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We study an open quantum spin chain of arbitrary length with nearest neighbor XX interactions of strength
g, immersed in an external constant magnetic field � along the z direction, whose end spins are weakly
coupled to two heat baths at different temperatures. In the so-called global approach, namely, without neglecting
interspin interactions, using standard weak-coupling limit techniques, we first derive the open chain master
equation written in terms of fermionic mode operators. Then, we focus on the study of the dependence of the
resulting open dynamics from the ratio r ≡ g/�. By increasing r, some of the chain Bohr transition frequencies
become negative; when this occurs, both the generator of the dissipative time evolution and its stationary states
behave discontinuously. As a consequence, the asymptotic spin and heat flows also exhibit discontinuities,
but in a different way: while source terms in the spin flow continuity equation show jumps, the heat flow
instead is continuous but with discontinuous first derivatives with respect to r. These two behaviors might be
experimentally accessible; in particular, they could discriminate between the global and the local approaches to
open quantum spin chains. Indeed, the latter one, which neglects interspin interactions in the derivation of the
master equation, does not show any kind of discontinuous behavior.
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I. INTRODUCTION

Open quantum spin chains have recently received in-
creasing attention as instances of many-body systems driven
by intrinsic interspin interactions and by suitably imposed
dissipative effects at the boundaries. Specific experimental re-
alizations have been reported in scenarios involving ultracold
atoms, light-harvesting complexes, and quantum thermody-
namics at large [1–21].

We dealt with such a scenario in Ref. [22] (see also
Ref. [23]): there, we considered a chain in a constant magnetic
field � along the z axis with XX interspin interactions of
strength g. We did not assume any a priori specific irreversible
modifications of the otherwise unitary chain dynamics; rather,
we derived the open chain dissipative dynamics by coupling
its end spins to two thermal Bosonic baths consisting of
harmonic oscillators in equilibrium at possibly different tem-
peratures. In Ref. [22], however, only energy preserving, or
counterrotating, terms in the spin-bath couplings have been
considered, associated with products of spin raising operators
and annihilation bath operators (see Remark 1). Then, the
standard weak-coupling limit techniques [24–39] have been
applied in the so-called global approach that uses the spec-
tralization of the whole chain Hamiltonian without neglecting
the interspin interactions (e.g., see Refs. [40–50]). As a conse-
quence, new effects emerged, in particular the presence of sink
and source terms in the spin flow continuity equation. Inter-
estingly, these effects are characteristic features of the global

*Corresponding author: benatti@ts.infn.it

approach and disappear in other, simplified derivations of the
open chain dynamics, like in the so-called local approach
that neglects the interspin interaction in the application of the
weak-coupling limit techniques (e.g., see Refs. [51–82]).

In the following, we approach the same physical setting
by using suitable chain fermionic modes b�, b†

� associated
with the chain Bohr transition frequencies ω�, namely, dif-
ferences of chain energies. The global weak-coupling limit
procedure is carried out in the general case of spin-bath
interactions consisting of both energy-preserving (counter-
rotating) and energy-nonpreserving (corotating) terms, the
latter being associated with products of spin raising op-
erators and creation bath operators. The procedure yields
a dissipative irreversible time evolution generated by a
master equation in Gorini-Kossakowski-Sudarshan-Lindblad
(GKSL) form which exhibits discontinuities with respect to
the ratio of the interspin strength to the external magnetic
field. In particular, in the case of a chain-bath coupling
without corotating terms, nontrivial dissipative master equa-
tions emerge only when the Bohr transition frequencies of the
chain overlap with the spectrum of the baths. The underlying
physical mechanism is that dissipation occurs only when Bohr
transition frequencies are in resonance with bath energies;
therefore, if the latter are all positive, only positive Bohr tran-
sition frequencies can give rise to dissipative effects, while the
negative ones contribute to the Lamb-shift corrections to the
chain Hamiltonian, only. The positivity and negativity of the
Bohr transition frequencies depend on the ratio g/�, denoted
by r in the following. In other words, when, by changing r,
a Bohr transition frequency ω� becomes negative, then the
corresponding contribution to the generator changes from the
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sum of a commutator with a Hamiltonian plus a dissipative
term into a purely Hamiltonian one, mitigating the noisy
and decohering impact of the baths. Apparently, a similar
consequence as in the dissipation free subspace scenario is
obtained; however, it is important to notice that, in the present
context, this is an effect due not to a suitable engineering of the
environment so as to benefit from a symmetry of the generator,
but rather it comes from tuning either the interspin interaction
strength or the external magnetic field.

In the following, we shall focus upon the case with coun-
terrotating coupling terms only, whereby the reduced chain
dynamics becomes particularly simple using the standard
Jordan-Wigner fermionic representation. Fermionization in-
deed allows us to analytically study the chain asymptotic
transport properties, as spin and heat flows, as functions of
the ratio r, with the following results:

(1) When all Bohr transition frequencies are positive, there
is a unique stationary state to which all initial chain states
converge asymptotically in time.

(2) When a Bohr transition frequency becomes negative,
the corresponding fermionic mode becomes dissipation free
and time oscillations keep going undisturbed in the corre-
sponding sectors.

(3) The resulting discontinuities of the generator affect
the asymptotic behavior of spin and heat flows: both these
physical quantities exhibit discontinuities; however, while the
source terms in the spin flow asymptotic continuity equa-
tion present jumps, the heat flow is instead continuous, but
with discontinuous first derivatives with respect to r when
positive Bohr transition frequencies become negative.

The structure of the paper is as follows: in Sec. II, we first
write the master equation of the open quantum spin chain by
means of fermionic operators and then study the discontinu-
ous dependence of the generator on the ratio r. In Sec. III,
we first explicitly find the manifold of stationary states and
then discuss the asymptotic behavior of spin and heat flows as
functions of r. Conclusions are drawn in Sec. IV.

II. OPEN XX -SPIN CHAIN OF LENGTH N: FERMIONIC
REPRESENTATION

We shall study a linear quantum spin 1/2 chain of length
N immersed in a constant magnetic field along the z direction
of intensity � > 0, with XX nearest neighbor interactions
of strength g > 0. With open boundary conditions, the chain
Hamiltonian is thus given by

H = g
N−1∑
�=1

(
σ (�)

x σ (�+1)
x + σ (�)

y σ (�+1)
y

)+ �

N∑
�=1

σ (�)
z , (1)

where σ (�)
x,y,z denote the Pauli matrices at site 1 � � � N :

[
σ (�)

x , σ (k)
y

] = δ�k 2 i σ (�)
z ,

(
σ (�)

x,y,z

)2 = I(�), (2)

with I(�) the identity 2 × 2 matrix at site �.
We turn the chain into an open one by coupling its two

end spins, j = 1 on the left and j = N on the right, to two
independent free Bosonic thermal baths with Hamiltonians

(h̄ = 1)

H ( j)
env =

∫ +∞

0
dν ν a

†
j (ν) a j (ν), j = 1, N, (3)

where a j (ν), a
†
j (ν) are Bosonic operators satisfying the

canonical commutation relations

[a j (ν), a†
j′ (ν

′)] = δ j j′ δ(ν − ν ′) .

The coupling between the end spins and the two baths will be
taken of the form

Hint = λ
∑

j=1,N

(σ ( j)
+ C j + σ

( j)
− C

†
j ), (4)

where λ � 1 is a dimensionless coupling constant,

σ
( j)
± ≡ 1

2

(
σ ( j)

x ± iσ ( j)
y

)
(5)

are spin ladder operators at sites 1 and N , while

C j ≡
∫ ∞

0
dν [h j (ν) a j (ν) + k j (ν) a†

j (ν)] (6)

are bath operators with hj (ν) and k j (ν) suitable real smearing
functions.

