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Tighter generalized entropic uncertainty relations in multipartite systems
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The uncertainty principle, which demonstrates the intrinsic uncertainty of nature from an information-theory
perspective, is at the heart of quantum information theory. In the realm of quantum information theory, Shannon
entropy is used to depict the uncertainty relation in general. A tighter lower bound for uncertainty relations fa-
cilitates more accurate predictions of measurement outcomes and more robust quantum information processing.
Interestingly, the tripartite entropic uncertainty relation (EUR) can be further optimized. Renes et al. proposed
a tripartite EUR [J. M. Renes and J.-C. Boileau, Phys. Rev. Lett. 103, 020402 (2009)], and subsequently, Ming
et al. strengthened its lower bound in [F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, and J.-L. Chen, Phys.
Rev. A 102, 012206 (2020)]. Specifically, we derive a tighter lower bound of the tripartite EUR using the Holevo
quantity. Furthermore, we generalize the tripartite EUR, that is, the generalized entropic uncertainty relation for
multiple measurements in multipartite systems. As illustrations, we provide several typical examples to show
that our bound is tight and outperforms the previous bound. Furthermore, our findings pave the way for using the
tighter bound for the quantum secret key rate in quantum key distribution protocols and are essential for quantum
precision measurements in the framework of genuine multipartite systems. By providing a close peek at the
nature of uncertainty, our results may find broad applications in the security analysis of quantum cryptography.
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I. INTRODUCTION

The uncertainty principle proposed by Heisenberg in
1927 [1] is significant in quantum information theory, which
distinguishes quantum physics from classical physics. The un-
certainty principle bounds the product (or sum) of two or more
uncertainties, each associated with a different observable [2].
Kennard [3] improved the position-momentum uncertainty
relation and Robertson [4] derived a generalized uncertainty
relation for two arbitrarily incompatible observables Q̂ and R̂,
described as

�Q̂�R̂ � 1
2 |〈[Q̂, R̂]〉|. (1)

Robertson’s relation, which provides a lower bound of
the standard deviation, is the most widely used formula for
the uncertainty principle. However, the bound depends on
the state of system. This result well be trivial if the system
is prepared in an observable’s eigenstate. With the develop-
ment of quantum information theory, Shannon entropy was
introduced as an effective measure of uncertainty [5]. Pio-
neeringly, Białynicki-Birula and Mycielski [6] proposed novel
entropy-based Heisenberg uncertainty relations for position
and momenta. Subsequently, Deutsch presented the entropic
uncertainty relation (EUR) for two arbitrarily incompatible
observables [7]. Later, Kraus [8], Maassen, and Uffink [9]
optimized Deutsch’s result into

H (Q̂) + H (R̂) � −log2c(Q̂, R̂) ≡ qMU , (2)

where H (Q̂) = −∑
i pilog2 pi represents Shannon entropy

and pi = 〈μi|ρ̂|μi〉. The quantity c(Q̂, R̂) ≡ max j,k|〈μ j |νk〉|2
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denotes maximal overlap, where |μ j〉 and |νk〉 denote the
eigenvectors of observables Q̂ and R̂, respectively. The bound
qMU is determined only by the incompatibility of the observ-
ables, which is state independent.

Renes et al. [10] and Berta et al. [11] proposed the follow-
ing quantum-memory-assisted entropic uncertainty relation
(QMA-EUR) for when the measured particle is correlated to
another particle:

S(Q̂|B) + S(R̂|B) � S(A|B) − log2c(Q̂, R̂), (3)

with an arbitrary bipartite system AB, where S(R̂|B) =
S(ρ̂R̂B) − S(ρ̂B) denotes the conditional von Neumann en-
tropy [12] of the postmeasurement states after measuring R̂
on A using ρ̂R̂B = ∑

