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We analyze the application of the history state formalism to quantum walks. The formalism allows one to
describe the whole walk through a pure quantum history state, which can be derived from a timeless eigenvalue
equation. It naturally leads to the notion of system-time entanglement of the walk, which can be considered as
a measure of the number of orthogonal states visited in the walk. We then focus on one-dimensional discrete
quantum walks, where it is shown that such entanglement is independent of the initial spin orientation for real
Hadamard-type coin operators and real initial states (in the standard basis) with definite site parity. Moreover, in
the case of an initially localized particle it can be identified with the entanglement of the unitary global operator
that generates the whole history state, which is related to its entangling power and can be analytically evaluated.
Besides, it is shown that the evolution of the spin subsystem can also be described through a spin history state
with an extended clock. A connection between its average entanglement (over all initial states) and that of the
operator generating this state is also derived. A quantum circuit for generating the quantum walk history state is
provided as well.
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I. INTRODUCTION

Quantum walks (QW) were first introduced in Ref. [1]
as a quantum counterpart of classical random walks. While
related ideas can be traced back to the works of Feynman on
the discretized Dirac equation [2], interest in QW has grown
enormously in the last decades due to their relevance in the
field of quantum computation and information [3,4]. They
are useful for the development of quantum algorithms [5],
with QW-based methods [6–8] achieving similar speedup to
that of the renowned Grover search algorithm [9]. It has also
been proven that both continuous and discrete time QW are
universal for quantum computation [10,11]. They have been
employed in network analysis [12] and quantum simulation
[13–16], as well as for modeling some biological processes
[17,18]. Besides, QW can be simulated by means of different
experimental platforms, such as cold atoms in optical lattices
[19–21], trapped ions [22,23], and photonic setups [24–30].
Entanglement in QW is also a topic of interest, so far mainly
focused on that between coin (spin) and position degrees of
freedom [29–41].

The aim of this work is to apply the history state formalism
[42–49] to QW. In this formalism, originally proposed by
Page and Wootters [42], time is incorporated through a refer-
ence quantum clock and the system evolution emerges from an
entangled system-clock history state which fulfills a timeless
Wheeler-DeWitt-like equation [50]. The approach has at-
tracted much interest in recent years in different areas, includ-
ing nonrelativistic quantum mechanics (QM) [45–49,51–55]
as well as quantum gravity and relativistic QM [43,44,56–59].

In this work we will focus on one-dimensional discrete QW
[3,4,60–62], in which a spin 1/2 quantum particle undergoes a
unitary evolution in a discrete homogeneous lattice in discrete

time steps, according to a translation rule controlled at each
step by the value of its spin component and the action of
a quantum gate on the spin. We will analyze the walk from
the perspective provided by the history state formalism, here
applied in its discrete version [47–49]. The ensuing history
state is a pure state of the composite system comprising both
the position and spin degrees of freedom on one side (system
S), and a quantum clock system T on the other. It contains
the information of the whole QW and satisfies a timeless
eigenvalue equation, such that the state of S at step n can
be obtained by conditioning the history state with the cor-
responding clock state. It can be generated from an initial
product state through a quantum circuit.

The corresponding system-time entanglement is a mea-
sure of the degree of evolution of S, i.e., of the number
of orthogonal states visited in the QW, and will be shown
to be fully determined by the overlaps between the evolved
states. Notice that this entanglement is not the spin-position
entanglement usually considered [31–33]. We then show that
for real Hadamard-type coin operators such entanglement be-
comes independent of the initial spin state for a wide class
of initial position states, including the standard case of an
initially localized particle. In the latter, it is also shown that
this entanglement is the operator entanglement of the quantum
gate generating the history state from the initial product state.
Such entanglement defines in fact the entangling power of
this operator, which determines the average over all initial
spin states of the history state entanglement. In the case of
the quadratic entropy it can be evaluated analytically, and an
asymptotic expression for large N can be derived in terms of
the coin operator parameter, showing explicitly the deviation
from the maximum entropy (i.e., maximally entangled) limit.
The associated entanglement spectrum is also analyzed.
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Besides, it is also possible to define a spin history state by
considering a different partition of the whole system, with the
spin on one side and a composite clock (the original clock plus
the position degree of freedom) on the other. In the case of an
initially localized particle the ensuing spin-rest entanglement
is shown to be related to that of the unitary operator generating
the spin history state. An upper bound to the average spin-
rest entanglement is thus obtained, arising from the reduced
Schmidt rank of the previous operator.

We first briefly review in Sec. II the main features of
discrete one-dimensional QW and their exact evolution. The
history state formalism for the QW is introduced in Sec. III,
where the main results, together with analytic expressions
for overlaps and system–time entanglement entropy, are pro-
vided. The connection with operator entanglement and the
spin history state are discussed in Sec. IV. Illustrative nu-
merical results are shown in both Secs. III and IV. Finally,
conclusions are drawn in Sec. V.

II. QUANTUM WALKS IN ONE DIMENSION

A. Generalities

Standard one-dimensional quantum walks are processes in
which a quantum “particle” (quantum system) with spin 1

2 ,
and hence internal Hilbert space Hs = C2, moves along a
one-dimensional lattice spanned by position eigenstates |x〉,
x ∈ Z, which generate the position Hilbert space Hp. The
full Hilbert space of the system is then HS = Hp ⊗ Hs. At
each time step two operations are performed such that their
composition gives the unitary evolution from one time to the
next. The first one acts on the spin component (quantum coin)
and leaves the position unchanged. This is usually taken as a
kind of generalized Hadamard transform [62], represented in
the standard basis (eigenstates {|↑〉, |↓〉} of σz) as

C =
( √

ρ
√

1 − ρ eiγ√
1 − ρ eiφ −√

ρ ei(γ+φ)

)
, (1)

where γ , φ are arbitrary angles and 0 � ρ � 1, such that
C†C = 1. Here we will focus on traceless real coin operators,
such that it results in a Hadamard-type operator

C =
(

cos θ sin θ

sin θ − cos θ

)
= σz cos θ + σx sin θ ≡ σθ , (2)

with σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
the Pauli

matrices and cos2 θ = ρ. The usual Hadamard gate is re-
covered for θ = π/4. Any traceless hermitian unitary coin
operator C can be written in the form (2) by adequately choos-
ing the x axis.

