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In studies of one-dimensional Bethe ansatz solvable models, a Fredholm integral equation of the second kind
with a difference kernel on a finite interval often appears. This equation does not generally admit a closed-form
solution and hence its analysis is quite complicated. Here we study a family of such equations, concentrating on
their moments. We find exact relations between the moments in the form of difference-differential equations.
The latter results significantly advance the analysis, enabling one to practically determine all the moments
from the explicit knowledge of the lowest one. As applications, several examples are considered. First, we
study the moments of the quasimomentum distribution in the Lieb-Liniger model and find explicit analytical
results. The latter moments determine several basic quantities, e.g., the N-body local correlation functions. We
prove the equivalence between different expressions found in the literature for the three-body local correlation
functions and find an exact result for the four-body local correlation function in terms of the moments of the
quasimomentum distributions. We eventually find the analytical results for the three- and four-body correlation
functions in the form of asymptotic series in the regimes of weak and strong interactions. Next, we study the exact
form of the low-energy spectrum of a magnon (a polaron) excitation in the two-component Bose gas described
by the Yang-Gaudin model. We find its explicit form, which depends on the moments of the quasimomentum
distributions of the Lieb-Liniger model. Then, we address a seemingly unrelated problem of capacitance of a
circular capacitor and express the exact result for the capacitance in the parametric form. In the most interesting
case of short plate separations, the parametric form has a single logarithmic term. This should be contrasted with
the explicit result that has a complicated structure of logarithms.
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I. INTRODUCTION

Since its discovery in 1931, the Bethe ansatz method has
led to exact solutions for several quantum many-body prob-
lems. They describe various physical systems ranging from
one-dimensional magnets and quantum impurities interact-
ing with environments to ultracold quantum gases, which
can now be experimentally realized [1,2]. These theoretical
achievements have thus taken a central place with a long-
lasting impact on modern physics. The exact solutions are
without limitations on the physical parameters and thus are
of paramount importance, serving as a valuable input for
further developments. They are firm grounds for theoretical
studies, benchmarks for computer simulations, and challenges
for experimental probes.

Arguably one of the simplest many-body problems that
admits an exact Bethe ansatz solution consists of one-
dimensional bosons with contact interaction. It is known as
the Lieb-Liniger model [3]. This archetypal example enhances
our understanding of quantum physics of interacting parti-
cles, with numerous theoretical results obtained [2,4]. The
Lieb-Liniger model has also attracted significant attention
from experimentalists. Early realizations [5,6] were concen-
trated on the observation of boson fermionization. It occurs
in the Tonks–Girardeau regime, where the repulsion is so
strong that the bosons behave effectively as free fermions [7].
This is manifested by the suppression of the local correlation

functions. Indeed, the measurements of the two-body [8] and
three-body correlation functions [9,10] were in agreement
with the theoretical predictions [11,12].

A central quantity that determines various properties of the
Lieb-Liniger model is the quasimomentum distribution. In the
ground state of the system, it is nonzero between the so-called
Fermi quasimomenta. The quasimomentum distribution can
be easily found in the case of infinite boson repulsion. Then,
the quasimomenta coincide with the momenta of a non-
interacting spinless Fermi gas. Thus, the quasimomentum
distribution has a constant value and the Fermi quasimomenta
coincide with the Fermi momenta. By decreasing the repul-
sion, the quasimomenta evolve according to the Bethe ansatz
equations; their distribution begins to shrink symmetrically.
At weak repulsion, the distribution width scales with the
square root of the interaction strength [3]. It thus becomes
sharply peaked around zero momentum, marking a tendency
of the system toward Bose condensation. The quasimomen-
tum distribution is governed by a linear integral equation [3]
that does not have a closed-form solution. Nevertheless, the
quasimomentum distribution is physically interesting as it has
been directly measured in a recent experiment [13], showing
an agreement with the numerical results.

The quasimomentum distribution determines the ground-
state energy via the second moment, which can be routinely
evaluated numerically. The analytical results for the ground-
state energy in terms of the power series have been obtained
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in the regimes of weak and strong interactions. Unlike the
latter case where a perturbation theory has been developed
for the integral equation, enabling systematic evaluation of the
energy to an arbitrary order [14], for a long time only the first
three terms of the expansion were known at weak interactions
[15], despite some controversy [16,17]. Recently, it has been
discovered how to obtain more terms in the series expansion
[18–20] and thus practically describe the regime of interme-
diate interaction strengths analytically. Remarkably, even the
spectrum of elementary excitations can be obtained from the
quasimomentum distribution of the system in the ground state
[21], which emphasizes its importance. The quasimomentum
distribution also determines various correlation functions. For
example, the short-distance expansion of the one-body density
matrix can be expressed as an algebraic expression containing
various moments of the distribution [22,23]; the exponent of
the decay of the one-body density matrix is a function of the
value of the distribution at the edge [24].

The N-body local correlation functions in the Lieb-Liniger
Bose gas have been calculated in several works. In the limiting
regimes of weak and strong interactions, explicit results were
obtained in Refs. [11,25–27]. In the cases of arbitrary interac-
tions and N = 2 [11] and N = 3 [12,28], the local correlation
functions have been expressed in terms of the moments of
the quasimomentum distribution. The case N = 3 was also
exactly solved in Ref. [29], but the equivalence with the cor-
responding result of Refs. [12,28] was not shown. Finally, the
most general case of arbitrary N was solved [30,31] using dif-
ferent techniques. However, the final results of Refs. [30,31]
have significantly more complicated forms, without obvious
relations between themselves. Moreover, only numerically
they were shown to be consistent with the results for N = 2
and N = 3 [11,12]. We eventually note that in Ref. [30], the
obtained analytical result for the case N = 3 was shown to be
equivalent to that of Ref. [29].

The above examples illustrate that the existence of exact
solutions of integrable models does not imply direct and easy
access to the analytical results of particular physical quanti-
ties. The main goal of this paper is to develop a formalism
that will bridge this gap in the case of some experimen-
tally relevant integrable models. Our formalism enables us to
calculate analytically various important quantities. Particular
attention is devoted to the moments of the quasimomentum
distribution, which give rise to direct access to the correlation
functions. We derived the exact relations between different
moments in the form of a difference-differential equation, eas-
ily amenable to the analytical treatment. Another application
of the developed formalism is the study of the low-energy
magnon spectrum in the Yang-Gaudin model. We obtained
the explicit result expressed in terms of the moments of the
quasimomentum distribution of the Lieb-Liniger model. As
a byproduct, we have established the equivalence between
different expressions for the local three-body correlation func-
tion found in the literature and obtained the exact result for
the four-body one, expressed in terms of the moments of the
quasimomentum distribution. We have finally addressed the
well-known problem of the capacitance of a circular capacitor,
which is related to the Lieb-Liniger model [32].