By standard fermionization methods (see Appendix A), the
Hamiltonian (1) can be put in diagonal form,

H =
N∑

�=1

ω� b†
� b�, ω� := 2 � + 4gcos

(
�π

N + 1

)
, (7)

apart from an unimportant constant term. In the above
expression b�, b†

� are fermionic operators, obeying the anti-
commutation relations

{b�, b†
�′ } = δ��′, {b�, b�′ } = {b†

�, b†
�′ } = 0. (8)

The Bohr transition frequencies ω� are in decreasing order:

ω1 = 2 � + 4gcos

(
π

N + 1

)
� ω2 � · · ·

· · · � ωN = 2 � − 4gcos

(
π

N + 1

)
. (9)

Notice that cos �π
N+1 < 0 when �N+1

2 � < � � N , where �x�
denotes the largest integer smaller than x. Thus, depending
on the ratio r = g/�, some Bohr transition frequency can
become negative. This never occurs if

r � 1

2 cos π
N+1

, (10)

since then ωN � 0. Instead, if p + 1 > �N+1
2 � and the ratio r

is such that

1

2
∣∣cos (p+1)π

N+1

∣∣ � r � 1

2
∣∣cos pπ

N+1

∣∣ , (11)

then ω� � 0 for 1 � � � p, while ω� � 0 for p + 1 � � � N .
The maximum number of negative frequencies, �N

2 �, is ob-
tained when

r >
1

2
∣∣cos

[(⌊
N+1

2

⌋+ 1
)

π
N+1

]∣∣ . (12)
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As shown in Appendix A, the left and right ladder operators
that couple to the baths can be written as

σ
(1)
− =

N∑
j=1

u1 j b j, σ
(N )
− = (−)N̂

N∑
j=1

uN j b j, (13)

where N̂ = ∑N
�=1 b†

�b� is the fermionic number operator and
the coefficients

u�k =
√

2

N + 1
sin

(
�kπ

N + 1

)
, �, k = 1, 2, . . . , N, (14)

form an orthogonal, symmetric matrix U = [uk�]. Then, the
coupling Hamiltonian (4) can be recast as

Hint = λ
∑

j=1,N

N∑
�=1

u j�(b†
j� C j + b j� C

†
j ), (15)

where we set

b1� := b�, bN� := (−1)N̂ b� = −b� (−1)N̂ . (16)

Remark 1. According to the corresponding free Hamilto-
nians, the chain fermionic annihilation operators b� and the
Bosonic bath annihilation operators a j (ν) evolve in time as
follows:

b�(t ) := eitH b� e−itH = e−iω�t b�, (17)

a j (ν, t ) := eitHenv aj(ν) e−itHenv = e−iν t a j (ν), (18)

where j = 1, N and Henv = H (1)
env + H (N )

env .
Therefore, in the coupling Hamiltonian (15) there appear

both corotating contributions b� a j (ν), b†
� a

†
j (ν) and coun-

terrotating ones b� a
†
j (ν), b†

� a j (ν). By setting the smearing
functions k j (ν) = 0, j = 1, N , only the counterrotating con-
tributions remain. One then retrieves the physical context
studied in Ref. [22] where the spin-Bose coupling is indeed
of the form

Hint = λ
∑

j=1,N

N∑
�=1

u j�

∫ +∞

0
dν h j (ν) [b†

j� a j (ν) + b j� a
†
j (ν)].

(19)

A. Weak-coupling limit

As we are interested in the spin chain as an open quantum
system, we shall look at the reduced Markovian dynamics of
the chain. Such an irreversible, dissipative time evolution is
derived by tracing out the two Bosonic baths and by apply-
ing the weak-coupling limit techniques [24–39]. The latter
prescriptions will be performed within the so-called global
approach that does not neglect the spin interactions [22].
Concretely, we shall assume the free Boson baths coupled to
the end spins 1 and N to be in equilibrium Gibbs states at
temperatures T1 ≡ 1/β1 and TN ≡ 1/βN , so that the state of
the environment,

ρenv = e−β1 H1

Tr(e−β1 H1 )
⊗ e−βN HN

Tr(e−βN HN )
, (20)

is invariant under the bath dynamics generated by Henv and
exhibits thermal correlation functions of the form

TrB[ρenva
†
j (ν)ak (ν ′)] = δ jkδ(ν − ν ′) n j (ν) (21)

TrB[ρenva j (ν)a†
k (ν ′)] = δ jkδ(ν − ν ′) [1 + n j (ν)], (22)

with thermal mean occupation numbers

n j (ν) = 1

eβ jν − 1
. (23)

These make sense as mean numbers only if ν � 0: this is
why in (3) one restricts the integration over the positive real
line. Finally, the initial state of chain plus baths is chosen of
the factorized form ρtot (0) = ρ(0) ⊗ ρenv, with ρ(0) an initial
state of the spin chain.

In the presence of thermal correlation functions decaying
on a time scale much faster than the one typical of the spin
chain, which is set by its energy spectrum, one obtains a fully
physically consistent, namely, completely positive dissipative
chain dynamics generated by the so-called GKSL master
equation

∂ρ(t )

∂t
= −i[H + λ2HLS, ρ(t )] + λ2D[ρ(t )] ≡ L[ρ(t )].

(24)
Remark 2. The open chain dynamics is described by maps

γt : ρ 	→ ρ(t ) = γt [ρ], where γt is formally given by exp(tL).
The properties of complete positivity and trace preservation
require them to be of the so-called Kraus-Stinespring form

γt [ρ] =
∑

α

Vα (t ) ρ V †
α (t ), (25)

with operators Vα (t ) such that
∑

α V †
α (t )Vα (t ) = I. Only γt

of such form guarantee not only that chain states are sent
into chain states, but also that the lifted maps γt ⊗ id, with id
the identity map, transform into bona fide states all possible
entangled states of the open spin chain statistically coupled to
an arbitrary n-level system, not subjected to any dynamics. It
turns out that for the dynamical maps γt to be as in (25), the
generator L must be of the GKSL form

L[ρ] = −i[Heff , ρ] +
∑

α

(
Lα ρ L†

α − 1

2
{L†

αLα, ρ}
)

, (26)

where Heff is the sum of the given system Hamiltonian plus
a Lamb-shift correction due to the interaction with the en-
vironment. Starting from a microscopic chain-environment
interaction, a generator of the GKLS form can in general only
be obtained by applying a rigorous mathematical procedure
consisting of a number of approximations known under the
collective name of weak-coupling limit.

The generator L in (24) consists of the standard commu-
tator with the chain Hamiltonian corrected by a Lamb-shift
term HLS = ∑

j=1,N H ( j)
LS and a purely dissipative term D =∑

j=1,N D( j). Their explicit expressions are derived in Ap-
pendix B: the Lamb-shift term consists of an off-diagonal (in
�) contribution from all pairs of positive and negative Bohr
transition frequencies ω� in (7) that satisfy ω� + ω�′ = 0, for
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� �= �′,

H (1)
LS =

∑
j=1,N

N∑
�,�′=1

δω�+ω�′ ,0 u j� u j�′

× P
∫ +∞

0
dν

h j (ν) k j (ν)

ν − ω�

(b†
j� b†

j�′ + b j�′ b j�), (27)

where P denotes the principal value and of a diagonal contri-
bution from all Bohr transition frequencies,

H (2)
LS =

∑
j=1,N

N∑
�=1

u2
j� P

∫ +∞

0
dν[1 + 2n j (ν)]

×
(

k2
j (ν)

ν + ω�

+ h2
j (ν)

ω� − ν

)
b†

j� b j�. (28)

The dissipative term D[ρ] of the generator is the sum of two
terms: both of them are in GKSL form; however, the first
one, D(1)[ρ], consists of terms associated with pairs of Bohr
transition frequencies ω� and ω�′ such that ω� + ω�′ = 0, with
ω� � 0. As explained in Appendix B, these pairs result from
the presence of the corotating terms in the interaction Hamil-
tonian (4) and can exist only in correspondence to specific
values of the ratio r such that

r = cos

(
π�′

N + 1

)
− cos

(
π�

N + 1

)
. (29)

If, for a given value of r, such pairs of Bohr transition frequen-
cies exist, the associated GKSL dissipator reads

D(1)[ρ] = 2π
∑

j=1,N

N∑
�:ω��0

�′ :ω
�′ =−ω�

u j� u j�′ h j (ω�) k j (ω�)[1 + 2n j (ω�)]

[
b†

j�′ ρ b†
j� − 1

2
{b†

j� b†
j�′ρ} + b j�′ ρ b j� − 1

2
{b j� b j�′ , ρ}

]
. (30)

Instead, the counterrotating terms provide diagonal (with respect to �) contributions from all Bohr transition frequencies, though
with different GKSL terms for positive and negative ones, selected by θ (ω�) and θ (−ω�), respectively:

D(2)[ρ] = 2π
∑

j=1,N

N∑
�=1

u2
j�

{
θ (ω�) h2

j (ω�)

[
(1 + n j (ω�))

(
b j� ρ b†

j� − 1

2
{b†

j� b j�, ρ}
)

+ n j (ω�)

(
b†

j� ρ b j� − 1

2
{b j� b†

j�, ρ}
)]