The second operation is a conditional one-step displace-
ment to the right (left) if spin is up (down) along z, generated
by the translation operator T (T †). The total operator generat-
ing the step is then given by

U = 1
2 [T ⊗ (1 + σz )σθ + T † ⊗ (1 − σz )σθ ] (3)

=
∑

x

[|x + 1〉〈x| ⊗ |↑〉〈↑|σθ + |x − 1〉〈x|↓〉〈↓|σθ ], (4)

and verifies the unitary condition U †U = 1p ⊗ 1s.

B. Exact evolution and overlaps

Assuming an initial state which is localized in space,
i.e., with support in some finite interval, it is convenient,
for obtaining a closed exact analytic expression of the
evolved states, to consider a finite position basis {|x〉, x = 0,

. . . , M − 1}, with 〈x|x′〉 = δxx′ , which contains the initial state
as well as the evolved states up to, say, N steps (i.e., M > 2N
for an initially localized particle, where N is the number of
steps). Then we define the associated discrete Fourier trans-
formed (DFT) basis,

|k〉 = 1√
M

M−1∑
x=0

ei2πxk/M |x〉, k = 0, . . . , M − 1, (5)

satisfying 〈k|k′〉 = δkk′ and | − k〉 = |M − k〉. These states are
the eigenstates of the cyclic translation operator defined by
T |x〉 = |x + 1〉, with T |M − 1〉 = |0〉, such that

T |k〉 = e−i2πk/M |k〉. (6)

The operator (4) can then be rewritten as

U = exp

[
−i

2π

M
K ⊗ σz

]
(1 ⊗ σθ ) (7a)

=
(

e−i2πK/M 0
0 ei2πK/M

)(
cos θ sin θ

sin θ − cos θ

)
, (7b)

where K is the discrete “momentum” operator satisfying
K|k〉 = k|k〉, such that T = exp[−i2πK/M].

For each value k of K , (7b) represents, in the standard spin
basis, a unitary operator Uk in spin space fulfilling Det[Uk] =
−1, with eigenvalues

λ±
k = ±e∓iωk (8a)

= ±
√

1 − cos2 θ sin2 φk − i cos θ sin φk , (8b)

where φk = 2π k/M, and eigenvectors

|s±
k 〉 = α±

k |↑〉 + β±
k |↓〉 ,

β±
k

α±
k

= eiφk λ±
k − cos θ

sin θ
, (9)

satisfying 〈sν
k |sν ′

k′ 〉 = δkk′δνν ′
. Thus,

U =
M−1∑
k=0

|k〉〈k| ⊗ Uk , (10a)

Uk = e−iωk |s+
k 〉〈s+

k | − eiωk |s−
k 〉〈s−

k | . (10b)

Whereas in the position representation (4) it is the spin which
appears as controlling the position displacement, in the mo-
mentum representation (10a) based on the eigenbasis of T , it
is the momentum K which controls the spin evolution at each
step.

Using (10), we can now determine the evolution of a gen-
eral initial product state

|�0〉 = |ψ0〉 ⊗ |χ0〉 , (11a)

|ψ0〉 =
∑

x

ψ0(x)|x〉 =
∑

k

ck|k〉 , (11b)

|χ0〉 = α|↑〉 + β|↓〉 , (11c)
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where ψ0(x) is the initial position state, with

ck = 〈k|ψ0〉 = 1√
M

∑
x

e−i2πxk/Mψ0(x) (12)

the DFT of ψ0(x) (sums over k, x are from 0 to M − 1) and
|χ0〉 the initial spin state. The state after n steps is

|�n〉 = U n|�0〉 =
∑

k

ck|k〉 ⊗ U n
k |χ0〉 , (13)

where the evolved spin state for momentum k is

U n
k |χ0〉 = e−inωk 〈s+

k |χ0〉|s+
k 〉 + einωk 〈s−

k |χ0〉|s−
k 〉 . (14)

A quantity of most importance in this work is the overlap
between the evolved states,

〈�n′ |�n〉 = 〈�0|U n−n′ |�0〉 = 〈�0|�n−n′ 〉 (15a)

=
∑

k

|ck|2〈χ0|U n−n′
k |χ0〉 (15b)

=
∑

k

|ck|2
∑
ν=±1

νn−n′
eiν(n′−n)ωk

∣∣〈sν
k

∣∣χ0
〉∣∣2

, (15c)

which depends just on n − n′.
For future use we notice that for −k ≡ M − k, λ±

−k = λ±∗
k

(ω−k = −ωk) and |s±
−k〉 = |s±

k 〉∗ in the standard basis [α±
−k =

α± ∗
k , β±

−k = β± ∗
k in (9)]. Moreover,

U−k = −σyUkσy , (16)

entailing U n
−k = (−1)nσyU n

k σy. It is also evident from (7b) that
for M even,

Uk+M/2 = −Uk . (17)

We finally notice that in the special case θ = π/2, λ±
k =

±1 (ωk = 0) and U 2
k = 1s ∀ k, i.e., U 2 = 1: the system always

returns to its initial configuration after two steps, as C = σx

[Eq. (2)] flips the coin at each step.

III. QUANTUM WALK HISTORY STATES

A. Definition and main properties

Let us now consider a quantum walk with N − 1 steps,
starting from an initial state |�0〉 at time t0 = 0 and ending in
a state |�N−1〉 at time tN−1 = (N − 1)τ , where τ is a certain
time scale. We then consider a quantum clock system T with
an orthogonal set of states |n〉, n = 0, . . . , N − 1, representing
the scaled time n = tn/τ at which the nth step takes place.
They are eigenstates of a clock operator Tc satisfying Tc|n〉 =
n|n〉, and could represent, for instance, the scaled position of
the clock’s needle.