This paper is organized as follows. In Sec. II the general
formalism is developed that enabled us to treat a class of

integral equations common for several Bethe ansatz solvable
models. The results of Sec. II are then applied to the Lieb-
Liniger model in Sec. III. An exact difference-differential
equation that connects different moments of the quasimomen-
tum distribution is found and solved in the regimes of weak
and strong interactions. The obtained results are then used in
Sec. IV in order to study the local correlation functions. We
obtained the exact expression for the four-body correlation
function in terms of different moments of the quasimomen-
tum distribution. In Sec. V it is shown that the low-energy
spectrum of a magnon in the Yang-Gaudin Bose gas is fully
determined by the moments of the quasimomentum distribu-
tion of the Lieb-Liniger model. In Sec. VI we obtained the
parametric form of the exact result for the capacitance of a
circular capacitor, which is particularly useful at small inter-
plate separations. Finally, in Sec. VII the obtained results and
their implications are discussed. More technical details about
the properties of the relevant integral equations are presented
in Appendices A and B.

II. GENERAL RESULTS

Let F be a linear integral operator that acts on a real
function ρ(k, Q) of real variables as

F[ρ(k, Q)] = ρ(k, Q) + 1

2π

∫ Q

−Q
dqθ ′(k − q)ρ(q, Q). (1)

Consider a finite integration limit Q and a kernel θ ′(k) that
is an even real function. We want to study the properties of a
class of equations

F[ρ j (k, Q)] = k j

j!
, (2)

where j � 0 is an integer. Equation (2) can be classified
as a Fredholm integral equation of the second kind with a
difference kernel on a finite interval. Without going into the
mathematical rigor, we consider continuous θ ′(k) and assume
that Eq. (2) admits a unique nontrivial solution that is a differ-
entiable function. The solution ρ j (k, Q) of Eq. (2) is an even
function of the first argument for even j and odd for odd j. It
thus satisfies

ρ j (k, Q) = (−1) jρ j (−k, Q). (3)

Solutions of Eq. (2) for different j are not independent.
Let us derive some relations among them by applying the
derivatives to the operator (1) [33]. Differentiating Eq. (2)
with respect to k and performing the partial integration, one
obtains

F
[
∂ρ j

∂k

]
= � j

2π
[θ ′(k − Q) − (−1) jθ ′(k + Q)] + k j−1

( j − 1)!
.

(4)

Here, we have employed the parity property (3), introduced
the abbreviation

� j (Q) = ρ j (Q, Q), (5)
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and omitted the explicit dependence on the coordinates. Note
that Eq. (4) also applies for j = 0. In this case the last term on
the right-hand side is zero, which is also formally correct since
1/(−1!) = 0. Similarly, differentiating Eq. (2) with respect to
Q, we obtain

F
[
∂ρ j−1

∂Q

]
= − � j−1

2π
[θ ′(k − Q) − (−1) jθ ′(k + Q)] (6)

for j � 1. From Eq. (6) we directly infer

1

� j (Q)

∂ρ j (k, Q)

∂Q
= 1

� j+2(Q)

∂ρ j+2(k, Q)

∂Q
(7)

for j � 0. On the other hand, a linear combination of Eqs. (4)
and (6) together with Eq. (2) leads to

1

� j (Q)

∂ρ j (k, Q)

∂k
+ 1

� j+1(Q)

∂ρ j+1(k, Q)

∂Q
= ρ j−1(k, Q)

� j (Q)
,

(8)

which applies for j � 0. In the derivation of Eqs. (7) and (8)
we have used the assumption that ρ−1(k, Q) = 0 is the only
solution of the homogeneous equation F[ρ−1(k, Q)] = 0. The
latter means that an additional condition on the kernel θ ′(k)
might be needed in the most general case. However, it will
be fulfilled automatically in our applications, as discussed in
Appendix A.

A. Moments Aj,l

The central quantities of our interest are the moments of
ρ j , which we define by

Aj,l (Q) = 1

2 l!

∫ Q

−Q
dkρ j (k, Q)kl , j, l � 0. (9)

They obey the symmetry property with respect to the ex-
change of indices,

Aj,l = Al, j, (10)

which is shown in Appendix B. Due to the parity property (3),
Aj,l = 0 for odd j + l .

The moments (9) are not independent, and apart from the
symmetry (10), they satisfy a number of other relations. One
of them reads

Aj, j + Aj+1, j−1 = � j� j+1, j = 1, 2, . . . , (11a)

A0,0 = �0�1. (11b)

It can be derived as follows. Multiplying Eq. (4) by
ρ j−1(k, Q) and the expression F[ρ j−1(k, Q)] = k j−1/( j −
1)! by ∂ρ j/∂k, after the integration over k in the interval
−Q < k < Q, the left-hand sides are identical. From the
equality of the right-hand sides one obtains Eq. (11). Other
relations between the moments follow directly from Eqs. (7)
and (10),

1

�l

∂Aj,l

∂Q
= 1

�l+2

∂Aj,l+2

∂Q
, (12)

and Eqs. (8) and (10),

1

�l

∂Aj,l

∂Q
= Aj,l + Aj−1,l+1

�l+1
. (13)

We notice that the combination of Eqs. (12) and (13) gives a
relation that does not involve the derivatives,

Aj,l−1 + Aj−1,l

�l
= Aj−1,l+2 + Aj,l+1

�l+2
. (14)

Here a negative index should be understood as A−1,l =
Al,−1 = 0, which is consistent with Eq. (9) and ρ−1 = 0.

