the
trivial link sector.

such Paulis will not commute with overlapping plaquette op-
erators Wp as for a spin site j, plaquette operators will act with
Paulis X̃ or Ỹ , and thus there is anticommutation.

In order for there to be commutation with all plaquette op-
erators, there needs to be Z̃ j operators acting on two spin sites
per plaquette, as shown in Fig. 9. The simplest example of a
product of Z̃ j operators that commutes with all link operators
is shown explicitly and schematically in Figs. 7(b) and 8(b),
respectively.

Starting with link sector Pu0 and using only �k operators, it
is not possible to flip the sign of only a single row of z links as,
in general, the action of a Dj operator flips the sign of all three
types of link x, y, and z. To keep all x and y links unflipped,
the products of the Dj operators must act on the sites of all
spins that correspond to those links, leaving at least a pair
of rows with flipped eigenvalues on z links, as demonstrated
in Fig. 10. We therefore found another link sector Puz whose
corresponding vortex sector is the no-vortex sector, which
cannot be reached from Pu0 by conjugation with �k operators.
Algebraically this can be represented by

� �k such that �kPu0�k = Puz (A23)

where

Puz := ζPu0ζ (A24)

(a)

(b)

FIG. 8. Topological interpretation of the set of y and z flips that
preserve vortex sector but are gauge inequivalent to the trivial link
sector which topologically amounts to no loop at all.

and ζ is a horizontal, topologically closed loop of Pauli Z̃
operators. This is because, when commuting ζ through Pu0 ,
only the signs of a row of z-link eigenvalues are changed. If
we call this row of links ρ then

ζPu0 = ζ
∏

jk

1 + uα
jk ûα

jk

2
(A25)

=
∏

α=z, jk∈ρ

1 − uα
jk ûα

jk

2

∏
etc.

1 + uα
jk ûα

jk

2
ζ (A26)

= Puk ζ . (A27)

FIG. 9. Clearly [Z6,Wp] = [Z6, Z1X2Y3Z4X5Y6] �= 0 but
[Z6Z2,Wp] = [Z6Z2, Z1X2Y3Z4X5Y6] = 0.
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FIG. 10. A lattice where the gray spin sites are acted on with Dj

operators and link eigenvalues on yellow links are flipped. It is not
possible to flip only a single line of z links using �k operators alone.

However, with �k operators to commute them through Pu0

and have only z-link eigenvalues flipped, this requires a �k

consisting of Dj operators acting on a row of spin sites in the
manner of Fig. 10 and thus a minimum of two rows of z-link
eigenvalues are flipped. Thus for all �k

�kPu0�k �= ζPu0ζ . (A28)

We can now repeat the above process, with the same rea-
soning, starting with the link sector Puz rather than Pu0 , but this
time with Pauli Ỹ operators to flip links as shown in Figs. 7(a)
and 8(b). This would give another link sector unreachable via
actions of �k operators, just as Puz was unreachable from Pu0 .
This would correspond to flipping link signs vertically rather
than horizontally. Pauli X̃ operators can be written, up to a
phase, as simply products of Z̃ and Ỹ Paulis, thus no new link
sectors can be found by use of the above operations with X̃
Paulis. Therefore, for a lattice defined by a plaquettes per row
and made up of b rows, if we define

ζ = Z̃ j1 . . . Z̃ ja , (A29)

χ = Ỹj1 . . . Ỹjb, (A30)

then the four link sector operators

Pu0 , (A31)

Puz = ζPu0ζ , (A32)

Puy = χPu0χ, (A33)

Pux = ζχPu0χζ , (A34)

each define gauge-inequivalent link sectors in a particular
vortex sector.

2. Inequivalent sectors: Half-periodic boundary conditions

For a system with half-periodic boundary conditions, de-
pending on whether periodicity is in the horizontal or vertical
direction, only a single row or “column” of flipped signs
would be required to find a link sector projector not reachable
from Pu0 by actions of �k operators. There would therefore be
two sets of 2N−1 link sector projectors corresponding to two
equivalence classes in each vortex sector. Accounting for all
2P vortex sectors there would be a total of

2P(2 × 2N−1) = 2N+P = 2L (A35)

and so we have accounted for all link sectors.

APPENDIX B: PROOF HEISENBERG-INFIDELITY
STATE-INFIDELITY BOUND

This section contains the proof of Eq. (19), which relates
state infidelity and Heisenberg infidelity. State infidelity is
defined between two states with differing dynamics Uj ( j =
1, 2) applied to an initial spin state |�I〉. These dynamics
are induced by spin Hamiltonians Hs, j whose counterparts
in the quadratic Majorana fermionic picture H̃ferm, j = α†Mjα

(see Sec. II) define the orthogonal matrices O j generated by
the matrices Mj in a relation which satisfies the differential
equation Ȯ j = iMjO j .

The relation to be proven reads

IH (O1,O2) � 1

4d3
(1 −

√
Fs(�1, �2)), (B1)

with the state fidelity

Fs(�1, �2) = |〈�1|�2〉|2 = |〈�I |U †
2 U1|�I〉|2, (B2)

and the Heisenberg infidelity IH = 1 − FH with

FH (O1,O2) = 1

d
|Tr(O†

1O2)|, (B3)

and the matrix dimension d .
The full proof consists of Eq. (B4) and the series of in-

equalities Eqs. (B5) to (B7)√
2d

√
IH = ‖O1 − O2‖F (B4)

� 1

2d

∥∥�U1 − �U2

∥∥
♦ (B5)

� 1

2d
min

ϕ
‖U1 − eiϕU2‖op (B6)

� 1√
2d

√
1 −

√
Fs, (B7)

which will be discussed separately in the following subsec-
tions.