We now define the quantum walk history state as

|�〉 = 1√
N

N−1∑
n=0

|�n〉 ⊗ |n〉 , (18)

where |�n〉 is the system state (13) at step n. The state (18)
contains the whole information of the walk. For example, the

FIG. 1. Schematic circuit representing the generation of the his-
tory state (18) through Eq. (13): The quantum Fourier transform (FT)
is applied to the initial position state |ψ0〉, while H⊗m denotes the
Hadamard operator over m qubits with 2m = N , such that H⊗m|0〉 =

1√
N

∑N−1
n=0 |n〉. Finally the controlled-U gate U n

k acts over the initial
spin state |χ0〉.

time average of an observable OS of the particle over the
complete walk can be expressed as

〈OS〉 := 1

N

N−1∑
n=0

〈�n|OS|�n〉 (19a)

= 〈�|OS ⊗ 1T |�〉 , (19b)

whereas matrix elements between system states at any two
times can be written as

〈�n′ |OS|�n〉 = N〈�|(OS ⊗ |n′〉〈n|)|�〉 . (20)

Using Eqs. (13) and (18), the quantum walk history state
can be generated from an initial product state |ψ0〉|χ0〉|n = 0〉
through the schematic circuit of Fig. 1, where FT implements
the transformation |x〉 → 1√

M

∑
k e−i2πxk/M |k〉. For a particle

initially localized at x = 0, ck = 1/
√

M ∀ k and one may
replace the FT gate by a simpler Hadamard gate H⊗m′

, with
2m′ = M.

History states actually determine the system evolution
when they satisfy a proper timeless eigenvalue equation [49].
Defining the system-clock unitary operator

U =
N∑

n=1

Un,n−1 ⊗ |n〉〈n − 1|, (21)

where Un,n−1 = U for 1 � n � N − 1 and (identifying |N〉
with |0〉) UN,N−1 = (U N−1)†, the state (18) is first seen to be
an exact eigenstate of U with eigenvalue 1:

U |�〉 = |�〉 . (22)

Conversely, if |�〉 is any state satisfying Eq. (22), i.e., a
state which remains fully invariant under U , then

〈n|�〉 = 〈n|U |�〉 = Un,n−1〈n − 1|�〉 , (23)

implying that system states |�n〉 := √
N〈n|�〉 will fulfill the

discrete unitary evolution |�n〉 = Un,n−1|�n−1〉, i.e., Eq. (13)
for constant Un,n−1 = U (1 � n � N − 1). Normalization
1 = 〈�|�〉 = ∑

n〈�|n〉〈n|�〉 then entails 〈�n|�n〉 = 1. The
whole system evolution up to step N − 1 is thus determined by
Eq. (22) and the initial state |�0〉. The same holds for general
unitaries Un,n−1 provided UN,N−1 . . .U1,0 = 1S .

Writing U = exp[−iJ ], Eq. (22) implies J |�〉 = 0 (or
2kπ , k integer), which is a discrete Wheeler-DeWitt-type
equation [50]. In fact, if Un,n−1 = U ∀ n = 1, . . . , N (such that
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U N = 1), then J = H ⊗ 1T + 1S ⊗ Pc, where e−iH = U de-
termines the step evolution in S and e−iPc = ∑N

n=1 |n〉〈n − 1|
generates the unit translation in the time basis (|n − 1〉 → |n〉)
[49].

We also mention that the other eigenvalues of U are
e−i2πk/N (k = 0, . . . , N − 1) [48,49]. Hence, |�〉 can also
be seen as the ground state (GS) of the hermitian operator
− 1

2 (U + U†), which has eigenvalues − cos 2πk
N . This enables

the use of variational methods for its determination [47,55].

B. System-time entanglement

The entanglement E (S, T ) of the history state (18) can be
regarded as a measure of the “degree of evolution” of system
S, i.e., of the number of orthogonal states visited in the walk:
If |�0〉 is an eigenstate of U , i.e., a stationary state satisfying
U |�0〉 = eiγ |�0〉, the history state becomes separable: |�〉 =
|�0〉( 1√

N

∑
n einγ |n〉), and E (S, T ) = 0 [48]. This case arises

here in finite cyclic realizations when |ψ0〉 in (14) remains
invariant under translations, i.e., when it is a state |k〉, and
|χ0〉 coincides with one of the eigenstates |s±

k 〉 of Uk , such
that U n|�0〉 = e∓inωk |�0〉 for |�0〉 = |k〉 ⊗ |s±

k 〉.
The opposite situation is an evolution where at each step

the system evolves into a new orthogonal state such that
〈�n|�n′ 〉 = δnn′ , in which case E (S, T ) is maximum. This
evolution arises here in the trivial limit θ → 0 for an initially
localized state ψ0(x) = δxx0 with definite spin along the z axis
(σz|χ0〉 = ±|χ0〉), such that the particle always advances in
the same direction.

In the general case E (S, T ) will be determined by the
overlaps (15). We can expand (18) as (ν = ±1)

|�〉 = 1√
N

∑
k,ν,n

〈k, sν
k |�n〉|k, sν

k 〉 ⊗ |n〉

=
ns∑

m=1

√
λm|mS〉 ⊗ |mT 〉 , (24)

where |k, s±
k 〉 = |k〉 ⊗ |s±

k 〉 and (24) is its Schmidt repre-
sentation, obtained from the singular value decomposition
(SVD) M = V DW † of the matrix of elements Mkν,n =
〈k, sν

k |�n〉/
√

N . Here Dmm′ = √
λmδmm′ with λm the eigenval-

ues of the positive semidefinite matrices MM† or equivalently
M†M (fulfilling Tr M†M = ∑

m λm = 1), while V , W are uni-
tary matrices diagonalizing MM† and M†M, respectively,
satisfying V D = MW .

In (24) |mS〉 = ∑
k,ν Vkν,m|k, sν

k 〉, |mT 〉 = ∑
n W ∗

nm|n〉
are orthogonal system and clock states, respectively
(〈mS(T )|m′

S(T )〉 = δmm′ ), while ns is the Schmidt rank, i.e.,
the number of nonzero eigenvalues λm, which is just the rank
of the matrix M. |�〉 is then entangled if ns � 2 and separable
(product state) if ns = 1.