B. Expressions for Aj,l in terms of �k

Equations (11) and (14) enable us to express the integrals
Aj,l (Q) defined by Eq. (9) in terms of �k (Q), see Eq. (5).
Considering the case j = 0, we find the relation

A0,l = �0�l+1, l = 0, 2, 4, . . . . (15)

Equation (14) for j = 1 leads to

A1,l = �1�l+1 − �0�l+2, l = 1, 3, 5, . . . . (16)

Equations (15) and (16) enable us to reexpress Eq. (14) in the
form

Aj−1,l + Aj,l−1 = � j�l , j + l odd. (17)

This recurrent equation can be solved [34]. We find

Aj,l =
j∑

k=0

(−1) j+k�k � j+l+1−k, j + l even. (18)

Equation (18) contains an explicit expression for Aj,l defined
by Eq. (9) in terms of a sum of pairwise products of � j

functions, see Eq. (5). Instead of evaluating the integral of
the solution of an integral equation, for some applications it
might be advantageous to solve several integral equations and
evaluate the solutions at a single point according to Eq. (18).

Using Eq. (17), the differential Eq. (13) becomes

∂Aj,l

∂Q
= � j�l , j + l even. (19)

Instead of the derivatives with respect to Q, it is convenient to
change the variables and consider the derivatives with respect
to n = ∫ Q

−Q dkρ0(k, Q)/2π [35]. From the definition (9) it
then follows n = A0,0/π , and thus Eq. (19) gives ∂n/∂Q =
�2

0/π . Therefore, Eq. (19) eventually becomes

�2
0

π

∂Aj,l

∂n
= � j�l , j + l even. (20)

C. Expressions for Aj,l in terms of A0,2k and its derivative

Equations (15) and (20) enable us to write

�2l+1 = 1

�0
A0,2l , (21)

�2l = �0

π

∂A0,2l

∂n
, l = 0, 1, 2, . . . . (22)
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Substituting them into Eq. (18), we find

A2 j,2l = 1

π

∂A0,2 j

∂n
A0,2l + 1

π

j−1∑
k=0

(
∂A0,2k

∂n
A0,2 j+2l−2k − A0,2k

∂A0,2 j+2l−2k

∂n

)
, (23a)

A2 j+1,2l+1 = 1

π

j∑
k=0

(
A0,2k

∂A0,2 j+2l+2−2k

∂n
− ∂A0,2k

∂n
A0,2 j+2l+2−2k

)
. (23b)

Remarkably, the whole class of integrals (9) can be expressed
only in terms of A0,2k and its derivative. In other words, the
moments of ρ0(k, Q) determine the moments of all other
functions ρ j (k, Q) defined by Eq. (2). Our ultimate goal is
therefore to study the even moments of ρ0(k, Q), i.e., A0,2l ,
since A0,2l+1 = 0 due to the parity.

D. Connection between A0,2l+2 and A0,2l

Equation (23b) at j = 0 becomes

A1,2l+1 = n
∂A0,2l+2

∂n
− A0,2l+2. (24)

Acting by the derivative ∂/∂n to Eq. (24) and using Eqs. (20)
and (21), one obtains

∂2A0,2l+2

∂n2
= π2 A0,2l

�4
0

. (25)

Equation (25) is another remarkable result. It shows that dif-
ferent moments of ρ0 are actually not independent, but obey
the difference-differential equation. In the special case l = 0,
Eq. (25) leads to

∂2A0,2

∂n2
= π3n

�4
0

, (26)

which is a connection between �0 and the second derivative
of A0,2. One can eventually eliminate �0 from Eq. (25) using
Eq. (26), getting an expression that only involves the mo-
ments.

The results of Sec. II are general and go beyond any phys-
ical application. They have been derived under the minimal
assumptions on the kernel in the integral operator (1).

III. MOMENTS OF THE QUASIMOMENTUM
DISTRIBUTION OF THE LIEB-LINIGER MODEL

In this section we will apply the results of Sec. II to the
Lieb-Liniger model [3]. It describes one-dimensional nonrel-
ativistic bosons of the mass m that interact via the contact
δ-function repulsion of the strength h̄2c/m. The latter is en-
coded into the dimensionless parameter [3]

γ = c

n
, (27)

which controls various quantities. In Eq. (27), n denotes the
density of particles. In the following discussion we implicitly
assume the system in the thermodynamic limit.

The Lieb-Liniger model was solved exactly using the
Bethe ansatz [3,4]. Its ground state is characterized by the
quasimomentum distribution ρ(k, Q) that satisfies the integral

equation

F[ρ(k, Q)] = 1

2π
. (28)

Here the linear integral operator F is defined by Eq. (1), which
should be supplemented by the kernel

θ ′(k) = − 2c

c2 + k2
, (29)

which follows from the two-body scattering phase shift
θ (k) = −2 arctan(k/c). In Appendix A we show that the inte-
gral Eq. (28) for the kernel given by Eq. (29) obeys necessary
conditions in order to apply the formalism of Sec. II. The
parameter Q in Eq. (1) is called the Fermi quasimomentum
in the physical context. In the ground state, the quasimomenta
are between −Q and Q.

The quasimomentum distribution ρ(k, Q) determines vari-
ous quantities. Its integral gives the particle density,

n(Q) =
∫ Q

−Q
dkρ(k, Q). (30)

Here we have emphasized that n depends on Q. The ground-
state energy per particle of the system is given by

ε0 = h̄2

2mn

∫ Q

−Q
dkk2ρ(k, Q). (31)

It is convenient to express the nontrivial dependence on the
interaction in ε0 is terms of the parameter γ of Eq. (27).
Equation (31) then acquires the form

ε0 = h̄2n2

2m
e2(γ ). (32)

Here e2(γ ) is the special case l = 1 of the family of dimen-
sionless functions

e2l (γ ) = 1

n2l+1

∫ Q

−Q
dkk2lρ(k, Q). (33)

The right-hand side of Eq. (33) is formally a function of Q,
while on the left-hand side we wrote the dependence on γ .
This is possible since Q is related to n via Eq. (30) and thus Q
can also be related to γ of Eq. (27) [see Eq. (53) below].

The family of functions e2l (γ ) are proportional to the
even moments of the quasimomentum distribution. We notice
that the odd moments vanish. Omitting the trivial propor-
tionality factor, e2l (γ ) will be loosely called the moments
in the following. They determine a number of physically
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relevant quantities—the ground-state energy, the local corre-
lation functions, the short-distance expansion of the one-body
density matrix, etc.—as discussed in the Introduction.