+ θ (−ω�) k2
j (−ω�)

[
(1 + n j (−ω�))

(
b†

j� ρ b j� − 1

2
{b j� b†

j�, ρ}
)

+ n j (−ω�)

(
b j� ρ b†

j� − 1

2
{b†

j� b j�, ρ}
)]}

. (31)

Setting the smearing functions k j (ν) = 0, the spin-Bose coupling becomes as in (19), without corotating terms. Then, the
dissipative part of the GKSL generator in (24) reduces to just D(2)[ρ] with only positive Bohr transition frequency contributions:

D[ρ] =
∑

�:ω��0

D�[ρ]. (32)

Therefore, the whole generator L splits into the sum

L[ρ] =
N∑

�=1

L�[ρ] (33)

of N generators, one for each fermionic mode, where

L�[ρ] = −i
[
H (�)

λ , ρ
]

when ω� < 0 (34)

L�[ρ] = −i
[
H (�)

λ , ρ
]+ λ2D�[ρ] when ω� � 0. (35)

Moreover, noting that, from (16), b†
j� b j� = b†

�b�,

H (�)
λ = �

(�)
λ b†

� b� with �
(�)
λ = ω� + λ2 ω̃� and (36)

ω̃� :=
∑

j=1,N

u2
j� P

∫ +∞

0
dν[1 + 2n j (ν)]

h2
j (ν)

ω� − ν
, (37)

while D� = ∑
j=1,N D j�, where

D j�[ρ] = 2π u2
j� h2

j (ω�)
[
(1 + n j (ω�))

(
b j� ρ b†

j� − 1
2 {b†

j� b j�, ρ})+ n j (ω�)
(
b†

j� ρ b j� − 1
2 {b j� b†

j�, ρ})]. (38)

Because of the quadratic features of the L�, it is straight-
forward to show that, for � �= �′, L�L�′ = L�′L�; as a
consequence, the reduced dynamics consists of independent,
namely, commuting, single-mode dissipative time evolutions,

one for each of the fermionic modes:

γt = et L =
N∏

�=1

γ
(�)

t , γ
(�)

t = exp(t L�). (39)
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Remark 3. In Appendix C it is shown that the generator
with contributions as in (35) corresponds to the one derived
in Ref. [22]. However, the mode-local structure of the re-
duced dynamics expressed by means of the mode operators
{b�, b†

�}N
�=1 gets lost when using the spin representation of the

generator via (A3) and (A5) in Appendix A.

B. Generator discontinuities

Both dissipative contributions D(1) in (30) and D(2) in (31)
contain step functions that select which Bohr frequencies ω�

do actually contribute depending on the ratio r. More pre-
cisely, the dissipative term D(1) contains only the step function
θ (ω�), so that when ω� becomes negative, the corresponding
contribution disappears from D(1). As regards D(2), here both
negative and positive frequencies contribute. Therefore, the
kind of step discontinuity is different: if, by varying r, ω�

becomes negative, then its contribution, initially of the form
related to the smearing function h2

j (ω�), now corresponds to
the smearing function k2

j (−ω�), after suitably extending them
to the entire real axis. The opposite transition occurs when
−ω� turns from negative to positive. Thus, the generator L
may also become discontinuous with respect to the ratio r
not because of the disappearance of some dissipative contri-
butions, but rather because, in general, h j (ω�) �= k j (−ω�).

In the following, we shall concentrate on an interaction
Hamiltonian (15) without corotating terms, thus on a gen-
erator L consisting of terms as in (35). However, unlike in
Ref. [22], we shall not assume the Bohr transition frequencies
to be all positive. Rather, we shall study the asymptotic prop-
erties of the dissipative dynamics when, upon varying r, Bohr
transition frequencies become negative and can thus only con-
tribute to the Lamb-shift Hamiltonian. Indeed, as soon as r, for
some �, becomes larger than 2| cos �π

N+1 |, ω� becomes negative
and the generator shows a discontinuous change since the
corresponding dissipative contribution D�[ρ] does not appear
any longer in D [see (34) and (35)]. In the following, we shall
restrict to this scenario and leave for further investigations the
consequences of the discontinuities due to corotating terms in
the interaction Hamiltonian.

III. STATIONARY STATES AND TRANSPORT
PROPERTIES

In order to inspect how the step-discontinuities affect the
physics of the open spin chain, we shall concentrate on its
asymptotic transport properties. To this purpose, in the fol-
lowing we shall first analytically characterize the structure of
the stationary states and their dependence on the ratio r. Then,
we shall investigate the tendency to equilibrium and, finally,
the asymptotic properties of spin and heat flows.

A. Stationary states

In Appendix D, it is shown that the stationary states of the
dynamics generated by (33) which satisfy L[ρ] = 0 form a
convex set with the following structure (for the underlying
theory, see Refs. [83–88]). There also their properties are
discussed.

If all frequencies ω� are positive so that all contribute to the
dissipative part of the generator L, there is a unique stationary

state ρ∗ of the form

ρ∗ =
N∏

�=1

ρ∗(ω�), (40)

where

ρ∗(ω�) = [η∗(ω�) + ζ ∗(ω�)] b†
� b� + η∗(ω�) b� b†

� (41)

with

η∗(ω�) = C(ω�)

C(ω�) + C̃(ω�)
, (42)

ζ ∗(ω�) = C̃(ω�) − C(ω�)

C(ω�) + C̃(ω�)
(43)

and

C(ω�) = 2π
∑

j=1,N

h2
j (ω�) u2

j� [1 + n j (ω�)], (44)

C̃(ω�) = 2π
∑

j=1,N

h2
j (ω�) u2

j� n j (ω�). (45)

Remark 4. By comparing their spectra, the faithful state
ρ∗ in (40) can easily be seen to correspond to the stationary
state computed in Ref. [22]. Furthermore, ρ∗ is faithful, for
it has 2N nonvanishing eigenvalues obtained by all possible
products of η∗(ω�) and η∗(ω�) + ζ ∗(ω�) with different � [see
Appendix D for more details, in particular Eqs. (D28) and
(D29)]. Such a state remains stationary even when some Bohr
transition frequencies become negative and thus do not con-
tribute with their own dissipator D� to the generator (33).
Indeed, in such a case only the commutators with the diagonal
Hamiltonians contribute, and certainly the states ρ∗(ω�) in
(40) make all these commutators vanish.

Instead, if the Bohr transition frequencies ω� are negative
for p + 1 � � � N , the stationary states make a convex man-
ifold whose extreme points are given by

ρ∗
αp

=
⎛⎝ p∏

j=1

ρ∗(ω j )

⎞⎠⎛⎝ N∏
�=p+1

P(�)
α�

⎞⎠, (46)

where

P(�)
α�

:=
{

b†
� b� α� = 0

1 − b†
� b� = b� b†

� α� = 1
. (47)

Different stationary asymptotic states are reached by properly
choosing the initial states and letting them evolve for long
times. In order to better figure out the variety of possibili-
ties opened up by the presence of negative Bohr transition
frequencies, let us consider the case when r is varied such that
only the smallest one, ωN , becomes negative. When ωN > 0,
all initial states ρ tend in time to ρ∗; if r makes ωN < 0, there
will be initial states still asymptotically evolving into ρ∗, now
being characterized by the N-mode invariant state ρ(−|ωN |)
as in (D40), and other initial states which will instead reach
stationary states of the form [see (D15), (D20), and (46)]

ρstat =
[

N−1∏
�=1

ρ∗(ω�)

]
[μ b†

N bN + (1 − μ) bN b†
N ]. (48)
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As we shall see in the next section, in the presence of nega-
tive frequencies there can also be initial states which do not
converge at all, but instead keep oscillating in time.