Equation (24) shows that the states |mS(T )〉 are the eigen-
vectors of the reduced system and clock states

ρS(T ) = TrT (S) |�〉〈�| =
ns∑

m=1

pm|mS(T )〉〈mS(T )| , (25)

which determine the average along the walk of any local
observable (〈�|OS ⊗ 1|�〉 = TrS ρSOS), and have the same

nonzero eigenvalues λm. Their entropies are then identical
and define the entanglement entropy of the history state |�〉
(system-time entanglement [48])

E (S, T ) = S(ρS ) = S(ρT ) =
∑

m

f (λm) , (26)

where the last expression holds for a general trace-form
entropy S(ρ) = Tr f (ρ), where f is a concave nonnegative
function satisfying f (0) = f (1) = 0. Equation (26) vanishes
if the history state is separable.

The reduced states (25) can also be here written as

ρS = 1

N

N−1∑
n=0

|�n〉〈�n| , (27a)

ρT = 1

N

∑
n,n′

〈�n′ |�n〉|n〉〈n′| . (27b)

Equation (27b) shows explicitly that ρT , and hence its eigen-
values λm and the entanglement (26) of the history state, are
fully determined by the overlaps (15).

The standard choice for S is the von Neumann entropy

S(ρ) = −Tr ρ log2 ρ, (28)

which will satisfy

0 � E (S, T ) � log2 N, (29)

such that 2E (S,T ) is essentially a measure of the number of
distinct orthogonal states visited in the evolution. Another
convenient choice is the quadratic entropy (also denoted as
linear entropy or q = 2 Tsallis entropy [63]), which is simply
determined by the purity Tr ρ2,

S2(ρ) = 1 − Tr ρ2 , (30)

and corresponds to f (ρ) = ρ(1 − ρ). It does not require the
explicit determination of eigenvalues and can be measured
without requiring a full state tomography [64]. It can be here
directly evaluated in terms of the overlaps (15): Using (27)
together with (26) and (30), we obtain

E2(S, T ) = 1 − 1

N2

∑
n,n′

|〈�n′ |�n〉|2 (31a)

= 1 − 1

N

[
1 + 2

N−1∑
n=1

(
1 − n

N

)
|〈�0|�n〉|2

]
,

(31b)

where (31b) holds when |〈�n′ |�n〉| depends just on |n − n′|,
as in Eq. (15) (with factor ∝ 1 − n

N accounting for the perti-
nent multiplicity). It obviously satisfies

0 � E2(S, T ) � 1 − 1

N
, (32)

such that 1
1−E2(S,T ) is here the effective number of orthogonal

states visited. A directly related quantity is the q = 2 Renyi
entropy SR

2 (ρ) = − log2(1 − S2) = − log2 Tr ρ2 [65], which
satisfies the same bound (29).

The upper limit in (29)–(32) is reached for θ → 0 in (2)
and an initially localized particle with definite σz. On the other
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hand, for θ = π/2 the evolution becomes periodic with pe-
riod 2 (as U 2 = 1), and hence the system-time entanglement
entropy will stay trivially bounded ∀ N :

E (S, T ) � 1 , E2(S, T ) � 1/2 (θ = π/2), (33)

with the upper limit reached for an orthogonal intermediate
state. Thus, by varying θ in the interval [0, π/2] we can reach,
for an initially localized particle, all possible rates of system-
time entanglement increase with N , from the maximum rate
for θ = 0 to the null increase for θ = π/2, entailing in general
a decrease of E (S, T ) with increasing θ in this interval.

C. Independence of system-time entanglement
from initial spin state

1. Real initial states with definite site parity

We now examine the entanglement (26) for some general
types of initial states |�0〉. We first notice that if |�0〉 has a
definite position parity, such that its support are just even (or
odd) sites x,

(eiπX ⊗ 1)|�0〉 = ±|�0〉, (34)

where X is the discrete position operator X |x〉 = x|x〉, the
overlap 〈�n|�n′ 〉 will vanish for n − n′ odd since at each step
the particle will move to sites of opposite parity:

(eiπX ⊗ 1)|�n〉 = ±(−1)n|�n〉 . (35)

Equation (34) is trivially fulfilled for an initially localized
particle ψ0(x) = δx,x0 . In momentum space, Eq. (34) implies
ck+M/2 = ±ck (M even) and (35) follows from (17) and (13).

Then, for real ψ0(x) and α, β in (11), such that c−k = c∗
k

and 〈s±
−k|χ0〉 = 〈s±

k |χ0〉∗, we obtain, using
∑

ν=± |〈sν
k |χ0〉|2 =

1 and Eq. (15c),

〈�0|�n〉 =
∑

k

|ck|2 cos(nωk )(|〈s+
k |χ0〉|2+(−1)n|〈s−

k |χ0〉|2)

=
{∑

k |ck|2 cos(nωk ), n even
0, n odd

. (36)

Thus, the overlap becomes independent of the initial (real)
spin state |χ0〉 ∀ n. This implies a system-time entanglement
entropy independent of |χ0〉.

The previous result can be seen more clearly using
Eqs. (16) and (15b): since σy|χ0〉 is orthogonal to |χ0〉 for |χ0〉
real [α, β real in (11c), equivalent to 〈σ〉 in the x, z plane] and
〈χ0|U n

−k|χ0〉 = (−1)n〈χ0|σyU n
k σy|χ0〉, for |c−k| = |ck| and n

even we obtain

〈�0|�n〉 = 1

2

∑
k

|ck|2
(〈
χ0

∣∣U n
k

∣∣χ0
〉 + 〈χ0|σyU

n
k σy|χ0〉)

= 1

2

∑
k

|ck|2 Tr U n
k = 1

2
〈ψ0|Trs U n|ψ0〉 , (37)

which shows that the even overlap depends just on the trace
of U n

k , i.e., on the partial trace of U n over spin, and is hence
independent of the initial spin state |χ0〉. Equation (37) leads
again to (36) for n even and also n odd, as Tr U n

k = e−inωk +
(−1)neinωk = (−1)nTr U n

−k and hence the sum in (37) vanishes
for n odd when |c−k| = |ck|.