The formalism of Sec. II for the special choice of the kernel
(29) and ρ0 = 2πρ can be applied to study the Lieb-Liniger
model. The family of functions (33) is related to the quantities
defined by Eq. (9) by

A0,2l = π

(2l )!
n2l+1e2l (γ ). (34)

Therefore, various identities that we previously derived for
A0,2l translate into a new set of identities among e2l functions.
Our particular focus will be on Eq. (25), as well the special
case of Eq. (19), which is

∂Q

∂n
= π

�2
0

. (35)

Here �0 = 2πρ(Q, Q). Let us first transform the differentia-
tion with respect to n into the one with respect to γ , where we
should use the rules

∂

∂n
= −γ

n

∂

∂γ
,

∂2

∂n2
= 2γ

n2

∂

∂γ
+ γ 2

n2

∂2

∂γ 2
. (36)

From Eq. (25) we then directly obtain

γ 2l+4 d2

dγ 2

(
e2l+2(γ )

γ 2l+2

)
= π2(2l + 1)(2l + 2)

e2l (γ )

�4
0

. (37)

Equation (37) is a new exact relation between the moments
(33). It has a form of the difference-differential equation.

In the special case l = 0, Eq. (37) becomes

γ 4 d2

dγ 2

(
e2(γ )

γ 2

)
= 2π2

�4
0

, (38)

where we have used e0 = 1 obtained from the definition (33).
At this point it is useful to recall that �0 is in fact related to the
so-called Luttinger liquid exponent K by the relation [4,24]

�0 =
√

K . (39)

On the other hand, the Lieb-Liniger model is Galilean invari-
ant, which implies the relation between the sound velocity
v and K of the form mvK = π h̄n [24]. Equation (38) then
reduces to the thermodynamic relation [36]

v =
√

L

mn

∂2E0

∂L2
, (40)

which expresses v in terms of the derivative of the ground-
state energy E0 = nLε0 with respect to the system size L. Here
nL corresponds to the total number of particles.

Eliminating �0 from Eq. (37) using Eq. (38), we obtain

d2

dγ 2

(
e2l+2(γ )

γ 2l+2

)
= (l + 1)(2l + 1)

d2

dγ 2

(
e2(γ )

γ 2

)
e2l (γ )

γ 2l
.

(41)

TABLE I. Values of the coefficients in the series (43) evaluated
from Eqs. (45) using the known values of a(2)

k .

a(2l )
k k = 0 k = 1 k = 2 k = 3

l = 1 1 − 4
3π

1
6 − 1

π2 − 1
2π3 + 3ζ (3)

8π3

l = 2 2 − 88
15π

1 − 2
π2 − 4

3π
+ 1

π3 + 21ζ (3)
4π3

l = 3 5 − 824
35π

5 + 14
3π2 − 44

3π
+ 17

π3 + 165ζ (3)
4π3

l = 4 14 − 29168
315π

70
3 + 3452

45π2 − 1648
15π

+ 1438
15π3 + 525ζ (3)

2π3

For l = 0, Eq. (41) reduces to an identity, while for l > 0 it
gives the connections between the consecutive terms of the
family (33). Equation (41) is our starting point for the evalua-
tion of e2l (γ ) for l > 1 using the knowledge of e2(γ ), which
serves as an initial value of the family e2l (γ ) that generates
l > 1 terms. Since e2(γ ) is analytically known in terms of the
power series in the regimes of weak and strong interactions,
we will be able to evaluate e2l (γ ) in the two regimes.

A. Weak interactions

In the regime of weak interactions, γ � 1, the leading-
order solution of Eq. (28) is ρ(k, Q) =

√
Q2 − k2/2πc [3].

This gives the order of magnitude estimate for the leading-
order term in Eq. (33),

e2l (γ ) ∼ 1

γ

(
Q

n

)2l+2

. (42)

Using e0 = 1, we find Q ∼ n
√

γ and thus e2l (γ ) ∼ γ l . Since
the subsequent terms in the expansion of e2 are multiplied by√

γ , we should assume the series

e2l (γ ) =
∞∑
j=0

a(2l )
j γ l+ j/2, (43)

where the values of the coefficients a(2l )
j for l > 1 will be

calculated using the known values of a(2)
j [19,20]. Substitution

of the form (43) into Eq. (41) yields the connection between
the coefficients a(2l+2)

k from the left-hand side of Eq. (41) and
the ones from the right-hand side,

(2l + 2 − k)(2l + 4 − k)a(2l+2)
k

= (l + 1)(2l + 1)
k∑

j=0

( j − 2)( j − 4)a(2)
j a(2l )

k− j . (44)

For l = 0, Eq. (44) becomes trivial since a(0)
k− j = δk, j , while

for l > 1 it enables us to evaluate the coefficients in the series
(43) for e2l using the ones of e2.

For a fixed k, Eq. (44) can be explicitly solved since it
is equivalent to a first-order linear difference equation [34].
Using the known values of a(2)

j given in Table I, we obtain

a(2l )
0 = (2l )!

l!(l + 1)!
, (45a)

a(2l )
1 = −16l

2π

(l!)2

(2l + 1)!

l−1∑
w=0

(2w + 1)!

16w(w!)2
a(2w)

0 , (45b)
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a(2l )
2 = (2l )!

2(l − 1)!l!

[
1

6
− 1

π2
− 1

π

l−1∑
w=1

(w − 1)!w! a(2w)
1

(2w)!

]
,

(45c)

a(2l )
3 = 16l (2l − 1)(l!)2

64π3(2l )!

×
l−1∑
w=0

(2w)!
{
[4 − 3ζ (3)]a(2w)

0 − 32π2a(2w)
2

}
16w(2w − 1)(w!)2

. (45d)

Equations (45) determine the first four coefficients in Eq. (43)
for all the moments e2l (γ ) of the quasimomentum distribution
(33) in the regime of weak interactions. This remarkable result
has its roots in the integrability of the Lieb-Liniger model
and is one application of the formalism previously derived
in Sec. II. In Table I we give the analytical values for a(2l )

k
for 1 � l � 4. A motivated reader can easily generate the
coefficients for higher values of l using Eqs. (45).