B. Dissipation-free sectors

When the Bohr transition frequencies ω� from � = p + 1
to � = N are negative, using (39) and (36), the reduced chain
dynamics reads

ρ 	→ γp(t )[ρ] =
(

p∏
�=1

etL�

)
◦ Ũp(t )[ρ], (49)

where

Ũp(t )[ρ] = e−it H̃p(λ) ρ eitH̃p(λ), (50)

with H̃p(λ) as in (D9). Let us introduce the projectors

Pp ≡
∑
αp

Pαp (51)

onto the subspaces Hp linearly spanned by the eigenvectors
of the Hamiltonian (D9) [compare (C9) in Appendix C]. They
read:

|np〉 = (b†
p+1)np+1 · · · (b†

N )nN |vac〉, (52)

where np = (0, 0, . . . , 0, np+1, . . . , nN ).
Let ρp be a state supported by Hp so that

Pp ρp Pp = ρp. (53)

For 0 � � � p, the invariant states ρ∗(ω�) in (40) satisfy
ρ∗(ω�)|np〉 = η∗

� |np〉. Therefore, [ρ∗(ω�), Pp] = 0 so that op-
erators of the form

ρ =
[

p∏
�=1

ρ∗(ω�)

]
ρp (54)

are positive and normalized, hence bona fide states of the open
quantum chain. Furthermore, from (49) it follows that any
such initial state evolves in time according to

γp(t )[ρ] =
[

p∏
�=1

ρ∗(ω�)

]
e−i t H̃p(λ) ρp ei t H̃p(λ), (55)

with H̃p(λ) as in (D9). Therefore, on one hand, not all initial
states do converge to a state in the stationary manifold. On the
other hand, by varying the ratio r and thus changing the sign
of the frequencies, one selects fermionic modes whose states
are not affected by dissipation and maintain all coherences
associated with them. It is important to emphasize that such
a long-time coherent behavior is not obtained by engineering
the environment, as in a dissipation-free subspace scenario,
but rather by suitably tuning the interspin interaction relative
to the external magnetic field.

C. Generator discontinuities and spin flow

In order to investigate the physical consequences of
the dissipative generator discontinuities, we shall study the
asymptotic spin flow currents with respect to the convex set
generated by the stationary states ρ∗

αp
in (46).

The spin flow at site k = 1, 2, . . . , N along the spin chain
corresponds to the rate of change in time of the average of σ (k)

z
given by the quantity

d

dt
Tr
[
σ (k)

z ρ(t )
] = Tr

[
σ (k)

z L[ρ(t])
]

= Tr
[
Ldual

[
σ (k)

z

]
ρ(t )

]
. (56)

From (D4), the term with the commutator gives rise to the
difference of two spin currents which corresponds to the cur-
rent divergence in the continuous case. Instead, the dissipative
contributions can only be interpreted as sink and source terms.
Our aim is to study how their asymptotic behavior and that
of the currents depend the stationary states. Therefore, we
assume that ωp � 0 and ωp+1 < 0, choose ρ(t ) = ρ∗

αp
in (56),

and then consider generic elements in the stationary convex
set whose extremal points are the states ρ∗

αp
. In this case,

Ldual = Lp [see (D4)] and the left-hand side of (56) vanishes
for Lp[ρ∗

αp
] = 0. However, the mean values of currents and

sink and source terms behave quite differently: while the
current stationary mean values both independently vanish, the
sink and source terms asymptotic mean values instead do not,
but compensate each other.

1. Hamiltonian spin currents

In order to clarify these different behaviors, by using (A2)
and (A5) in Appendix A, we rewrite

σ (k)
z = 2

N∑
p,q=1

ukp ukq b†
p bq − I, (57)

and, using (36), we compute

i
[
H (λ), σ (k)

z

] = 2i
N∑

p�=q=1

ukpukq �
(p)
λ (b†

pbq + bpb†
q). (58)

It proves convenient to express the fermionic operators b†
p, bq

in terms of the fermionic operators a†
j , ak introduced in (A3)

of Appendix A. Then, using the unitarity of the diagonalizing
symmetric orthogonal matrix U = [ujk], one writes the spin
flow at site k as minus the difference of two currents,

i
[
H (λ), σ (k)

z

] = 2i
N∑

p=1
p�=k

(
�U

λ

)
pk (ap a†

k + a†
p ak ) (59)

= −(J (>k)
λ − J (<k)

λ

)
with (60)

J (<k)
λ := 2i

k−1∑
p=1

(
�U

λ

)
pk (ap a†

k + a†
p ak ) (61)

J (>k)
λ := 2i

N∑
p=k+1

(
�U

λ

)
pk (ak a†

p + a†
k ap), (62)

where we set �U
λ = U diag[�(�)

λ ]U , with �
(�)
λ the Bohr tran-

sition frequencies in (36).
Notice that by switching off the coupling with the

baths and thus setting λ = 0, �
(�=0)
λ = ω�; hence from (A7)

in Appendix A and (7) one gets that the matrix entries
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of �U
0 are(

�U
λ=0

)
pk

= 2�δpk + 2g (δp,k+1 + δp,k−1). (63)

Therefore, with λ = 0 one retrieves the standard spin currents
flowing through site k

J (<k)
0 = 4ig (ak−1 a†

k + a†
k−1 ak ), (64)

J (>k)
0 = 4ig (ak a†

k+1 + a†
k ak+1). (65)

Remark 5. Using (A2) in Appendix A to pass to the spin
formalism, the previous currents become

J (<k)
0 = 4ig (σ (k−1)

− σ
(k)
+ − σ

(k−1)
+ σ

(k)
− ), (66)

J (>k)
0 = 4ig (σ (k)

+ σ
(k+1)
− − σ

(k)
− σ

(k+1)
+ ). (67)

Instead, the spin currents with λ �= 0 read

J (<k)
λ = 2i

k−1∑
p=1

(
�U

λ

)
pk

[
σ

(p)
−

k−1∏
�=p+1

(− σ (�)
z

)
σ

(k)
+

− σ
(p)
+

k−1∏
�=p+1

(− σ (�)
z

)
σ

(k)
−

]
, (68)

J (>k)
λ = 2i

k−1∑
p=1

(
�U

λ

)
pk

[
σ

(k)
−

k−1∏
�=p+1

(− σ (�)
z

)
σ

(p)
−

− σ
(k)
+

k−1∏
�=p+1

(− σ (�)
z

)
σ

(p)
+

]
. (69)

Thus, unlike for closed spin chains, the spin currents through
site k exhibit non-nearest-neighbor contributions due to the
spin-spin interactions mediated by the baths: these effects
indeed come from the Lamb-shift correction to the chain
Hamiltonian and disappear if λ = 0.

Because of the simple product form of the stationary states
ρ∗

αp
in (46), in order to evaluate the asymptotic mean values

of the currents, we reinsert the fermionic operators bk , b†
k into

(61) and (62). The expressions of the currents then become

J (<k)
λ = 2i

k−1∑
p=1

N∑
j,�=1

u j pu�k
(
�U

λ

)
pk (b j b†

� + b†
j b�), (70)

J (>k)
λ = 2i

N∑
p=k+1

N∑
j,�=1

u j pu�k
(
�U

λ

)
pk (b†

j b� + b j b†
�). (71)

Since Tr[ρ∗
αp

(b j b†
� + b†

j b�)] does not vanish if and only if j =
� and

∑N
j=1 u j pu jk = δpk , both currents have vanishing mean

values with respect to the extremal stationary states ρ∗
αp

and
thus, because of (D20), with respect to any stationary state.

2. Sink and source terms

We now show that, unlike the currents, the sink and source
terms associated with the site k do not asymptotically vanish
in any of the stationary states ρ∗

αp
associated with ω� < 0 from

� = p + 1 to � = N .

Using the fermionic commutation relations and (16), inser-
tion of (57) into (38) yields sink and source terms at site k of
the form

S j,k
({ω�}p

�=1

)
:=

p∑
�=1

Ddual
j�

[
σ (k)

z

] = 2π

p∑
�=1

u2
j�uk�h2

j (ω�)

×
N∑

q=1

ukq{n j (ω�)(bqb†
� + b�b†

q) (72)

− [1 + n j (ω�)] (b†
�bq + b†

qb�)}. (73)

Due to the quadratic structure in b� and b†
� of all single-mode

states contributing to ρ∗
αp

, when computing the mean values
of the above observables with respect to such states, one is
forced to set q = �. Therefore, only thermal expectations with
respect to ρ∗(ω�) corresponding to positive Bohr transition
frequencies are involved. Remarkably, the dependence on the
multiindices αp disappears; consequently, all stationary states
in the convex set spanned by the extreme points ρ∗

αp
—for

instance, the faithful stationary state ρ∗ itself—give the same
mean values to sink and source terms. Indeed, using that the
symmetric real coefficients in (A6) of Appendix A are such
that u2

1� = u2
N�, from (40), (44), and (45), one computes

Q∗
1,k

({ω�}p
�=1

)
:= Tr

[
ρ∗

αp
S1,k

({ω�}p
�=1

)]
= 4π

p∑
�=1

u2
k� u2

1� h2
1(ω�) h2

N (ω�)

× n1(ω�) − nN (ω�)

N�

, (74)

Q∗
N,k

({ω�}p
�=1

)
:= Tr

[
ρ∗

αp
SN,k

({ω�}p
�=1

)]
= 4π

p∑
�=1

u2
k� u2

N� h2
1(ω�) h2

N (ω�)

× nN (ω�) − n1(ω�)

N�

, (75)

where

N (ω�) ≡ h2
1(ω�)[1 + 2n1(ω�)] + h2

N (ω�)[1 + 2nN (ω�)].
(76)

The above two contributions, Q∗
1,k ({ω�}p

�=1) and
Q∗

N,k ({ω�}p
�=1), are the opposite of one another, as they

should be in a stationary state; which of them is a sink and
which a source depends on the bath temperatures and on
the overall sign of the two right-hand sides of the above
expressions. If all frequencies are positive and thus the sum
goes from � = 1 to N , they reduce to those found in Ref. [22].