i (|νi〉A〈νi| ⊗ IB)ρ̂AB(|νi〉A〈νi| ⊗ IB). IB

is an identical operator in the Hilbert space of B. S(A|B) =
S(ρ̂AB) − S(ρ̂B) denotes the conditional von Neumann entropy
of the systemic density operator ρ̂AB. Following this inequal-
ity, several interesting conclusions can be: (i) Equation (2)
can be obtained from Eq. (3) when A is disentangled from
B. (ii) When the conditional von Neumann entropy S(A|B)
is negative, the measured particle A and memory particle B
are entangled, which reduces the measurement uncertainty.
In particular, Alice’s measured outcomes can be perfectly
predicted by Bob using S(A|B) = −log2d (d is the dimen-
sion of the measured particle) when A and B are maximally
entangled. (iii) If the quantum memory is absent, Eq. (3) sim-
plifies H (Q̂) + H (R̂) � −log2c(Q̂, R̂) + S(A), which yields
a tighter lower bound compared with Maassen and Uffink’s
result (2) owing to S(A) � 0.

The EUR, although initially developed to improve the pre-
dictive accuracy of the quantum uncertainty principle, is also
a pillar for quantum information processing, including entan-
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glement witnesses [11], quantum teleportation [13], quantum
randomness [14], QKD [15], quantum metrology [16,17],
quantum steering [18–20], and so forth [21–24]. In addition,
many promising improvements for QMA-EUR have been
made [25–42]. Specifically, Pramanik et al. [28] presented a
new form of uncertainty relation using extractable classical
information. By considering the second-largest value of the
overlap c(Q̂, R̂), Coles and Piani [32] presented another tight
uncertainty relation. In 2015, Liu et al. [37] presented an
uncertainty relation for multiobservable scenarios. In 2016,
Adabi et al. [38] optimized the lower bound by adding mutual
information, and the Holevo quantity was expressed as

S(Q̂|B) + S(R̂|B) � qMU + S(A|B) + max {0,�}, (4)

where

� = I (A : B) − [I (Q̂ : B) + I (R̂ : B)], (5)

here I (A : B) = S(ρ̂A) + S(ρ̂B) − S(ρ̂AB) is the mutual in-
formation and I (Q̂ : B) = S(ρ̂B) − ∑

i piS(ρ̂B|i ) denotes the
Holevo quantity. Additionally, pi = TrAB(�A

i ρ̂AB�A
i ) is the

probability of obtaining the ith measurement outcome by
measuring Q̂ on A. Xie et al. [41] improved the lower bound
of the entropic uncertainty relation for multiple measurements
in bipartite systems [37]. To date, several novel experiments
have been conducted to demonstrate various uncertainty
relations [43–51].

For tripartite cases, Renes and Boileau [10] originally pro-
posed an uncertainty relation only for observables related by a
Fourier transform. Later, the general case was proven by Berta
et al. [11]

S(Q̂|B) + S(R̂|C) � qMU . (6)

Essentially, this inequality implies a tradeoff between com-
plementarity measurements, which can be interpreted using
the monogamy game. Assume that the tripartite A, B, and C
are available to three participants, Alice, Bob, and Charlie,
respectively, who share a quantum state ρ̂ABC . Alice randomly
measures one of the two observables (Q̂ and R̂) and obtains κ .
She then informs Bob and Charlie of her choice of measure-
ment. Finally, the game can only be won if both successfully
predict the outcome κ . The lower bound qMU is only rele-
vant to the complementarity of the observables and is state
independent. The pursuit of a tighter bound is fundamental
for realistic quantum information processing. Motivated by
this, some efforts have been made [52,53] to improve the
tripartite QMA-EURs. Recently, Ming et al. [52] presented a
new tripartite QMA-EUR by considering mutual information
and the Holevo quantity as

S(Q̂|B) + S(R̂|C) � qMU + max {0,�}, (7)

with � = 2S(A) + qMU − I (A : B) − I (A : C) + I (R̂ : B) +
I (Q̂ : C) − H (Q̂) − H (R̂), which provides a tighter lower
bound than that found in Ref. [10].

The relations mentioned above are only applicable to
two- or three-particle systems. Genuine quantum information
processing is not only required to estimate the measure-
ment uncertainty of two observables in bipartite or tripartite
systems, but also for multiple measurements in correlated
many-body systems. Finding a generalized communication

bound that suits arbitrary multiple nodes is at the heart of
constructing a quantum network. In particular, as a criti-
cal application in the security analysis of QKD, EURs not
only require simple two- or three-particle systems but also
require more generalized many-body systems. Considering
this, we focus on suggesting a stronger tripartite QMA-EUR,
which perfectly captures the characteristics of measurement
uncertainty for some canonical states ρABC . Furthermore, we
derived a generalized QMA-EUR for multiple measurements
within multipartite systems.