The cases k = 2l + 2 and k = 2l + 4 are special for
Eq. (44) since the left-hand side then nullifies. Therefore,
the coefficients a(2l+2)

2l+2 and a(2l+2)
2l+4 cannot be immediately re-

cursively expressed though the right-hand side of Eq. (44).
However, at k = 2l + 2 the right-hand side constitutes a new
relation, enabling one to express the latter missing coefficient,

a(2l )
2l+2 = − 1

8a(2)
0

2l+2∑
j=1

( j − 2)( j − 4)a(2)
j a(2l )

2l+2− j . (46)

For k = 2l + 4, Eq. (44) gives the relation

2l+4∑
j=0

( j − 2)( j − 4)a(2)
j a(2l )

2l+4− j = 0. (47)

The sum of Eq. (47) does not involve the coefficients a(2l )
2l and

a(2l )
2l+2. However, Eq. (47) is a nontrivial relation among the

other coefficients of the two series for e2 and e2l . Interestingly,
Eqs. (46) and (47) at l = 1 lead to the constraints among
the coefficients of e2. This means that even within the same
moment not all the coefficients are independent [37].

We have not found a way to calculate a(2l )
2l from the

difference-differential Eq. (41). On the practical side, by in-
creasing l in the series (43), a(2l )

2l becomes progressively less
important since it only determines the 2lth correction term of
the series representation for e2l . Theoretically, one can extend
the developed methods for e2 [19,20] to the case-by-case study
of e4, e6, etc., in order to obtain a(2l )

2l . We performed this rather
involved work. For curious readers we give the final results:

a(4)
4 = 3

20
− 1

π2
− 21ζ (3) − 10

6π4
, (48)

a(6)
6 = 61

168
− 9

4π2
− 5[21ζ (3) − 10]

12π4
− 3

5120π6

[
2048

+ 15460ζ (3) − 43050ζ (3)2 + 122505ζ (5)
]
. (49)

Obviously, the coefficients a(2l )
2l become progressively more

complicated as l is increased. An interested reader can use

the coefficients a(4)
4 and a(6)

6 and the ones of e2 found in
Ref. [19] to easily extend the values listed in Table I to k � 7
for arbitrary l by iterating Eqs. (44) and (46). On the other
hand, for l = 2 and l = 3 (i.e., for the evaluation of e4 and
e6) there is no intrinsic limitation on k, the only one being the
knowledge of e2.

B. Strong interactions

In the regime of strong interactions, γ � 1, the integral
in the integral operator of Eq. (28) is subdominant. This di-
rectly leads to ρ(k, Q) = 1/2π at the leading order, and thus
e2l (γ ) ∼ 1. Since the subsequent terms in ρ(k, Q) are by a
factor of 1/γ smaller, the resulting series for its moments can
be assumed in the form

e2l (γ ) =
∞∑
j=0

b(2l )
j γ − j . (50)

Substituting Eq. (50) into Eq. (41), we find an equation

b(2l+2)
k = (l + 1)(2l + 1)

(2l + 2 + k)(2l + 3 + k)

×
k∑

j=0

(2 + j)(3 + j)b(2)
j b(2l )

k− j (51)

that relates the coefficients of Eq. (50). Equation (51) is a
difference equation that has a similar structure as Eq. (44),
and thus it can be solved for l > 1. The first five terms are
given by

b(2l )
0 = π2l

2l + 1
, b(2l )

1 = − 4l π2l

2l + 1
, b(2l )

2 = 4lπ2l , (52a)

b(2l )
3 = −16l (l + 1)π2l

3

[
1 − π2

(2l + 1)(2l + 3)

]
, (52b)

b(2l )
4 = 8l (l + 1)(2l + 3)π2l

3

[
1 − 4π2

(2l + 1)(2l + 3)

]
.

(52c)

Here we have used the known values of b(2)
j entering e2 [14].

They can be recovered from Eqs. (52), setting l = 1. We note
that at strong interactions, the knowledge of e2 suffices to find
all other momenta using Eq. (51) due to the physical reason
of not having divergent moments e2l at γ → ∞. This should
be contrasted with the regime of weak interactions, where, in
addition to e2, one also needs the “diagonal” coefficients a(2l )

2l

for l > 1 in order to evaluate a(2l )
k at k � 4.

C. Fermi quasimomentum

Let us find an expression for the Fermi quasimomentum
in terms of γ . Its density derivative is given by Eq. (35). By
making use of Eq. (38), the Fermi quasimomentum can be
expressed as

Q = 2n
√

γ g(γ ), (53)
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where g(γ ) satisfies a differential equation

d

dγ

(
g(γ )√

γ

)
= −

√
1

8

d2

dγ 2

(
e2(γ )

γ 2

)
. (54)

Therefore, the nontrivial dependence in Q is encoded into the
latter differential equation, which we solve now.

In the regime of weak interactions, γ � 1, using the result
for e2 we find

g(γ ) = 1 −
√

γ

4π

(
ln

32π√
γ

− 1

)
+ γ

32π2

+ 3[ζ (3) − 1]

256π3
γ 3/2 + O(γ 2). (55)

The integration constant of the first-order Eq. (54) is the
constant term proportional to

√
γ in Eq. (55). Its value is

set using the known perturbative solution [15] of Eq. (28)
that enables one to find the subleading-order terms in Q,
which in turn determines the integration constant. We should
note that the function of Eq. (55)—and thus Q/n—has only
one logarithmic term, unlike the inverse relation where the
same logarithm proliferates. The situation is simpler at γ � 1
since the integration constant for Eq. (54) must be set to zero
due to the physical reason of not having divergent Q ∝ γ . We
find

g(γ ) = π

2
√

γ

[
1 − 2

γ
+ 4

γ 2
+

4π2

3 − 8

γ 3
+ O(γ −4)

]
. (56)

Substituting this into Eq. (53), we find Q that is in agreement
with the expression found in Ref. [14].

IV. LOCAL CORRELATION FUNCTIONS
IN THE LIEB-LINIGER MODEL

A local N-body correlation function is defined as the
ground-state expectation value

gN (γ ) = 1

nN
〈�†(x)N�(x)N 〉 (57)

of the Bose field operators �† and �, which satisfy the
canonical commutation relation [�(x), �†(y)] = δ(x − y).
The result for the particular case N = 2 can be easily ob-
tained by applying the Feynman-Hellmann theorem to the
Hamiltonian of the Lieb-Liniger model, leading to g2(γ ) =
de2(γ )/dγ [11]. In the case of an arbitrary integer N , the
exact evaluation of the average value in Eq. (57) is signifi-
cantly more difficult [30,31]. The final result of Ref. [30] is

expressed as an integral representation

gN = (N!)2

(2πn)N

∫ Q

−Q
dq1 . . . dqN

∏
1�l< j�N

q j − ql

(q j − ql )2 + c2

×
N∏

j=1

( j − 1)!ρ j−1(q j ). (58)

Here ρ j satisfies Eq. (2), where the kernel in the integral
operator (1) is given by Eq. (29). In the case N = 2, Eq. (58)
reduces to the abovementioned result [11], while the actual
factorization and evaluation in terms of γ is still an involved
task. Below we consider the cases N = 3 and N = 4.