The discontinuities of the generator affect the behavior
of sinks and sources as functions of the chain parameter r.
Indeed, suppose one starts with positive Bohr transition fre-
quencies ω1, . . . , ωp and varies r, turning ωp from positive
to negative while keeping ω� > 0 from � = 1 to � = p − 1.
When ωp = 0, if the bath temperatures T1 �= TN , the dif-
ference n1(ωp) − nN (ωp) and the coefficient Np diverge as
ω−1

p . Therefore, by considering continuous smearing func-

tions, S(k)
N,p depends continuously on the change from ωp > 0

to ωp < 0.
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FIG. 1. N = 8 open spin chain with � = 20, T1 = 10, and TN =
0: spin flow source term (dashed-dotted curve) through site k = 2
and heat flow (solid curve) as functions of r in arbitrary units; jumps
(source term in the spin flow) and first derivatives discontinuities
(heat flow) appear for values of r at which ω8, ω7, ω6, and ω5

progressively become negative.

According to Secs. III A and III C, the mean values of sink
and source terms at a fixed number of negative Bohr transition
frequencies do not depend on the stationary state with respect
to which they are computed; however, they are expected to
behave discontinuously when the number of negative Bohr
transition frequencies changes. This behavior is shown by
the dashed-dotted curve in Fig. 1, which plots the sink term
at site k = 2 as a function of the ratio r for fixed magnetic
field � = 20, left bath temperature T1 = 10, and right bath
temperature TN = 0: jumps appear for values of r at which the
four Bohr transition frequencies ω8 � ω7 � ω6 � ω5 change
from positive to negative. The underlying analytical features
of such a behavior are illustrated by means of the following
example.

Example 1. For N = 3 one has the following Bohr transi-
tion frequencies:

ω1 = 2�(1 + r
√

2) � ω2 = 2 � � ω3 = 2�(1 −
√

2r)

so that ω1,2 > 0, and ω3 � 0 when 1√
2

� r < +∞. If r � 1√
2
,

ω1 � ω2 � ω3 � 0 and there exists a unique stationary state
of the form

ρ∗ = ρ∗(ω1) ρ∗(ω2) ρ∗(ω3), (77)

with ρ∗(ω�) as given in (41).
Instead, when r � 1√

2
there appear two extremal stationary

states,

ρ∗
0 = ρ∗(ω1) ρ∗(ω2) b†

3b3, ρ∗
1 = ρ∗(ω1) ρ∗(ω2) b3b†

3. (78)

Notice that, independently of the sign of ω3,

ρ∗ = C̃(ω3)

C(ω3) + C̃(ω3)
ρ∗

0 + C(ω3)

C(ω3) + C̃(ω3)
ρ∗

1 (79)

is a faithful stationary state, the main difference being that
when ω3 � 0, ρ∗

0,1 are no longer stationary. When r � 1/
√

2

so that ω3 � 0, the sink-source asymptotic mean values com-
puted with respect to ρ∗ in (77) are

Q∗
1,k

({ω�}3
�=1

) =
2∑

�=1

λk (ω�)
n1(ω�) − nN (ω�)

N (ω�)

+ λk (ω3)
n1(ω3) − nN (ω3)

N (ω3)
(80)

where λk (ω�) ≡ 4π u2
k� u2

1� h2
1(ω�) h2

N (ω�). If ω3 → 0+, one
gets

lim
ω3→0+

Q∗
1,k

({ω�}3
�=1

) =
2∑

�=1

λk� (ω�)
n1(ω�) − nN (ω�)

N (ω�)

+π ν

(
1

β1
− 1

βN

)
, (81)

where

ν ≡ 2π u2
k3 u2

13 h2
1(0) h2

N (0)
h2

1 (0)
β1

+ h2
N (0)
βN

. (82)

When ω3 < 0, because of (78), all the asymptotic station-
ary sink-source terms do not depend on ω3 and all equal
Q∗

1,k ({ω�}2
�=1). Thus, if the smearing functions h1,N (0) �= 0,

they exhibit a same jump at ω3 = 0:

lim
ω3→0+

Q∗
1,k

({ω�}3
�=1

)− lim
ω3→0−

Q∗
1,k

({ω�}3
�=1

)
= 2π ν

(
1

β1
− 1

βN

)
. (83)

D. Generator discontinuities and heat flow

The coupling of the chain end spins to the two baths makes
heat coming in and out of the chain, depending on the tem-
perature difference. According to quantum thermodynamic
wisdom [41,42], the heat flow associated with the coupling
of the chain to a given bath is due to the variation of the chain
state due to that coupling:

H(t ) := Tr

(
dρ(t )

dt
H

)
= Tr(L[ρ(t )] H ). (84)

Because of the form (D2) of the Hamiltonian H (λ) in the
generator, only the dissipative part of the generator contributes
to the heat flow:

H(t ) := Tr(D[ρ(t )] H ) = Tr(ρ(t )Ddual[H]). (85)

With respect to the invariant states in (46), the stationary heat
flows are computed to be

H∗
1

({ω�}p
�=1

) ≡ Tr

(
ρ∗

αp

p∑
�=1

Ddual
1� [H]

)
= −H∗

N

({ω�}0
�=1

)
=

p∑
�=1

λ(ω�) ω�

n1(ω�) − nN (ω�)

N (ω�)
, (86)

where λ(ω�) ≡ 4π u2
1� u2

N� h2
1(ω�) h2

N (ω�) and N (ω�) is as in
(76). The two heat flows need not separately vanish, but com-
pensate each other at stationarity, and their sign, if positive,
corresponds to heat flowing into the chain from the bath, or to
heat flowing out of the chain and into the bath.
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Like for the spin flow, if all frequencies are positive and
thus the sums in (86) go from � = 1 to N , the heat flow reduces
to the one found in Ref. [22]. Also, in the presence of negative
Bohr transition frequencies, the asymptotic heat flow is the
same for all states in the stationary manifold. However, unlike
the spin flow source terms in (74) and (75), the heat flow does
not depend on the chain sites; indeed, it is associated with the
first and last spins being coupled to the baths. Moreover, it
depends differently on the Bohr transition frequencies of the
contributing modes and vanishes when ω� → 0. Therefore,
contrary to sink and source terms, the heat flow does not
exhibit jumps when Bohr transition frequencies change sign.
Indeed, in the setting of Example 1, one has

lim
ω3→0+

H∗
1

({ω�}3
�=1

) =
2∑

�=1

λ(ω�) (ω�)
n1(ω�) − nN (ω�)

N (ω�)

+ lim
ω3→0+

λ(ω3) ω3

(
1

β1
− 1

βN

)
, (87)

and the last limit vanishes for suitably continuous smearing
functions. Such an asymptotic behavior of the heat flow as a
function of the ratio r is manifest in the solid curve in Fig. 1,
which shows that the heat flow exhibits discontinuities in its
first derivatives with respect to r.

IV. CONCLUSIONS

We studied an arbitrarily long XX open quantum spin chain
with the end spins weakly coupled to two Bosonic thermal
baths by means of both energy-preserving (counterrotat-
ing) interaction terms and energy-nonpreserving (corotating)
terms. Therefore, we did not assume a priori given dissipative
boundaries, but rather derived the irreversible chain dynamics
from specific microscopic couplings by means of standard
weak-coupling techniques. These latter have been applied
within the so-called global approach that uses the full inter-
spin interactions. They provide a generator of the spin chain
dissipative reduced dynamics that decomposes into a sum of
independent generators, one for each fermionic mode and
quadratic in the respective creation and annihilation operators.