The remainder of this paper is organized as follows. In
Sec. II, a lower bound of the tripartite QMA-EUR is de-
rived by considering the Holevo quantity. We generalize this
to the case of arbitrary multiobservables in multipartite sys-
tems. In Sec. III, we take several examples (the GHZ-type,
Werner-type, symmetric family of mixed four-qubit, and ran-
dom four-qubit states) to support our findings. In Sec. IV, the
application of our proposed generalized QMA-EUR on the
quantum secret key rate is discussed. Finally, we provide a
concise conclusion.

II. TIGHTER TRIPARTITE EUR AND GENERALIZED EUR

We propose a tighter tripartite QMA-EUR based on Adabi
et al.’s bipartite EUR in Eq. (4) and Renes-Boileau’s EUR in
Eq. (6).

Theorem 1. By considering the Holevo quantity, the im-
proved tripartite QMA-EUR can be expressed as

S(Q̂|B) + S(R̂|C) � qMU + max {0, δ} (8)

for any tripartite state ρ̂ABC with

δ = qMU + 2S(A) − I (Q̂ : B) − I (R̂ : C) − H (Q̂) − H (R̂),
(9)

which outperforms the previous bounds in Eqs. (6) and (7).
Proof. Considering the QMA-EUR in Eq. (4), the follow-

ing equation is satisfied:

S(Q̂|B) + S(R̂|B) � qMU + S(A|B) + I (A : B)

− I (Q̂ : B) − I (R̂ : B), (10)

S(Q̂|C) + S(R̂|C) � qMU + S(A|C) + I (A : C)

− I (Q̂ : C) − I (R̂ : C), (11)

for a tripartite system ρ̂ABC . By combining Eqs. (10) and (11),
the following inequality is obtained:

S(Q̂|B) + S(R̂|C) � 2qMU + S(A|B) + S(A|C)

+ I (A : B) + I (A : C)

− I (Q̂ : B) − I (Q̂ : C)

− I (R̂ : B) − I (R̂ : C)

− S(Q̂|C) − S(R̂|B). (12)

By substituting S(A) = S(A|B) + I (A : B) = S(A|C) + I
(A : C), H (Q̂) = S(Q̂|C) + I (Q̂ : C) and H (R̂) = S(R̂|B) +
I (R̂ : B) into on the right-hand side of the inequality above,
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we obtain

S(Q̂|B) + S(R̂|C) � 2qMU + 2S(A) − I (Q̂ : B) − I (R̂ : C)

− H (Q̂) − H (R̂). (13)

Resorting to Eqs. (6) and (13), we can derive the desired
results in Eqs. (8) by considering optimization over the two
bounds.

Incidentally, we note that Dolatkhah et al. [53] proposed
another lower bound of the tripartite QMA-EUR by adding
mutual information and the Holevo quantity beyond Ming
et al.’s result [52], expressed as

S(Q̂|B) + S(R̂|C) � qMU + S(A|B) + S(A|C)

2
+ max{0, δ′},

(14)

with δ′ = I(A:B)+I(A:C)
2 − [I (Q̂ : B) + I (R̂ : C)]. Remarkably,

it is found that the result in Eq. (14) is incorrect. It is ver-
ified that the derivation is illogical and the lower bound
qMU + S(A|B)+S(A|C)

2 exceeds the uncertainty quantity [that is,
S(Q̂|B) + S(R̂|C)] in some cases when δ′ < 0 hold, which
violates the result of Eq. (14).