A. The three-body case

For N = 3, we can split the product over the two indices in
Eq. (58) into a sum that involves six permutations of q1, q2,
and q3, which can then be treated term by term. In this way
one can obtain the final expression in the form [30]

g3(γ ) = 12

πn5γ 2
(−2A3,1 + A2,2 + 2A4,0)

+ 1

πn3
(2A2,0 − A1,1) − 2

π2n4γ
A0,0A1,1, (59)

where Aj,l is defined by Eq. (9) [38]. Equation (59) is ex-
pressed in term of various moments of ρ j , and thus it can
be further transformed to a more convenient form that only
involves the moments of ρ0. Using Eqs. (23) in the expression
(59), we obtain

g3(γ ) = 12

πn5γ 2

(
−3n

∂A0,4

∂n
+ 5A0,4 + A0,2

π

∂A0,2

∂n

)

+ 2 + γ

πγ n3

(
A0,2 − n

∂A0,2

∂n

)
+ 2

πn3
A0,2. (60)

Taking into account the definition (34) of e2l and transforming
the derivative to be with respect to γ according to Eq. (36),
Eq. (60) becomes

g3(γ ) = 3e′
4

2γ
− 5e4

γ 2
+

(
1 + γ

2

)
e′

2 − 2e2

γ
− 3e2e′

2

γ
+ 9e2

2

γ 2
,

(61)

where e′
2l = de2l (γ )/dγ . Equation (61) coincides with the

expression initially found in Refs. [12,28] using yet another
approach. We have therefore proven that the the exact results
(59) and (61) are equivalent, which a priori was not obvious
at all.

B. The four-body case

The local correlation function (58) in the case N = 4 can
be treated in a way similar to N = 3. This leads to [30,39]

g4(γ ) = 8γ

5πn3
(2A2,0 − A1,1) − 16

5π2n4
A0,0A1,1 + 24

πn5γ
(A2,2 − 2A3,1 + 2A4,0)

+ 48

5π2n6γ 2

(
2A1,1A2,0 − 5A2

2,0 + 5A0,0A2,2 − 8A0,0A3,1
) + 144

πn7γ 3
(2A6,0 − 2A5,1 + 2A4,2 − A3,3). (62)
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The latter expression can be simplified. Applying Eqs. (23),
then using Eq. (34), and finally transforming the derivative to
be with respect to γ according to Eq. (36), we find

g4(γ ) = e′
6

γ 2
− 28e6

5γ 3
−

(
10

γ
+ 104

5γ 2
+ 9e′

2

γ 2
− 12e2

γ 3

)
e4

+
(

3 + 26

5γ
+ 3e2

γ 2

)
e′

4 +
(

18

γ
+ 168

5γ 2

)
e2

2

+
(

8γ

5
+ 4γ 2

5
− 6e2 − 84e2

5γ

)
e′

2 − 16e2

5
. (63)

Equation (63) is our exact result for the four-body local cor-
relation function (57) taken at N = 4. It is expressed in terms
of the moments of the quasimomentum distributions and their
first derivative, and in this respect has a similar structure as
Eq. (61).

C. Explicit results for g3(γ ) and g4(γ )

The forms (61) and (63) are particularly convenient for the
analytical evaluation. Using our previously derived results for
e2l , we obtain

g3(γ ) = 1 − 6
√

γ

π
+ 3γ

2
−

(
3

π
− 25

4π3
− 69ζ (3)

16π3

)
γ 3/2

+ O(γ 2) (64)

at γ � 1 and

g3(γ ) = 16π6

15γ 6

(
1 − 16

γ
+ 144 − 144π2

35

γ 2
− 960 − 660π2

7

γ 3

)

+ O(γ −10) (65)

at γ � 1. For the other case we find

g4(γ ) = 1 − 12
√

γ

π
+

(
4 + 24

π2

)
γ

−
(

24

π
− 65

2π3
− 93ζ (3)

8π3

)
γ 3/2 + O(γ 2) (66)

at γ � 1 and

g4(γ ) = 1024π12

2625γ 12

(
1 − 30

γ
+ 480 − 160π2

21

γ 2

)
+ O(γ −15)

(67)

at γ � 1. It is fascinating to note that in order to calculate
the leading-order term in Eq. (67), we need to know the 12th
subleading term in e2(γ ). This was achieved using the sys-
tematic procedure developed in Ref. [14]. We note that only
the leading- and the subleading-order terms in g3 and g4 were
known before [11,12,25,27]. However, they were obtained
using complementary techniques that can hardly be extended
to give to a better accuracy. On the other hand, the exact results
(61) and (63) together with the method described in Sec. III
establish a way to explicitly evaluate analytically g3 and g4 to
a large number of terms in the series, the only limitation being
the knowledge of e2.

V. LOW-ENERGY SPECTRUM OF A MAGNON
IN THE YANG-GAUDIN BOSE GAS

The developed formalism in Secs. II and III has another ap-
plication in the study of low-energy spectrum of a spin-wave
excitation (magnon) in the one-dimensional Bose gas with
two internal states (isospin- 1

2 ), described by the Yang-Gaudin
model. In first quantization, the corresponding Hamiltonian is
identical to that of the Lieb-Liniger model. Due to the SU (2)
symmetry of the Hamiltonian, the eigenstates can be charac-
terized by the total isospin. In the sector where it is maximal,
the system is fully isospin-polarized and thus described by the
Lieb-Liniger model. It supports two branches of elementary
excitations [36]. In the sector with one isospin reversed, there
is a third excitation branch that describes a spin wave [40,41],
which can also be understood as a polaron [42]. In this excited
state, the momentum of the system is given by [42,43]

p(Q, η) = h̄

2π

∫ Q

−Q
dk ρ0(k, Q)[π − θ (2k − 2η)]. (68a)

Here p explicitly depends on the Fermi quasimomentum Q
and the spin rapidity η, and ρ0(k, Q) satisfies the integral
Eq. (2) with the kernel given by Eq. (29). The energy of
the magnon corresponding to the momentum (80) can be
expressed as [42]