With previous expressions, the sum over N in the quadratic
system-time entanglement (31b) can be evaluated analyti-
cally:

E2(S, T ) = 1 −
∑

k,k′
ν=±1

|ckck′ |2 sin2 N (ωk+νωk′ )
2

N2 sin2(ωk + νωk′ )
, N even (38a)

= 1 −
∑

k,k′
ν,ν′=±1

|ckck′ |2 sin2 (N+ν ′ )(ωk+νωk′ )
2

2N2 sin2(ωk + νωk′ )
, N odd.

(38b)

Here sin2 mu
m2 sin2 u

is understood as its limit 1 if sin u = 0 (m inte-

ger), being a polynomial of degree m − 1 in cos u ( sin(n+1)u
sin u =∑�n/2�

k=0 (−1)k
(n−k

k

)
(2 cos u)n−2k is a Chebyshev polynomial of

the second kind [66]).
As a check, for θ = π/2, ωk = 0 ∀ k, and hence for any

initial ψ0(x) with definite parity, (38a) and (38b) lead to

E2(S, T ) =
{

1
2 , N even
1
2

(
1 − 1

N2

)
, N odd

(θ = π/2). (39)

This means that the system just moves between two orthonor-
mal states (periodic evolution) as previously stated, entailing
a nonincreasing system-time entanglement entropy. The spec-
trum of ρS (T ) is simply ( 1

2 , 1
2 ) for N even and ( N+1

2N , N−1
2N ) for

N odd.

2. Initially localized particle

For ψ0(x) = δxx0 , ck = 1√
M

e−i2πx0k/M and |ck|2 = 1
M ∀ k.

Overlaps and system-time entanglement are then determined
just by the full trace of U n and hence the coin operator angle
θ , as implied by (36) and (37):

〈�0|�n〉 = Tr [U n]

2M
=

{
1
M

∑
k cos(nωk ), n even

0, n odd
. (40)

We can now evaluate (40) exactly ∀ θ and N , using (8).
Since the result is independent of M (for M > 2N if x0 =
M/2), it can be obtained either summing over k or letting
M → ∞ and replacing the sum by an integral over φ =
2πk/M (with dφ = 2π/M ). We obtain

〈�0|�2n〉 = Pn(cos2 θ ) , (41a)

Pn(u) =
n∑

j=0

(−1) j

(
n

j

)(
n + j − 1

j

)
u j (41b)

= 1 − n2u + 1

4
n2(n2 − 1)u2 + · · · , (41c)

where Pn(u) = F2,1(−n, n, 1, u) = P0,−1
n (1 − 2u) is a polyno-

mial of degree n in u, with F2,1 the hypergeometric function
and Pα,β

n the Jacobi polynomial [66]. It satisfies Pn(0) = 1 and
Pn(1) = 0 ∀ n � 1.

For large n and θ ∈ (0, π/2), we can also obtain from (41)
and the asymptotics of Jacobi polynomials the exact asymp-
totic expression

〈�0|�2n〉 ≈ (−1)n

√
tan θ

nπ
cos(2nθ + π/4) + O(n−3/2) ,

(42)
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FIG. 2. System-time entanglement according to the von Neu-
mann (top) and quadratic (bottom) entropies, as a function of the
total number N of steps of the quantum walk for different values
θ = 0, π/20., . . . , π/2, of the coin operator parameter, for an ini-
tially localized particle and any real initial spin state.

which shows that the overlap fades away as n−1/2 for large n
and its modulus essentially increases as tan1/2 θ for increasing
θ ∈ (0, π/2).

Through Eqs. (40) and (41) the quadratic system-time en-
tanglement entropy (31) can be evaluated exactly as

EN
2 (S, T ) = 1 − 1

(2MN )2

∑
n,n′

|Tr[U n−n′
]|2 (43a)

= 1 − 1

N

[
1 + 2

� N−1
2 �∑

n=1

(
1 − 2n

N

)
P2

n (cos2 θ )

]
.

(43b)

As a check, it is verified that for θ = 0, we obtain from (43b)
maximum entropy ∀ N [Pn(1) = 0 for n � 1]:

E2(S, T ) = 1 − 1

N
, (θ = 0) , (44)

in agreement with previous considerations (any entropy is
obviously also maximum in this case). And for θ = π/2,
we recover from (43b) Eq. (39) for both N even or odd, as
Pn(0) = 1 ∀ n � 1. Exact results as a function of N and θ are
depicted in Figs. 2 and 3.

For large N , we may use Eq. (42) for n �= 0 and approxi-
mate the sum over n in (43b) by an integral over u = 2n/N ,

FIG. 3. System-time entanglement according to the von Neu-
mann (top) and quadratic (bottom) entropies, as a function of the
coin operator angle θ for different number of steps N = 2, 10,

20, . . . , 100, for the same initial states of Fig. 2.

which leads to the asymptotic expression

EN
2 (S, T ) ≈ 1 − 1

N

{
1 + 2

π

[
ln

N

2
+ Si(4θ ) − c

]
tan θ

}
,

(45)

where Si(x) = ∫ x
0

sin t
t dt and c = 1 + π

2 [neglecting terms
O(N−2)]. The deviation from maximum entropy Smax

2 = 1 −
1
N is then O( ln N

N ) and proportional to tan θ , in agreement with
previous considerations. This result can also be obtained from
(38) using sin2(Nu/2)

N sin2 u/2
→

N→∞
2πδ(u) for |u| < π and integrating

over φ = 2πk
m . An exact summation using (42) is given in the

Appendix.

3. Entanglement spectrum

For an initially localized particle, we may also examine
the entanglement spectrum, i.e., the common eigenvalues of
the reduced densities (27) which determine the entropies of
Figs. 2 and 3, by diagonalizing the overlap matrix [Eqs. (40)
and (41)]

〈�n′ |�n〉 =
{

P|n−n′ |
2

(cos2 θ ), n − n′ even

0, n − n′ odd
, (46)
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FIG. 4. Entanglement spectrum of the history state (eigenvalues
λ1 � λ2 � · · · of the reduced densities ρS or ρT ) obtained from the
overlap matrix (46) for an initially localized particle and N = 40 as
a function of the coin operator parameter θ .

for 0 � n, n′ � N − 1. This leads to two similar blocks (n, n′
even or odd, respectively), identical for N even.