Theorem 2. The generalized entropic uncertainty relation
for multiobservable measurements in the context of a multi-
partite system can be written as

n∑
i=1

S(Ôi|Bi ) � −
∑n

i �= j,i=1 log2 c(Ôi, Ô j )

n − 1
+ max {0, δn},

(15)

with

δn = −
∑n

i �= j,i=1 log2 c(Ôi, Ô j )

n − 1
+ nS(A)

−
n∑

i=1

H (Ôi ) −
n∑

i=1

I (Ôi : Bi ), (16)

where Ôi denotes the ith measurement on subsystem A and Bi

represents the ith quantum memory in the multipartite system.
Proof. Compared to the tripartite EUR in Eq. (13), we can

write n(n − 1)/2 inequalities for n-observable measurements
in (n + 1)-party system ρ̂AB1B2B3B4...Bn as

S(Ô1|B1) + S(Ô2|B2) � −2 log2 c(Ô1, Ô2) + 2S(A) − H (Ô1) − H (Ô2) − I (Ô1 : B1) − I (Ô2 : B2),

S(Ô1|B1) + S(Ô3|B3) � −2 log2 c(Ô1, Ô3) + 2S(A) − H (Ô1) − H (Ô3) − I (Ô1 : B1) − I (Ô3 : B3),

S(Ô1|B1) + S(Ô4|B4) � −2 log2 c(Ô1, Ô4) + 2S(A) − H (Ô1) − H (Ô4) − I (Ô1 : B1) − I (Ô4 : B4),

...

S(Ô2|B2) + S(Ô3|B3) � −2 log2 c(Ô2, Ô3) + 2S(A) − H (Ô2) − H (Ô3) − I (Ô2 : B2) − I (Ô3 : B3),

S(Ô2|B2) + S(Ô4|B4) � −2 log2 c(Ô2, Ô4) + 2S(A) − H (Ô2) − H (Ô4) − I (Ô2 : B2) − I (Ô4 : B4),

...

S(Ôn−1|Bn−1) + S(Ôn|Bn) � −2 log2 c(Ôn−1, Ôn) + 2S(A) − H (Ôn−1) − H (Ôn) − I (Ôn−1 : Bn−1) − I (Ôn : Bn).

Next, the above n(n − 1)/2 inequalities are summed and di-
vided on both sides of the summation inequality by (n − 1).
Consequently, we obtain

n∑
i=1

S(Ôi|Bi ) � −2

∑n
i �= j,i=1 log2 c(Ôi, Ô j )

n − 1
+ nS(A)

−
n∑

i=1

H (Ôi ) −
n∑

i=1

I (Ôi : Bi ). (17)

Similarly, to compare our bound with Renes-Boileau’s result,
we generalize the previous tripartite QMA-EURs in Eq. (6)
into a general case of n-observable measurements in the
(n + 1)-party system ρ̂AB1B2B3B4...Bn and deduce the following
inequality:

n∑
i=1

S(Ôi|Bi ) � −
∑n

i �= j,i=1 log2 c(Ôi, Ô j )

n − 1
. (18)

Combining the two derivations in Eqs. (17) and (18), the
desired generalized EUR for multiobservables in multipar-

tite systems can be obtained as Eq. (15) by considering the
optimization.

In addition, to compare our results with those of Ming
et al., we derive the tripartite EUR proposed by Ming et al.
for multimeasurements in multipartite systems

n∑
i=1

S(Ôi|Bi ) � −
∑n

i �= j,i=1 log2 c(Ôi, Ô j )

n − 1
+ max {0,�n},

(19)

where �n = −
∑n

i �= j,i=1 log2 c(Ôi,Ô j )

n−1 + nS(A) − ∑n
i=1 I (A : Bi )

− ∑n
i=1 H (Ôi ) +

∑n
i �= j,i=1, j=1 I(Ôi :Bj )

n−1 .

III. TYPICAL EXAMPLES

It is well known that mutually unbiased observables
are crucial in quantum information theory. For mutually
unbiased bases (MUBs), {|ψa〉}a=1,2,...,d and {|φb〉}b=1,2,...,d ,

|〈ψa|φb〉|2 = 1/d holds, ∀ a and b. The mutually unbiased
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observables are observables whose eigenbases are MUBs. In
two-dimensional space, the Pauli measurements σ̂1, σ̂2, σ̂3 are
known as typical MUBs. Here, we consider spin-1/2 Pauli
matrices as the measured observables in various quadripartite
systems ρ̂ABCD. Thus, c(Ôi, Ô j ) = 1/2 (i �= j), which
leads to − log2 c(Ôi, Ô j ) = 1. Furthermore, we generalize
Renes-Boileau’s and Ming et al.’s relations in Eqs. (18)
and (19) to the quadripartite framework to demonstrate
that our lower bound is tighter than the previous ones. The
generalized Renes-Boileau relation can be written as