E (Q, η) = − h̄2

2πm

∫ Q

−Q
dk ρ1(k, Q)θ (2k − 2η), (68b)

where ρ1(k, Q) satisfies Eq. (2) with the kernel (29).
At η → +∞, the momentum (68a) and the energy (68b)

nullify. In order to access small p and E we expand θ (2k − 2η)
at η/c � 1. Accounting for the leading- and subleading-order
terms, we obtain

p = h̄c n

η
− h̄c3n

12η3
+ 2h̄c

πη3
A0,2 + · · · , (69a)

E = h̄2c

πmη2
A1,1 + 6h̄2c

πmη4
A1,3 − h̄2c3

4πmη4
A1,1 + · · · , (69b)

where we have used the definition (9). Upon elimination of
the spin rapidity η, Eqs. (69) enable us to express the low-
momentum spectrum as

E (p) = p2

2m∗ − ν p4

24h̄2n2m
+ · · · , p � p∗ ∼ h̄n

√
m

m∗ν
.

(70)

Here m∗ is the mass of magnon excitation that is given by

m

m∗ = 2A1,1

πc n2
, (71)

and ν controls the subleading-order term in the spectrum. It
reads

ν = 2A1,1

πcn2
+ 96A0,2A1,1

π2c3n3
− 144A1,3

πc3n2
. (72)

Equations (71) and (72) are the exact relations for the Yang-
Gaudin model of the Bose gas, valid at arbitrary interaction.

Actual evaluation of m∗ and ν directly follows from our
previous results. In particular, the definition (34) enables us to
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express the mass of the magnon excitation (71) as [42]

m

m∗ = −γ 2 d

dγ

(
e2(γ )

γ 2

)
. (73)

The coefficient ν is obtained using Eqs. (24) and (34),

ν = 6γ 2 d

dγ

(
e4(γ )

γ 4

)
− [γ 2 + 24e2(γ )]

d

dγ

(
e2(γ )

γ 2

)
. (74)

The series expansion of Eq. (73) was discussed in Ref. [42].
For the other coefficient we obtain

ν = 24

5π
√

γ
− 1 + 28

3π2
+

(
2

3π
+ 7

π3
− 45ζ (3)

4π3

)√
γ

+ O(γ 3/2) (75)

at γ � 1. We note the absence of a term linear in γ in
Eq. (75). We also find

ν = 2π2

3γ
− 4π2

γ 2
+ 16π2 + 8π4

15

γ 3
+ O(γ −4) (76)

in the regime γ � 1. We can now evaluate the condition of
smallness of momenta p � p∗ in Eq. (70): at γ � 1 we find
p∗ ∼ h̄nγ 1/4, and at γ � 1 we obtain a less restrictive p∗ ∼
h̄n. The momentum condition at γ � 1 that does not reach
h̄n signals the existence of a qualitatively new behavior of the
magnon dispersion at finite momenta. This is indeed correct
since at momenta higher than h̄n

√
γ , the magnon dispersion

approaches the dispersion of a type-II excitation in the Lieb-
Liniger model [44]. Notice that the dispersion (70) and that
of the type-II excitation overlap in a wide region of momenta
between h̄n

√
γ and p∗.

Here we have shown that the quadratic and quartic co-
efficients of the low-energy spectrum of a magnon in the
Yang-Gaudin Bose gas are determined by the momenta of the
quasimomentum distribution (33) in the Lieb-Liniger model.
The latter statement is correct beyond the first two coeffi-
cients. Indeed, the series expansion of θ (2k − 2η) in Eqs. (68)
is a power law in k with the positive powers, and thus the
expressions (69) will depend on Aj,l defined by Eq. (9). They
can be transformed to e2l using Eqs. (23) and (34).

VI. CAPACITANCE OF A CIRCULAR PLATE CAPACITOR

As a final example where the results of Secs. II and III are
applied, we consider the problem of capacitance of a circular
parallel plate capacitor. The goal of the study is to quantita-
tively understand the effects of the edge on the capacitance.
In the idealized case with parallel plates of unit radius at a
separation κ → 0+, the capacitance is C = 1/4κ , where the
effects of the edges are neglected. For a long time the effects
of the edges were described by the logarithmic corrections of
the form [45,46]

C(κ ) = 1

4κ
+ ln 16π

κ
− 1

4π
+ κ

(
ln2 16π

κ
− 2

)
16π2

+ o(κ ), (77)

until the recent work [47] where the procedure to obtain an
arbitrary number of corrections is described, with the explicit
form to the order κ7. The final expression is a very compli-
cated expression where each power of κ contains logarithmic
terms of the same and all smaller powers. The presence of

such a number of logarithmic terms is mathematically rather
inelegant.

The problem of capacitance is encoded into the Love inte-
gral equation [48]

f (x, κ ) − κ

π

∫ 1

−1
dy

f (y, κ )

κ2 + (y − x)2
= 1. (78)

It determines the function f (x, κ ) that enables one to express
the capacitance as

C(κ ) = 1

2π

∫ 1

−1
dx f (x, κ ). (79)

Equation (78) is very similar to Eq. (28) with the kernel (29).
Therefore, the capacitance (79) can be defined parametrically
via γ as κ (γ ) = γ n/Q, C(γ ) = n/Q. Here one should have in
mind that n/Q is a function of γ , see Eq. (53). We thus arrive
at the final result

κ (γ ) =
√

γ

2 g(γ )
, C(γ ) = 1

2
√

γ g(γ )
, (80)

where the function g(γ ) is controlled by Eq. (54). Equa-
tion (80) is the exact parametric solution for the capacitance
at arbitrary separations κ .

The regime of small separations between the plates, κ � 1,
corresponds to γ � 1. One should therefore substitute g(γ ) of
Eq. (55) in the parametric form (80). The obtained result for
the capacitance has a significant simplification with respect to
the explicit form C(κ ) given in Ref. [47]. Presently there is
only one logarithmic term originating from Eq. (55), unlike
the explicit form C(κ ) where the same term proliferates. The
function g(γ ) can be calculated trivially beyond the terms of
Eq. (55) using the result for e2(γ ) and the differential Eq. (54).
Further corrections will only contain the power law terms of√

γ , but not any logarithms.