For sufficiently large N the eigenvalues of each block
(identical for N even) come essentially in almost degenerate
pairs for θ not close to π/2, with the number of nonnegli-
gible eigenvalues decreasing with increasing θ , as depicted
in Fig. 4. The largest eigenvalue lies close to the Gershgorin
upper bound, i.e., using Eq. (42),

λmax(θ ) ≈ 1

N

⎡
⎣1 +

√
tan θ

π

N
2 −1∑
n=1

| cos(2nθ + π/4)|√
n

⎤
⎦ (47a)

≈ 1

N

[
1 +

√
tan θ

2π
H 1

2
(
N

2
− 1)

]
(47b)

≈ 1

N
+

√
tan θ

Nπ

[
1 + ζ

(
1
2

)
√

2N

]
, (47c)

where H1/2(m) = ∑m
n=1

1√
n

[≈2
√

m + ζ ( 1
2 ) for large m] is the

generalized harmonic number [ζ (1/2) ≈ −1.46 is the Rie-
mann zeta function at 1/2]. Thus, there is always a deviation
O(N−1/2) from the maximally mixed distribution, propor-
tional to tan1/2 θ .

IV. RELATION WITH OPERATOR ENTANGLEMENT

A. Entanglement of unitary operators

We will show here that the system-time entanglement en-
tropy for the initially localized particle, which is independent
of the initial (real) spin state, is the entanglement entropy of
the global unitary operator which generates the quantum walk.

First, let us consider a complete set of local orthogonal
operators OS

i (OT
j ) of the system (clock) satisfying

TrS
[
OS†

i OS
i′
] = dSδii′ , TrT

[
OT †

j OT
j′
] = dT δ j j′ , (48)

where dS(T ) is the Hilbert space dimension of S (T ). Any
operator U on the whole system can be expanded as

U =
∑
i, j

Mi j OS
i ⊗ OT

j , (49)

where Mi j = 1
dSdT

Tr [(O†
i ⊗ O†

j )U ]. Then, 1
dSdT

Tr [U†U ] =∑
i, j |Mi j |2 = Tr[M†M]. If U is unitary, Tr [M†M] = 1 and

the |Mi j |2 become standard probabilities.
Hence, in the same way as done for the history state,

through the SVD M = V DW †, with Dmm′ = λmδmm′ and V ,
W unitary, we can also obtain the Schmidt representation of
the operator U ,

U =
ñs∑

m=1

√
λ̃m ÕS

m ⊗ ÕT
m , (50)

where λm are the eigenvalues of M†M or MM† and ÕS
m =∑

i VimOS
i , ÕT

m = ∑
j W ∗

jmOT
j are new local orthogonal oper-

ators satisfying (48), with ñs the rank of M̃. If U is unitary
the eigenvalues λm are again standard probabilities (λm � 0,∑

m λm = 1). Thus, for a general trace-form entropy, the en-
tanglement entropy of the unitary operator U can be defined
as

E (U ) =
∑

m

f (λm) , (51)

vanishing if U is a product of local unitaries (ñs = 1).
The analogy with state entanglement is straightforward if

the Choi isomorphism for representing operators is employed.
Any operator U on HST = HS ⊗ HT can be associated to a
pure state |U〉 in HST ⊗ HST given by

|U〉 = (U ⊗ 1ST )|1〉 = 1√
dSdT

∑
μ

(U |μ〉) ⊗ |μ〉, (52)

where |1〉 = 1√
dSdT

∑
μ |μ〉 ⊗ |μ〉 is a maximally entangled

state in HST ⊗ HST . In this way, an exact map for inner
products is obtained:

〈U ′|U〉 = 1

dSdT
Tr [U ′†U ] , (53)

with 〈U |U〉 = 1 for a unitary operator U . Thus, Eqs. (49) and
(50) can be recast, noting that |1〉 = |1S〉 ⊗ |1T 〉, as

|U〉 =
∑
i, j

Mi j

∣∣OS
i

〉 ⊗ ∣∣OT
j

〉 =
∑

m

√
λm

∣∣ÕS
m

〉 ⊗ ∣∣ÕT
m

〉
, (54)

with |OS
i 〉 = (OS

i ⊗ 1S )|1S〉 = 1
dS

∑
μ(OS

i |μS〉) ⊗ |μS〉 and
similarly for |OT

j 〉, such that Mi j = (〈OS
i | ⊗ 〈OT

j |)|U〉. We can
now rewrite (51) as

E (U ) = S
(
ρU

S

) = S
(
ρU

T

)
, (55)

where ρU
S(T ) = TrT (S) |U〉〈U | = ∑

m λm|ÕS(T )
m 〉〈ÕS(T )

m | are the
local reduced densities derived from |U〉. In particular, the
quadratic entropy becomes

E2(U ) = 1 − Tr
(
ρU

S(T )

)2 = 1 − Tr [(MM†)2] . (56)

B. Operator entanglement and quantum walk

If a system initially in a state |�0〉 undergoes a discrete
unitary evolution through times n = 0, . . . , N − 1 and states
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|�n〉 = Un|�0〉, its history state can be generated from an
initial system-clock product state as (see Fig. 1)

|�〉 = 1√
N

N−1∑
n=0

Un|�0〉 ⊗ |n〉 = W (|�0〉 ⊗ |0̃〉) , (57)

where |0̃〉 = H⊗m|0〉 = 1√
N

∑N−1
n=0 |n〉 and

W =
N−1∑
n=0

Un ⊗ |n〉〈n| (58)

is a controlled-Un unitary operator on the whole system. Its
state representation (52) is

|W〉 = 1√
N

N−1∑
n=0

|Un〉 ⊗ |Tn〉, (59)

where |Tn〉 = (
√

N |n〉〈n| ⊗ 1)|1〉 = |n〉 ⊗ |n〉 and |Un〉 =
1√
dS

∑
μ(Un|μS〉) ⊗ |μS〉. Therefore, the unitary operator W

generating the history state from a product state can itself be
represented as an operator history state (59).