S(Q̂|B) + S(R̂|C) + S(T̂ |D) � QMU := BRB (20)

in a quadripartite system, where

QMU = qMU1 + qMU2 + qMU3

2
. (21)

However, the relation of Ming et al. can be generalized to the
quadripartite system version

S(Q̂|B) + S(R̂|C) + S(T̂ |D) � QMU + max {0,�3} := BM,

(22)

where

�3 = QMU + 3S(A) − H (Q̂) − H (R̂) − H (T̂ )

− [I (A, B) + I (A,C) + I (A, D)]

+ I (Q̂,C) + I (Q̂, D) + I (R̂, B)

2

+ I (R̂, D) + I (T̂ , B) + I (T̂ ,C)

2
. (23)

In the following, we can use the result from Eq. (15) for
three measurements and obtain a tighter bound

S(Q̂|B) + S(R̂|C) + S(T̂ |D) � QMU + max {0, δ3} := BO,

(24)

with

δ3 = QMU + 3S(A) − H (Q̂) − H (R̂) − H (T̂ )

− [I (Q̂ : B) + I (R̂ : C) + I (T̂ : D)]. (25)

To verify our findings, we now compare our proposed bound
with the results of Renes-Boileau and Ming et al. in different
four-qubit state scenarios.

A. GHZ-type states

First, we consider a generalized pure four-qubit Greenberg
(Horne) Zeilinger state, expressed as

|�〉GHZ
ABCD = sin α|0000〉 + cos α|1111〉, (26)

with the state parameter α ∈ [0, 2π ). To compare our result
with the previous one, we draw different lower bounds versus
α in the four-qubit GHZ state, as shown in Fig. 1. In this case,
the bounds of Renes-Boileau and Ming et al. are equal to 3/2
and our lower bound is stronger than the previous ones, as
displayed in the figure.

FIG. 1. Uncertainty and the lower bounds versus α in four-
qubit GHZ-type states. The red solid line denotes the quantity of
the entropy-based uncertainty [left-hand side of Eq. (24)], magenta
dashed line with magenta triangle denotes our bound [right-hand
side of Eq. (24)], green dashed line denotes Ming et al.’s bound
result [right-hand side of Eq. (22)], and blue dashed line denotes
Renes-Boileau’s bound [right-hand side of Eq. (20)].

B. Werner-type states

As another example, we consider a class of Werner-type
states, taking the form

ρ̂ABCD = p|GHZ〉〈GHZ| + (1 − p)

16
I16×16, (27)

where the purity of the state p ∈ [0, 1] and |GHZ〉 =
cos β|0000〉 + sin β|1111〉 (β ∈ [0, 2π ]), and I16×16 repre-
sents a 16 × 16 identity matrix. In Figs. 2(a) and 2(b), our
bound, Ming et al.’s bound, and Renes-Boileau’s bound
vary with the state purity p and state parameter β, where
β = π

4 and p = 0.5, respectively. As indicated in the figure,
our derived bound is higher than those of Ming et al. and
Renes-Boileau, that is, BRB � BM � BO � U . Our bound can
perfectly capture the characteristics of the behavior of en-
tropic uncertainty, as shown in Fig. 2(a).

C. Symmetric family of mixed four-qubit states

In addition, we consider a mixture of the GHZ and W
states, which can be described as the following maximally
mixed four-qubit state:

ρ̂ABCD = η

2
|GHZ〉〈GHZ| + η

2
|W 〉〈W | + (1 − η)

16
I16×16,

(28)

where |W 〉= 1
2 (|0001〉+|0010〉 + |0100〉 + |1000〉), |GHZ〉

= sin γ |0000〉 + cos γ |1111〉 and the state’s parameter η ∈
[0, 1]. We plot our bound, the bound of Ming et al., and
Renes-Boileau’s bound as a function of η in Fig. 3, for γ = π

3 .
Our bound outperforms the previous ones. The derived bound
perfectly matches the magnitude of the entropic uncertainty.