Equation (B4) is expressed in terms of the Frobenius norm

‖A‖F :=
√

Tr(A†A) (B8)

for any operator A. Equation (B5) is expressed in terms of the
operator norm

‖A‖op := sup

{‖Ax‖
‖x‖ : x ∈ V d with x �= 0

}
. (B9)

The diamond norm for a quantum channel � in Eq. (B6) is
given by

‖�‖♦ := max
ρ

‖(� ⊗ 1)ρ‖1, (B10)

where ‖ ◦ ‖1 = Tr
√

A†A is the trace norm [44] and the max-
imization is taken over all density matrices in a space of
dimension corresponding to the size of the quantum channel.

1. Equation (B4)

The Frobenius norm of the difference between two orthog-
onal operators O1 and O2 reduces to

‖O1 − O2‖F =
√

2d − Tr
(
OT

1O2
) − Tr

(
OT

2O1
)

(B11)

=
√

2d − 2Re{Tr
(
OT

1O2
)}, (B12)
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where d is the dimension of O1 and O2. It thus depends on
the real part of Tr(OT

1O2) and not on its absolute value as it is
the case for FH . As we will show in the following, however,
in the present case, the object Tr(OT

1O2) is real and positive,
so that Eq. (B4) is indeed satisfied.

a. Proof that Tr(OT
1 O2 ) is real

The orthogonal matrices O1 and O2 satisfy the differ-
ential equation Ȯ j = iMjO j with generally time-dependent
generators iMj . Since the Mj are purely imaginary, the gener-
ators iMj are purely real. Together with the initial condition
O j (0) = 1, such that O j (0) is real, this implies that O j (t )
for j = 1, 2 is real for all times. Consequently, the overlap
Tr(OT

1O2) is also real.

b. Proof that Tr(OT
1 O2 ) is nonnegative

Since Majorana fermions move between only one of two
pairs of fermionic sites per spin site, the full space that O1

and O2 act on, can be divided into two subspaces Hx and Hy

of equal dimension d/2. Both O1 and O2 are given as direct
sums of the identity 1 in Hx and orthogonal operators Õ in Hy.
The complete trace is thus given as the sum of the two traces
Trx1 and TryÕT

1 Õ2. The latter trace can also be expressed as
the sum over the eigenvalues λ j of ÕT

1 Õ2. This results in the
relation

Tr
(
OT

1O2
) = Trx1 + TryÕT

1 Õ2 = d

2
+

d
2∑

j=1

λ j . (B13)

Since the trace Tr(OT
1O2) is purely real, the imaginary parts

Im{λ j} add up to zero. Because all the eigenvalues λ j are
phase factors, i.e., λ j = exp(iϕ j ) with ϕ j real, the real parts of
the λ j satisfy the inequality Re{λ j � −1}, so that the relation

Tr
(
OT

1O2
) = d

2
+

d
2∑

j=1

λ j � 0 (B14)

is indeed given.

2. From Eq. (B4) to Eq. (B5)

The Frobenius and operator matrix norms satisfy the in-
equality ‖A‖F � ‖A‖op [45]. For the present case, this implies

the relation

‖O1 − O2‖F � ‖O1 − O2‖op . (B15)

Together with the relation

‖O1 − O2‖op � 1

2d

∥∥�U1 − �U2

∥∥
♦, (B16)

that was proven in Eq. (171) in [46] this yields the desired
inequality.

3. From Eq. (B5) to Eq. (B6)

The required inequality∥∥�U1 − �U2

∥∥
♦ � min

ϕ
‖U1 − eiϕU2‖op (B17)

is proven in Eq. (2.1) in [47]

4. From Eq. (B6) to Eq. (B7)

Following the definition of the operator norm [Eq. (B9)],
the operator norm in Eq. (B6) satisfies the inequality

‖U1 − eiϕU2‖op � ‖(U1 − eiϕU2)|�〉‖2 (B18)

for any state vector |�〉 in the spin picture, and, as such, in
particular for the initial state |�I〉 of the dynamics. That is,
the inequality

‖U1 − eiϕU2‖op � ‖|�1〉 − eiϕ |�2〉‖2 (B19)

=
√

(〈�1| − e−iϕ〈�2|)(|�1〉 − eiϕ|�2〉)

(B20)

=
√

2 − eiϕ〈�1|�2〉 − e−iϕ〈�2|�1〉 (B21)

=
√

2 − 2|〈�1|�2〉| cos(ϕ + θ ) (B22)

holds, where the overlap of |�1〉 and |�2〉 can be defined in
terms of state infidelity and a phase

〈�1|�2〉 = |〈�1|�2〉|eiθ =
√
Fse

iθ . (B23)

When Eq. (B22) is minimized over all phases ϕ this gives the
required result

min
ϕ

‖U1 − eiϕU2‖op �
√

2
√

1 −
√
Fs(�1, �2). (B24)
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