The reduced operator state of the clock is here

ρW
T = TrS|W〉〈W| = 1

N

∑
n,n′

〈Un|Un′ 〉|Tn〉〈Tn| , (60)

in full analogy with (27b), showing again that the entangle-
ment of the generating operator (58) and (59),

E (W ) = S
(
ρW

S

) = S
(
ρW

T

)
, (61)

is fully determined by the overlaps 〈Un′ |Un〉. In the present
random walk, Un = U n and

〈Un′ |Un〉 = 1

2M
Tr[U n−n′

] (62)

is exactly the overlap (40)–(46) between the evolved system
states for an initially localized particle with real initial spin
state.

Thus, the operator entanglement (61) is exactly that of the
previous system-clock history state for the initially localized
particle, for any choice of entropy. In particular, the quadratic
operator entanglement

E2(W ) = 1 − Tr
(
ρW

T

)2 = 1 − 1

N2

∑
n,n′

|〈Un′ |Un〉|2 (63)

is just the quadratic S–T entropy (43). And the entanglement
spectrum of W coincides with that of the history state (Fig. 4).

The quadratic entropy (63) has an additional meaning: It
determines the entangling power of the unitary operator W ,
i.e., the average quadratic entanglement E2(S, T ) it generates
when applied to initial product system-clock states,

〈E2(S, T )〉 =
∫
H

(
1 − Tr ρ2

S

)
d�0

= dS

dS + 1
E2(W ), (64)

with the average taken over the whole set of initial system
states |�0〉 with the Haar measure d�0 [49]. Thus, for dS � 1
the quadratic S–T entanglement entropy (43), equal to (63), is
very close to the average value (64).

C. Spin history states in the quantum walk

If we now consider as the system only the spin degree
of freedom, we first notice from Eq. (13) that for a particle
initially localized at x = 0, the state after n steps

|�n〉 = 1√
M

∑
k

|k〉 ⊗ U n
k |χ0〉 , (65)

is exactly a spin history state, with respect to the momentum
states |k〉. The “evolution” operators are here the k-projected
unitaries U n

k acting on the spin, having a nontrivial k de-
pendence. Thus, the spin-position entanglement at step N is
that of a spin history state. The same holds for any initial
localization x0 (|k〉 → e−i2πkx0/M |k〉).

Therefore, its average 〈E2(s, p)〉 over all initial spin states
is determined by the entanglement of the operator U n gener-
ating such spin history [from the initial product state |�0〉 =
( 1√

M

∑
k |k〉)|χ0〉], itself an operator history state, as is appar-

ent from Eq. (10a):

U n =
M−1∑
k=0

|k〉〈k| ⊗ U n
k . (66)

The associated operator state is 1√
M

∑
k |Pk〉|U n

k 〉, with |Pk〉 =
|k〉 ⊗ |k〉 and |U n

k 〉 = 1√
2

∑
ν=± U n

k |ν〉|ν〉 (|ν = ±〉 are orthog-
onal spin states). Its entanglement is then determined by the
overlaps [see Eqs. (10) and (70) below]〈

U n
k′
∣∣U n

k

〉 = 1
2 Tr

[
U −n

k′ U n
k

]
. (67)

While the unitaries U n
k belong to a four-dimensional space

spanned by the identity and the three Pauli operators, limiting
the Schmidt rank of (66) to ns � 4 ∀ M, they actually live
within a three-dimensional subspace spanned by the identity
1s, the coin operator σθ ≡ C, and the orthogonal Pauli opera-
tor σy; from (7) and (8) we see that

Uk = cos φk σθ − i sin φk exp[iθσy] , (68)

since σzσθ = cos θ 1s + i sin θ σy. And from (10b) and (68) it
follows that

|s±
k 〉〈s±

k | = 1

2
(1 ± σk ) , (69a)

σk = cos φk

cos ωk
σθ + sin φk sin θ

cos ωk
σy , (69b)

with σ 2
k = 1. Hence, all powers

U n
k = e−inωk |s+

k 〉〈s+
k | + (−1)neinωk |s−

k 〉〈s−
k |

= cos(nωk )1 − i sin(nωk )σk (n even) (70a)

= −i sin(nωk )1 + cos(nωk )σk (n odd) (70b)

are spanned just by {1s, σθ , σy} ∀ k, n, with Tr σθσy = 0. This
entails a Schmidt rank ns � 3 of the nth power (66), implying
at most three nonzero eigenvalues λm in its associated en-
tanglement spectrum, as seen in Fig. 5, and a von Neumann
entanglement entropy E (U n) � log2 3.

For U itself (n = 1) just {σθ , eiθσy} are needed as seen from
(68), implying ns = 2, as also evident from the original ex-
pression (3). Its entanglement spectrum is just (1/2, 1/2, 0).
However, for n � 2 the rank is ns = 3 if θ ∈ (0, π/2) (and
M > 3). Exceptions occur for θ = 0, in which case ωk = φk
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FIG. 5. Entanglement spectrum of the unitary operator (66) for
an odd (top) and even (bottom) n as a function of the coin operator
parameter θ .

and σk = σθ = σz ∀ k, leading to ns = 2 and an entanglement
spectrum (1/2, 1/2, 0) ∀ n � 1, as verified in Fig. 5, and
also for θ = π/2, where ωk = 0 ∀ k and σθ = σx, leading to
ns = 1 ∀ n even (as U n

k = 1 ∀ k) and ns = 2 for n odd (as
U n

k = σk), with spectrum (1/2, 1/2, 0), as also seen in Fig. 5.
Therefore, the entangling power of U n remains bounded by

this rank ns � 3: Rescaling the quadratic entropy as S2(ρ) =
2(1 − Tr ρ2), such that S2(ρ) = 1 for a maximally mixed sin-
gle spin state, it implies E2(U n) � 4/3. Hence, applying the
relation (64) to the spin history, the average over all initial spin
states of the spin-position entanglement after n steps satisfies

〈E2(s, p)〉 = (2/3)E2(U n) � 8/9 . (71)

This bound is obviously lower than the maximum
〈E2(s, p)〉 = 1 reached for a full rank maximally entangled
operator Un [E2(Un) = 3/2 for the rescaled S2], for which
|�n〉 in (65) would be maximally entangled [E2(s, p) = 1]
for any spin state |χ0〉, in agreement with the general results
of Ref. [49]. The variation of 〈E2(s, p)〉 ∝ E2(U ) with θ is
depicted in Fig. 6.