Then we focused on the case where only energy-preserving
(counterrotating) spin-Boson interactions are present. In such
a case, since by varying the ratio r = g/� between the spin
coupling strength g and the magnitude � of the external
magnetic field some of the chain Bohr transition frequencies
can be made negative, the associated contributions to the
dissipative generator become purely unitary, thus contributing
reversibly to the reduced dynamics. This phenomenon is due
to the fact that the presence of the baths can give rise to
dissipation only when there are resonances between the chain
Bohr transition frequencies and the bath energies. Since in the
case of harmonic baths in thermal equilibrium, their energies
are positive, there cannot be such resonances. The associ-
ated fermionic degrees of freedom then become dissipation
free; however, unlike within the decoherence-free subspace
scenario, such coherent behaviors emerge not through a ma-
nipulation of the environment but rather because of a tuning
of the chain physical parameters.

The discontinuities of the generator manifest themselves
in the structure of the stationary states: there is a unique sta-

tionary state when all Bohr transition frequencies are positive,
while, at each change of sign of one of them, the dimension
of the convex set of stationary states increases by a power of
2 because each extremal state bifurcates into two new ones.

Moreover, the discontinuities in the generator reveal them-
selves in the peculiar behavior of asymptotic spin and heat
flows. Indeed, the spin flow exhibits jumps at those values of
the ratio r at which Bohr transition frequencies change signs,
while the heat flow is continuous there with discontinuous first
derivatives with respect to r. These two different behaviors
could be experimentally investigated in any experimental set-
ting that could implement the XX-spin chain coupled to the
heat baths at different temperatures.

All discontinuities disappear if one approaches the trans-
port properties of open quantum spin chain from the so-called
local point of view that derives the master equation by ne-
glecting the interspin couplings. Therefore, an experimental
check of the emergence or not at long times of jumps (cusps)
in the spin (heat) flow might provide access to the regions of
applicability of the two approaches in terms of the chain phys-
ical parameters and the bath temperatures and thus possibly
discriminate between them.
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APPENDIX A: DIAGONALIZATION OF THE SPIN CHAIN
HAMILTONIAN

Using the spin ladder operators in (5), the Hamiltonian in
(1) reads

H = �

N∑
�=1

σ (�)
z + 2g

N−1∑
�=1

(σ (�)
+ σ

(�+1)
− + σ

(�)
− σ

(�+1)
+ ). (A1)

By means of the Jordan-Wigner transformation [89], one in-
troduces the fermionic annihilation and creation operators a j ,
a†

j such that

a j =
⎡⎣ j−1∏

k=1

(− σ (k)
z

)⎤⎦ σ
( j)
− , (A2)

σ
( j)
− =

j−1∏
k=1

(−1)a†
k ak a j, σ ( j)

z = 2 a†
j a j − 1. (A3)

Then, the spin Hamiltonian (A1) becomes a fermionic one,
H = − N � + H̃ , where

H̃ = 2�

N∑
j=1

a†
j a j + 2g

N−1∑
j=1

(a†
j a j+1 + a†

j+1a j ). (A4)

As shown in Ref. [22], H can then be set in diagonal form as
in (7), by means of the fermionic operators

b� :=
N∑

j=1

u� j a j, a j =
N∑

�=1

u� j b�, (A5)
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with coefficients

u�k =
√

2

N + 1
sin

(
�kπ

N + 1

)
, (A6)

forming an orthogonal and symmetric matrix U = [uk�] which
is such that

N∑
�=1

ui�u j� 2 cos

(
π�

N + 1

)
= δi, j−1 + δi, j+1. (A7)

It then follows from (A3) that

σ
(1)
− =

N∑
�=1

u1� b�, (A8)

while, since (−1)a†
k ak ak = (1 − 2a†

k ak )ak = ak ,

σ
(N )
− = (−1)N̂ aN = (−1)N̂

N∑
�=1

uN� b�, (A9)

where N̂ is the number operator,

N̂ =
N∑

�=1

a†
�a� =

N∑
�=1

b†
�b� =

N⊗
j=1

I( j) + σ
( j)
z

2
. (A10)

APPENDIX B: DERIVATION OF THE OPEN SPIN CHAIN
MASTER EQUATION

Given the Hamiltonian Htot = H + Henv + Hint, where H
is the chain Hamiltonian in (7), Henv = H (1)

env + H (N )
env the envi-

ronment Hamiltonian with H (1,N )
env as in (3), and Hint in (15) the

chain-baths interaction, a reduced dynamics for the spin chain
alone which is free from physical inconsistencies is obtained
via the so-called Davies prescription [33]. Roughly speaking
[37], it amounts to performing an ergodic average on top of the
second-order (in λ) and Markovian approximations. It yields a
dissipative dynamics consisting of a one-parameter semigroup
of completely positive maps γt = exp (tL). The λ2 correction

L̃[ρ] = −iλ2 [HLS, ρ] + λ2D[ρ] (B1)

in the generator L (24) is obtained by means of the following
ergodic average:

L̃[ρ] = − lim
T →+∞

1

T

∫ T

0
dτ

∫ +∞

0
dt eiτH

× Trenv ([Hint (t, 0), [Hint, e−iτH ρeiτH ⊗ ρenv]]) e−iτH

= − lim
T →+∞

1

T

∫ T

0
dτ

∫ +∞

0
dt

× Trenv ([Hint (t, τ ), [Hint (0, τ ), ρ ⊗ ρenv]]),

(B2)

where ρenv is an environment equilibrium state as in (20) and

Hint (t, τ )

= ei(t+τ )H ⊗ eitHenv Hint e−i(t+τ )H ⊗ e−itHenv

= λ
∑

j=1,N

N∑
�=1

u j�[b†
j�(t + τ )C j (t ) + b j�(t + τ )C†

j (t )].

(B3)

In the above expression, using [H, N̂] = 0, (17) and (16), one
sets

b1�(t + τ ) = e−i(t+τ )ω� b1�, (B4)

bN�(t + τ ) = ei(t+τ )ω� bN�, (B5)

and, by means of (18) and (6),

C j (t ) =
∫ ∞

0
dν [h j (ν) e−itν a j (ν) + k j (ν) eitν a

†
j (ν)]. (B6)

Inserting Hint (t, τ ) and Hint (t, 0) into the double commutator
in (B2) yields the appearance of oscillating terms of the form

e±iτ (ω�+ω�′ ), e±iτ (ω�−ω�′ ) (B7)

and

e±it (ω�+ν), e±it (ω�−ν). (B8)

The ergodic averages of the oscillating terms (B7) do not van-
ish only if ω� + ω�′ = 0 and ω� − ω�′ = 0. Using the explicit
expressions (7) of the Bohr transition frequencies, while the
second condition forces � = �′, the second one implies the
transcendental equation

cos

(
π�′

N + 1

)
− cos

(
π�

N + 1

)
= �

g
= 1

r
. (B9)

Such a relation is satisfied by 1 � � �= �′ � N , only for spe-
cific values of the ratio r. Furthermore, the integration over
t in (B2) involves the oscillating terms (B8) and yields the
distributions∫ +∞

0
dt e±it (ω�+ν) = πδ(ν + ω�) ± iP

1

ν + ω
, (B10)∫ +∞

0
dt e±it (ω�−ν) = πδ(ν − ω�) ∓ iP

1

ν − ω
. (B11)

Using the correlation functions (21) and (22), one of the two
integrations over the bath energies ν and ν ′ coming from the
double commutator can be eliminated. The remaining integra-
tion, over ν, say, can be handled by means of the Dirac deltas
in (B10) and (B11). Notice that, because of the positivity
of the spectrum of the environment Hamiltonian, δ(ν + ω�)
selects negative Bohr transition frequencies and δ(ν − ω�)
nonnegative ones.