D. Random four-qubit states

Now, we consider more general states, that is, arbitrary
sets of random four-qubit states containing both pure and
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Uncertainty
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FIG. 2. Entropic uncertainty and the lower bounds for four-qubit
Werner-type states. (a) Uncertainty and the lower bounds versus
the state’s purity p. (b) Uncertainty and the lower bounds versus
the state’s parameter β. The red solid line denotes the quantity of
the entropy-based uncertainty [left-hand side of Eq. (24)], magenta
dashed line or magenta triangle denotes our bound [right-hand side of
Eq. (24)], green dashed line denotes Ming et al.’s bound result [right-
hand side of Eq. (22)], and blue dashed line denotes Renes-Boileau’s
bound [right-hand side of Eq. (20)].

mixed states, which are generally used to verify whether the
proposed relation holds for all ensembles of states. First, we
introduce an efficient approach to generating arbitrary random
states. According to the spectral decomposition theorem, ar-
bitrary random four-qubit states can be decomposed into the
form ρ̂ = ∑16

n=1 ϑn|φn〉〈φn|, where ϑn and |φn〉 denote the nth
eigenvalues and eigenstates of ρ̂. Additionally, the eigenvalue
ϑn corresponds to the probability that the state of the system
ρ̂ is in the state |φn〉. Therefore, we can construct an arbitrary
unitary operation � by using the normalized eigenvector |φn〉.
In principle, an arbitrary four-qubit state can be composed of
arbitrary probabilities ϑn and an arbitrary unitary operation �.
For this purpose, we define a random function ζ (x1, x2) that
randomly generates a real number in each interval [x1, x2].
Then, the random number pm can be generated using the
following method:

p1 = ζ (0, 1), pi+1 = ζ (0, 1)pi, (29)

FIG. 3. Uncertainty and the lower bounds versus the state param-
eter η in a symmetric family of mixed four-qubit states. Red solid
line denotes the quantity of the entropy-based uncertainty [left-hand
side of Eq. (24)], magenta triangle denotes our bound [right-hand
side of Eq. (24)], green dashed line denotes the bound of Ming
et al. [right-hand side of Eq. (22)], and blue dashed line denotes
Renes-Boileau’s bound [right-hand side of Eq. (20)].

where i ∈ {1, 2, 3, . . . , 15}. In addition, a set of random prob-
abilities ϑn (n ∈ {1, 2, 3, . . . , 16}) consists of pm, which is
given by

ϑn = pm∑16
m=1 pm

. (30)

Based on the above two formulas, we can obtain a set of
probabilities in descending order.

Technically, the one 16-order real matrix M can be ran-
domly generated using the random function ζ (−1, 1) in the
interval [−1, 1] by constructing a random unitary operation.
Utilizing the real matrix M, a random Hermitian matrix is
expressed as

A = D + (UT + U ) + i(LT + L), (31)

where D, L, and U represent the diagonal, strictly lower, and
strictly higher triangular parts of the real matrix M, respec-
tively. UT represents the transposition of U .

Applying the above procedure, we obtain 16 normalized
eigenvectors |φn〉 of the Hermitian matrix A, which forms
a random unitary operation �. Consequently, the spectral
decomposition for a random four-qubit state ρ̂ is perfectly
constructed.

To verify our conclusions, we adopt 2 × 105 random states
to show the uncertainty and our bound and that of Ming
et al., as shown in Fig. 4, which shows two nontrivial points:
(i) our presented EUR in Eq. (15) holds, demonstrating that
the relation is universal; (ii) our bound is closer to the mea-
surement uncertainty performed with Ming et al.’s bound,
that is, BO � BM , implying that our bound is stronger than
the previous bounds. Meanwhile, we depict the difference
between our lower bound and that of Ming et al. (BO − BM)
for arbitrary randomly generated four-qubit states in Fig. 5,
and this shows that BO − BM � 0 always holds, which sup-
ports our conclusion. Further, a comparison of our bound with
Renes-Boileau’s bound is plotted in Fig. 6 in the regime of
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FIG. 4. Uncertainty, our derived bound, and that of Ming et al.
for 2 × 105 four-qubit random states. The x axis denotes the lower
bound and the magenta and blue dots represent our bound and that of
Ming et al., respectively. The y axis denotes the entropic uncertainty.
The green line represents the proportion function with a unitary
slope.

randomly generated four-qubit states. The figure shows the
following: our bound is greater than the Renes-Boileau bound
in Eq. (12). Considering the comparison results, it is reason-
able to conjecture that our derived inequality is universal and
optimal.