VII. DISCUSSION

In this paper we have developed the theory for evaluation
of the moments of the quasimomentum distribution for a class
of Bethe ansatz solvable models. Their common feature is
the governing integral equation, where the integral operator
has the form of Eq. (1). The general theory of Sec. II has
its straightforward application to the Lieb-Liniger model. The
moments in this model satisfy the exact difference-differential
Eq. (41), which has been solved analytically in the regimes of
weak and strong interactions.

The moments of the quasimomentum distribution appear in
several contexts. Up to a trivial multiplicative prefactor, they
are the ground-state eigenvalues of the higher-order Hamilto-
nians that represent nontrivial higher-order conservation laws
for the Lieb-Liniger model [49]. Another example is the dis-
persion of a magnon in the Yang-Gaudin Bose gas studied
in Sec. V. The moments also determine the local N-body
correlation functions (57) as first shown for N = 3 in Ref. [12]
and N = 4 here, see Eq. (63). One expects this to be true more
generally based on the general unevaluated result (58) and the
results of Sec. II. Explicit results for N � 5 are not known
presently.
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Haldane [24] noticed that the exponent of the decay of
the one-body density matrix in the Lieb-Liniger model can
be expressed in terms of the single point value of the quasi-
momentum distribution ρ(Q, Q) = �0(Q)/2π [cf. Eq. (39)].
From our analysis performed in Sec. II, it follows that all
the moments of the quasimomentum distribution and their
derivatives can be expressed in terms of the related quantities
� j (Q) defined by Eq. (5). Indeed, using Eqs. (21), (22), and
(34), we obtain

e2l (γ ) = (2l )!
√

K

π

�2l+1(Q)

n2l+1
, (81)

γ
de2l (γ )

dγ
= (2l + 1)e2l (γ ) − (2l )!√

K

�2l (Q)

n2l
. (82)

Here, in the right-hand sides one should eventually express Q
in terms of γ [see Eq. (53)], which will cancel the powers of
n in the denominators.

This work opens possibilities to address other problems.
For example, the results of Sec. II can be directly applied
to the Yang-Gaudin model of fermions, which is left for a
future work. The one-body momentum distribution at high
momenta behaves as W (p) = C/p4 + C1/p6 + · · · , where the
so-called Tan contact is given by C ∼ g2 = de2(γ )/dγ for
the Lieb-Liniger model [22]. It would be interesting to un-
derstand a possible relation between the subleading term
controlled by C1 and g4, see Eq. (63). Another direction would
be to understand whether and how the results of this paper
can be extended in order to describe the system at finite
temperatures.

APPENDIX A: PROPERTIES OF THE OPERATOR (1)
FOR THE KERNAL CONTROLLED BY EQ. (29)

The integral Eq. (2) can be considered as a special case of
the equation (

I + 1

λ
K

)
ρ = f , (A1)

where λ = 1. In Eq. (A1) we have suppressed the variables in
the arguments of the functions and introduced the parameter
λ and the operators of the identity I as well as the nontrivial
part of the integral operator K. The existence of the unique
and nontrivial solution ρ crucially depends on the spectral
properties of the operator I + K/λ.

For the special choice of the kernel θ ′(k) given by Eq. (29),
Eq. (A1) in the homogeneous case f = 0 reduces to the eigen-
value problem

c

π

∫ Q

−Q
dq

ρ(q, Q)

c2 + (k − q)2
= λρ(k, Q). (A2)

In the limit c → 0+, under the integral we have a representa-
tion of the Dirac δ function. Therefore, λ = 1 is an eigenvalue
at c → 0+. In the opposite regime c � Q, the left-hand side
of Eq. (A2) is proportional to 1/c for normalizable eigen-
functions that we impose. One thus expects λ ∼ 1/c and the

spectrum that satisfies

0 < λ < 1. (A3)

Careful treatment of the eigenvalue problem (A2) shows
that the spectrum is nondegenerate and obeys 0 < λ � 1 −
2 arctan(c/Q)/π [50]. Therefore, we can conclude that at
finite positive c and at Q > 0, the spectrum of the eigenvalue
problem (A2) satisfies the condition (A3).

This consideration shows that for the special value λ = 1,
which is of our interest in the paper, Eq. (A2) has only a trivial
solution ρ = 0. The Fredholm alternative theorem [51] then
guarantees that Eq. (A1) has a unique solution that can be
formally expressed as

ρ = (I + K)−1 f . (A4)

Here the inverse of the operator is defined by the infi-
nite power series, which is convergent due to the condition
(A3). However, the convergence is very slow at small c/Q
[48], which makes the analytical treatment of the Lieb-
Liniger model at weak interactions generally troublesome. For
smooth f as in Eq. (2), the solution of the integral equa-
tion will be a differentiable function. From Eq. (A4), this
can be understood as an infinite sum where each term is
differentiable.

APPENDIX B: A PROPERTY OF THE PAIR
OF INTEGRAL EQUATIONS

Consider a pair of integral equations,

F[σ (k, Q)] = g(k), (B1)

F[τ (k, Q)] = h(k), (B2)

where the integral operator F is defined by Eq. (1) and g(k)
and h(k) are arbitrary functions that satisfy minimal require-
ments: (i) there are unique solutions σ (k, Q) and τ (k, Q), and
(ii) the solutions satisfy∫ Q

−Q
dk

∫ Q

−Q
dqσ (k, Q)θ ′(k − q)τ (k, Q)

=
∫ Q

−Q
dq

∫ Q

−Q
dkσ (k, Q)θ ′(k − q)τ (k, Q), (B3)

with θ ′(k) = θ ′(−k). For example, for g(k) and h(k) in the
form of polynomials, the assumptions will be satisfied. Then
we have the relation∫ Q

−Q
dkσ (k, Q)h(k) =

∫ Q

−Q
dkτ (k, Q)g(k). (B4)

Equation (B4) can be directly showed by multiplying
Eqs. (B1) and (B2), respectively, by τ (k, Q) and σ (k, Q).
After performing the integration over k in the interval −Q <

k < Q, and using the assumption (B3), one obtains identical
left-hand sides of the two equations. The right-hand sides then
give the property (B4). Equation (10) of the main text directly
follows from the property (B4) for the choice g(k) = k j/ j!,
and h(k) = kl/l!, and thus σ (k, Q) = ρ j (k, Q), τ (k, Q) =
ρl (k, Q), see Eq. (2).
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