Instead, the principal value terms in (B10) and (B11) do
not discriminate between positive and negative Bohr transition
frequencies and give rise to Lamb shift corrections to the chain
Hamiltonian. Collecting all these contributions, straightfor-
ward calculations finally yield the expressions (27),(28), (30),
and (31).
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APPENDIX C: COMPARISON WITH REF. [22]

In Ref. [22], the generator L in (24) is expressed in terms of
Lindblad operators Aj (ω), A†

j (ω), j = 1, N , [see expressions
(C15) and (C16) below] such that the dissipative contribution
reads

D[ρ(t )] = λ2
∑

j=1,N

∑
�:ω��0

D( j)
ω�

[ρ], (C1)

where

D( j)
ω�

[ρ] = C( j)
ω�

[
Aj (ω�)ρA†

j (ω�) − 1
2 {A†

j (ω�)Aj (ω�), ρ}]
(C2)

+ C̃( j)
ω�

[
A†

j (ω�)ρAj (ω�) − 1
2 {Aj (ω�)A†

j (ω�), ρ}],
(C3)

with coefficients

C( j)
ω�

= 2π [h j (ω�)]2 [n j (ω�) + 1], (C4)

C̃( j)
ω�

= 2π [h j (ω�)]2 n j (ω�). (C5)

Instead, the Lamb-shift correction reads

HLS =
∑

j=1,N

N∑
�=1

[
S( j)

ω A†
j (ω�)Aj (ω�) + S̃( j)

ω�
Aj (ω�)A†

j (ω�)
]
,

(C6)

with coefficients

S( j)
ω�

= P
∫ +∞

0
dν [h j (ν)]2 1 + n j (ν)

ω� − ν
, (C7)

S̃( j)
ω�

= P
∫ +∞

0
dν [h j (ν)]2 n j (ν)

ν − ω�

. (C8)

Let n denote the N-tuple n1, n2, . . . , nN , where n j = 0, 1 is
the occupation number of the jth mode relative to the oper-
ators bj and b†

j . The eigenvectors of the Hamiltonian (1) are
then given by

|n〉 = (b†
1)n1 (b†

2)n2 · · · (b†
N )nN |vac〉, (C9)

where the vacuum |vac〉 such that b�|vac〉 = 0 for all 1 � � �
N is the N spin tensor product vector | ↓〉⊗N . Notice that

b�|n〉 = δn�,1 (−1)
∑�−1

j=1 n j
√

n� |n−
� 〉, (C10)

b†
�|n〉 = δn�,0 (−1)

∑�−1
j=1 n j

√
1 − n� |n+

� 〉, (C11)

b†
� b�|n〉 = n� |n〉, (C12)

where, n±
� denote the N-tuples n1, . . . , n� ± 1, . . . , nN . Then,

one verifies that H |n〉 = En |n〉, where

En = �

(
2

N∑
�=1

n� − N

)
+ 4g

N∑
�=1

n� cos

(
�π

N + 1

)
. (C13)

Furthermore, let n0�
and n1�

denote the N-tuples with fixed
digits n� = 0, 1, respectively, at site �. Then, the spin chain
Bohr transition frequencies result of the form

ω� = En1�
− En0�

= 2 � + 4 g cos

(
�π

N + 1

)
, (C14)

while the Lindblad operators can be expressed as

A1(ω�) = u1�

∑
n̂�

(−1)
∑�−1

j=1 n j |n0�
〉〈n1�

|, (C15)

AN (ω�) = uN�

∑
n̂�

(−1)
∑N

j=�+1 n j |n0�
〉〈n1�

|. (C16)

Using (C10) and (C11), one then readily shows that the ma-
trix elements of the Lindblad operators with respect to the
energy eigenbasis, 〈m|A1(ω�)|n〉 and 〈m|AN (ω�)|n〉, coincide
with those of u1� b1� and −uN� bN�, respectively, with b j� de-
fined in (16). Finally, inserting A1(ω�) = u1�b1� and AN (ω�) =
−uN�bN� into (36) and (38), one recovers the expressions
(C2), (C3), and (C6).

APPENDIX D: STATIONARY STATES

The stationary states of the dynamics generated by (33)
satisfy L[ρ] = 0 [83–88]. According to Refs. [84] and [85],
in order to characterize them, one looks for two particular sets
of chain operators. The first one, C (p)

L , consists of all operators
X that commute with all fermionic Lindblad operators b�, b†

�

appearing in the dissipators (38). Such a set is an algebra
called the commutant of the set {b�, b†

� : � = 1, . . . , p}. The
index p in C (p)

L signals the fact that, because of the ratio r,
some Bohr transition frequencies could be negative, say, from
ωp+1 to ωN . In this case, the corresponding mode operators do
not show up in the dissipator D in (32), namely, D reduces
to the sum Dp ≡ ∑p

�=1 D�; on the contrary, the Hamiltonian
does not lose any term, so that the whole generator L becomes

Lp[ρ] ≡ −i[H (λ), ρ] + Dp[ρ], (D1)

where

H (λ) ≡
N∑

�=1

H (�)
λ , (D2)

with H (�)
λ as in (36). Notice that LN = L. The second set

of chain operators, M(p)
L , used to inspect the structure of

the manifold of steady state consists of all operators in C (p)
L

that also commute with the number operators b†
� b�, � = p +

1, . . . , N . M(p)
L ⊆ C (p)

L . The reason for looking at these two
algebras of operators can be best appreciated by considering
the dual (Heisenberg) dynamics γ dual

t = exp (t Ldual ) associ-
ated with the generator Ldual. In the present context where the
generator is Lp in (D1), its dual is defined by

Tr(Lp[ρ] X ) = Tr
(
ρ Ldual

p [X ]
)
, (D3)

for all chain states ρ and chain operators X :

Ldual
p [X ] = i[H (λ), X ] + Ddual

p [X ], (D4)

with, from (38),

Ddual
p =

p∑
�=1

∑
j=1,N

Ddual
j� , (D5)
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where

Ddual
j� [X ] = 2π u2

j� h2
j (ω�)

[
(1 + n j (ω�))

× (b†
j� X bj� − 1

2 {b†
j� b j�, X })

+ n j (ω�)
(
b j� X b†

j� − 1
2 {b j� b†

j�, X })]. (D6)

Using the contributions to the generator in (35) and their
duals, it turns out that, for operators X ∈ C (p)

L ,

p∑
�=1

Ldual
� [X ] = i[Hp(λ), X ] + Ddual

p [X ] = 0, (D7)

where Hp(λ) ≡ ∑p
�=1 H (�)

λ and

Ldual
� [X ] = i

[
H (�)

λ , X
]+

∑
j=1,N

Ddual
j� [X ]. (D8)

However, X ∈ C (p)
L need not in general commute with the

Hamiltonian associated with the negative Bohr transition fre-
quencies,

H̃p(λ) ≡
N∑

�=p+1

�
(�)
λ b†

�b� = H (λ) − Hp(λ), (D9)

so that, in general, Ldual
p [X ] �= 0 for X ∈ C (p)

L . On the other

hand, operators X ∈ M(p)
L do commute with H̃p(λ), so that,

for all X ∈ M(p)
L ,

Ldual
p [X ] := i [H̃p(λ), X ] +

p∑
�=1

Ldual
� [X ] = 0, (D10)

and are thus left invariant by the dynamics. Generic chain
operators X can be written as polynomials in b� and b†

�. Using
the fermionic anticommutation relation (8), they can always
be recast as

X =
∑

n

αn B(1)
n1

B(2)
n2

, . . . , B(N )
nN

, (D11)

where n = (n1, n2, . . . , nN ) with ni = 0, 1, 2, 3, and

B(�)
0 = I, B(�)

1 = b�, B(�)
2 = b†

�, B(�)
3 = b†

�b�. (D12)

Notice that if for a given fermionic mode � all three operators
B(�)

1,2,3 do appear in the generator, then, because of the relation

(8), only B(�)
0 can commute with all of them. Therefore, if all

Bohr transition frequencies are positive, both algebras C (p)
L and

M(p)
L with p = N consist of multiples of the identity, only:

C (N )
L = {μ I : μ ∈ C} = M(N )

L . (D13)

In such a case [84,85], if a faithful stationary state ρ∗, that is,
a spin chain density matrix fulfilling L[ρ∗] = 0 without zero
eigenvalues, exists, then it is unique and any initial spin chain
state converges to it asymptotically in time. Instead, if p �=
N so that the fermionic modes from � = p + 1 to � = N do
contribute only to the Hamiltonian terms of the generator, but
not to the dissipator D, then the operators B(�)

3 , p + 1 � � �
N , do commute with all the others in the generator. Then, the
algebra M(p)

L is commutative since [b†
�b�, b†

�′b�′] = 0 for � �=

�′. Such an algebra is generated by the orthogonal projections

Pαp :=
N∏

�=p+1

P(�)
α�

, αp = (αp+1, . . . , αN ), (D14)

where α� = 0, 1, and

P(�)
α�

:=
{

b†
� b� α� = 0

1 − b†
� b� = b� b†

� α� = 1
. (D15)

Indeed, from (b†
�b�)2 = b†

�b�, it follows that

P(�)
α�

P(�)
α′

�

:= δα�α
′
�

P(�)
α�

. (D16)

Moreover, the index p ranges from a maximum p = N −
1, when only the smallest Bohr transition frequency ωN is
negative, to a minimum p = pmin ≡ �N+1

2 �, when all Bohr
transition frequencies ωpmin � · · · � ωN that can become neg-
ative are indeed negative. The projectors Pαp commute with
the Lindblad operators and with the Hamiltonians in (34) and
(35), thus

Lp
[
Pαp ρ Pαp

] = Pαp Lp[ρ] Pαp (D17)

for all states ρ. From (D17), it immediately follows that if ρ

is stationary, such are also the states

ραp := Pαp ρ Pαp

Tr
(
Pαpρ

) , namely, Lp[ραp] = 0. (D18)

Remark 6. Notice that, since Ldual
p [I] = 0, the dual dynam-

ics γ dual
t = exp(tLdual ) of γt in (39) preserves the identity (it

is unital) and the projectors Pαp are left invariant by it; namely,
Ldual

p [Pαp] = 0. However, Lp[I] �= 0, therefore the open chain
dynamics is not unital γt [I] �= I, Lp[Pαp] �= 0 and the projec-
tors Pαp cannot be stationary states of γt .