IV. APPLICATIONS

EUR directly reflects the security of a QKD: a tighter
EUR guarantees a higher quantum secret key rate (QSKR)
and hence signifies higher security to QKD. Our tighter un-
certainty bound is relevant for the security analysis of QKD
protocols in practical many-body systems. Here, we focus on
the security analysis of QKD protocols in practical many-
body systems. There are two honest parts (Alice and Bob)
that share a key by communicating over a public channel
and the key is secret to any third-party eavesdropper (David).
Devetak and Winter [54] proposed that the QSKR K that can
be extracted by Alice and Bob is lower-bounded by

K � S(R̂|D) − S(R̂|B), (32)

FIG. 5. Comparison of our bound and that of Ming et al. us-
ing (BO − BM ) for 2 × 105 four-qubit random states. The x axis
represents the randomly generated four-qubit states and the y axis
represents (BO − BM ).

FIG. 6. Our lower bound versus the Renes-Boileau for 2 × 105

four-qubit random states. The x axis is the randomly generated four-
qubit states, the y axis represents the lower bound BO, and the cyan
line represents Renes-Boileau bound in BRB.

where the eavesdropper (David) prepares a quantum state
ρABD and sends particles A and B to Alice and Bob, respec-
tively, while maintaining D. By virtue of Renes and Boileau’s
result, expressed as S(Q̂|B) + S(R̂|D) � qMU in Eq. (6), we
obtain

K � qMU − S(Q̂|B) − S(R̂|B). (33)

By utilizing S(Q̂|B) � S(Q̂|Q̂′) and S(R̂|B) � S(R̂|R̂′), QSKR
can be rewritten as

K � qMU − S(Q̂|Q̂′) − S(R̂|R̂′). (34)

Considering the lower bound of the tripartite uncertainty rela-
tion in Eq. (8), we obtain a new lower bound for generating
the QSKR, that is,

K̃ � qMU + max {0, δ} − S(Q̂|B) − S(R̂|B). (35)

As no measurement can reduce the entropy of the system, the
lower bound of the QSKR can be improved to

K̃ � qMU + max {0, δ} − S(Q̂|Q′) − S(R̂|R′). (36)

Compared with Eq. (34), the new lower bound of the QSKR
has an additional term max{0, δ}, which is greater than or
equal to zero. Hence, it is verified that K̃ is greater than
K, which means our lower bound enhances the security of
prospective quantum communication networks and thus en-
ables us to efficiently improve security analysis in practical
QKD protocols.

V. CONCLUSION

To summarize, we presented a tighter lower bound of the
tripartite QMA-EUR with the Holevo quantity and derived
a generalized entropic uncertainty relation for multiple ob-
servable measurements in multipartite systems. The tighter
lower bound is essential for processing realistic quantum in-
formation. Additionally, by verifying analytical and numerical
four-qubit states, we conjecture that our bound outperforms
the bounds derived from the results of Ming et al. and
Renes et al. As examples, we analyze the cases of three
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observable measurements in four-qubit pure and mixed sys-
tems, including the GHZ-type states, Werner-type states,
symmetric family of mixed four-qubit states, and randomly
generated four-qubit states, which supports that our derived
relation is universal and optimized compared with previous
works [10,52]. We showed that the generalized entropic un-
certainty relation can support the improvement of the QSK
rate bound in practical QKD protocols, laying foundations
for the exploration of more complex, higher-dimensional
measurements by state-of-the-art entropy-based information
theories. Therefore, we argue that our findings provide in-
depth insight into general entropy-based uncertainty relations

for multiple measurements in multipartite systems and are of
basic importance to the potential applications of QMA-EUR
in quantum information.
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