For an arbitrarily large but finite chain, stationary states
under γt always exist, the time average of any initial state
yielding one,

ρav := lim
T →+∞

1

T

∫ T

0
dt γt [ρ] = lim

t→+∞ γt [ρ]. (D19)

Suppose a stationary state ρ∗ exists which is faithful, namely,
without zero eigenvalues; according to Ref. [85], if the com-
mutant M(p)

L is commutative as in the present case, then the
stationary states form a convex subspace consisting of convex
combinations of the form

ρstat =
∑
αp

μαp

Pαp ρ∗ Pαp

Tr
(
Pαpρ

∗) , (D20)

where μαp � 0 and
∑

αp
μαp = 1. The states ρ∗

αp
:= Pαp ρ∗ Pαp

Tr(Pαpρ∗ )

are invariant under the dissipative dynamics γt = exp(t L).
Moreover, if

lim
t→+∞ γt [ρ] = ρstat, then μαp = Tr

(
Pαp ρ

)
. (D21)

Indeed, Ldual
p [Pαp] = 0 yields

μαp = lim
t→+∞ Tr(γt [ρ] Pαp )

= lim
t→+∞ Tr

(
ρ γ dual

t [Pαp]
) = Tr

(
ρ Pαp

)
. (D22)

Summarizing, if all frequencies ω� are positive and contribute
to the generator L, the commutant C (N )

L is trivial and there is a
unique stationary state ρ∗, all initial states tending to it when
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t → +∞. If some Bohr transition frequencies are negative,
then the orthogonal projectors of the commutative algebra
M(p)

L can be used to generate all possible stationary states to
which initial states may or may not converge asymptotically
in time. The faithful invariant state ρ∗ necessary for the con-
struction of the convex manifold of stationary states can be
easily found because of the bilinear structure of the generator
L. Indeed, it suggests to seek ρ∗ of the form

ρ∗ =
N∏

�=1

ρ∗(ω�), (D23)

ρ∗(ω�) ≡ η∗(ω�) I� + ζ ∗(ω�) b†
�b� (D24)

= [ζ ∗(ω�) + η∗(ω�)] b†
�b� + η∗(ω�) b�b†

�. (D25)

The eigenvalues of ρ∗(ω�) are η∗(ω�) and η∗(ω�) + ζ ∗(ω�),
where the coefficients η∗(ω�) and ζ ∗(ω�) are fixed by asking
that ρ∗(ω�) be a mode-� state annihilated by L�. These con-
straints yield η∗(ω�) � 0, η∗(ω�) + ζ ∗(ω�) � 0, 2η∗(ω�) +
ζ ∗(ω�) = 1 and

η∗(ω�)L�[I] + ζ ∗(ω�)L�[b†
�b�] = 0. (D26)

Indeed, the anticommutativity of the fermionic operators and
the bilinear structure of the generator L is such that its action
on (40) amounts to

L[ρ∗] =
N∑

�=1

⎡⎣�−1∏
j=1

ρ∗(ω j )

⎤⎦L�[ρ∗(ω�)]

⎡⎣ N∏
j=�+1

ρ∗(ω j )

⎤⎦.

(D27)
The constraints (D26) then yield

η∗(ω�) = C(ω�)

C(ω�) + C̃(ω�)
, (D28)

ζ ∗(ω�) = C̃(ω�) − C(ω�)

C(ω�) + C̃(ω�)
, (D29)

where

C(ω�) = 2π
∑

j=1,N

h2
j (ω�) u2

j� [1 + n j (ω�)], (D30)

C̃(ω�) = 2π
∑

j=1,N

h2
j (ω�) u2

j� n j (ω�), (D31)

hence, from (D25),

ρ∗(ω�) = C̃(ω�)

C(ω�) + C̃(ω�)
b†

� b�

+ C(ω�)

C(ω�) + C̃(ω�)
b� b†

�. (D32)

From Remark 4, it follows that, when the ratio r is such that
the Bohr transition frequencies ω� are negative for p + 1 �
� � N , the stationary state ρ∗ can be used to generate the
convex stationary manifold by means of the stationary states
in (D20):

ρ∗
αp

=
⎡⎣ p∏

j=1

ρ∗(ω j )

⎤⎦ N∏
�=p+1

P(�)
α�

ρ∗(ω�) P(�)
α�

Tr
[
P(�)

α�
ρ∗(ω�)

] . (D33)

According to (D14), (D15), and (D24), one has

ρ∗(ω�) = [
η∗(ω�) + ζ ∗(ω�)

]
P(�)

0 + η∗(ω�) P(�)
1 . (D34)

It thus follows that

P(�)
α�

ρ∗(ω�) P(�)
α�

=
{

[η∗(ω�) + ζ ∗(ω�)] P(�)
0 α� = 0

η∗(ω�) P(�)
1 α� = 1

,

(D35)
hence

ρ∗
αp

=
⎡⎣ p∏

j=1

ρ∗(ω j )

⎤⎦⎛⎝ N∏
�=p+1

P(�)
α�

⎞⎠. (D36)

As already noticed, L�[Pα�
] �= 0, in general; however, when

L� has no dissipative contribution then L�[Pα�
] = 0 and, ac-

cording to (D27), the states ρ∗
αp

in (D36) are stationary. The
quantities in (D28) and (D29) are both continuous at ω� = 0;
indeed, the numerator and denominator in η∗(ω�) diverge in
the same way, while the numerator in ζ ∗(ω�) is constant, so
that

lim
ω�→0

η∗(ω�) = 1
2 , lim

ω�→0
ζ ∗(ω�) = 0, (D37)

and ρ∗(ω�) tend to the completely mixed state

lim
ω�→0

ρ∗(ω�) = I�

2
. (D38)

Furthermore, the single mode contributions ρ∗(ω�) and thus
the faithful state ρ∗ itself remain well defined when ω� < 0.
Indeed, sending ω� 	→ −|ω�| yields

n(ω�) 	→ −[1 + n(|ω�|)], 1 + n(ω�) 	→ −n(|ω�|); (D39)

hence C(ω�) 	→ −C̃(|ω�|), C̃(ω�) 	→ −C(|ω�|), and from
(D23), ρ∗(ω�) changes into

ρ∗(−|ω�|) = C(|ω�|)
C(|ω�|) + C̃(|ω�|)

b†
� b�

+ C̃(|ω�|)
C(|ω�|) + C̃(|ω�|)

b� b†
�, (D40)

which is still a well-defined state for the �th fermionic mode.
The main difference at negative Bohr transition frequencies
is that ρ∗ becomes an element of a larger convex manifold
of stationary states. Indeed, to each negative Bohr transition
frequency there remain associated two invariant orthogonal
projections. According to (D21), different stationary asymp-
totic states are reached by properly choosing the initial states
and letting them evolve for long times. When ωN > 0, all
initial states ρ tend in time to ρ∗; if r makes ωN < 0, there
will be initial states still asymptotically evolving into ρ∗, now
being characterized by the N-mode invariant state ρ(−|ωN |)
as in (D40), and other initial states which will instead reach
stationary states of the form [see (D15), (D20), and (46)]

ρstat =
[

N−1∏
�=1

ρ∗(ω�)

]
[μ b†

N bN + (1 − μ) bN b†
N ]. (D41)

According to (D22), an initial state ρ may converge to ρ∗ only
if

μ = Tr(ρ b†
N bN ) = η∗(|ωN |). (D42)
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