Similarly, the full history state (18) for the initially lo-
calized particle can also be regarded, when viewed from the
spin, as a spin history state with respect to a composite clock,
comprising both the original clock and the position degrees of
freedom:

|�〉 = 1√
NM

∑
k,n

|kn〉 ⊗ U n
k |χ0〉, (72)

FIG. 6. The average over all initial spin states of the spin-
position quadratic entanglement entropy 〈E2(s, p)〉 = (2/3)E2(U n)
[Eq. (71)], as a function of the coin operator parameter θ , for the
even and odd cases of Fig. 5. The dotted line indicates the upper
bound 8/9.

where |kn〉 = |k〉 ⊗ |n〉, and for clarity we have altered the
order in the tensor product. In this case the unitary operator
generating the full spin history is

Ws =
∑
k,n

|kn〉〈kn| ⊗ U n
k . (73)

The average (over all initial spin states) 〈E2(s, pT )〉 of the
spin–rest entanglement in the state (72) is then determined by
the entanglement of the operator (73), in turn determined by
the full set of overlaps〈

U n′
k′

∣∣U n
k

〉 = 1
2 Tr

[
U −n′

k′ U n
k

]
, (74)

for 0 � k, k′ � M, 0 � n, n′ � N − 1.
Nonetheless, since all U n

k are spanned just by {1s, σθ , σy}
[Eq. (68)], the Schmidt rank of (73) is again ns = 3 (or ns � 3
in general), and the previous bound, i.e., E2(Ws) � 4/3, still

FIG. 7. Average over all initial spin states of the spin–
rest quadratic entanglement entropy, 〈E2(s, pT )〉 = (2/3)E2(Ws )
[Eq. (75)], as a function of the coin operator parameter θ , for N = 20.
The dotted line indicates the upper bound 8/9. Inset: Entanglement
spectrum of the unitary operator Ws, Eq. (73) generating the full spin
history, as a function of the coin operator parameter θ .
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holds. This entails again

〈E2(s, pT )〉 = (2/3)E2(Ws) � 8/9 . (75)

This average is depicted as a function of θ in Fig. 7, together
with the entanglement spectrum of Ws.

V. CONCLUSIONS

We have analyzed the history state formalism in the context
of discrete QW. The history state captures the whole evolution
of the system, enabling, for instance, the evaluation of time
averages as single quantum expectation values. It satisfies a
timeless eigenvalue equation and can be generated through
a quantum circuit from an initial system-clock product state.
The associated system-clock entanglement entropy is a mea-
sure of the number of orthogonal system states visited in
the whole QW and is fully determined by the overlaps be-
tween the evolved states. Stationary system states then lead
to separable history states, while QW in which the system
evolves into a new orthogonal state at each step correspond to
maximally entangled history states.

We have then shown that in one-dimensional QW with real
Hadamard-type coin operators, such entanglement is strictly
independent of the initial spin orientation for real initial states
with definite position parity. We also analyzed its connection
with operator entanglement, showing that in the standard case
of an initially localized particle it coincides exactly with the
entanglement of the unitary operator generating the whole
QW. Exact analytic results for overlaps and quadratic en-
tropies as a function of the number N of steps and the coin
parameter were derived as well, including asymptotic expres-
sions for large N . The latter show a monotonously decreasing
entropy with increasing coin operator parameter θ ∈ [0, π/2],
with S2(0) − S2(θ ) ∝ tan θ ln N

N for the quadratic entropy. The
associated history state entanglement spectrum shows, ac-
cordingly, a decreasing rank for increasing θ , with a deviation
O( tan θ

N )
1
2 from N−1 in the largest eigenvalue.

Finally, we have examined the QW from the spin perspec-
tive, showing that for an initially localized particle it is also
described by a history state with a composite clock and a
k-dependent unitary. The average over all initial spin states
of the ensuing spin-rest entanglement can then be related
to that of the global unitary generating this history. For the
present Hadamard-type coin operator it has a limited rank with

just three nonzero eigenvalues in its entanglement spectrum,
leading to a bounded average spin-rest entanglement.

In summary, the history state formalism provides a differ-
ent perspective for analyzing QW. The associated system-time
entanglement entropy constitutes a new measure for char-
acterizing the whole evolution, which could be employed,
for instance, in relation with the identification of dynami-
cal phase transitions [26] and topological phases [27–30,67],
of great current interest. The formalism also opens the way
to efficient direct evaluation of time averages and quadratic
entanglement entropies through its simulation in a quantum
circuit [48,49,54], while a variational determination of the
history state becomes possible as well. Finally, the extension
of the formalism to open systems with nonunitary dynamics
and to more complex scenarios is feasible in principle and is
currently under investigation.
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APPENDIX: QUADRATIC ENTANGLEMENT
ENTROPY SUMMATION

The sum for the quadratic entanglement entropy (43b) can
be done exactly for large n using the approximation (42) and
neglecting terms O(n− 3

2 ). This yields

E2(S, T ) ≈ 1 −
[

1 + tan θ

π
F (N, θ )

]/
N, (A1)

with

F (N, θ ) = 2
η∑

n=1

(
1

n
− 2

N

)
cos2(2nθ + π/4) (A2)

= H (η) + Im[e4iθηL(e4iθ , η)] + 2θ − π

2

− 2

N

[
η − sin(2θ (η + 1)) sin(2θη)

sin(2θ )

]
, (A3)

where η = �N−1
2 �, H (η) = ∑η

n=1 1/n is the harmonic num-
ber, and L(z, η) := ∑∞

k=1 zk/(k + η) is directly related to the
Lerch zeta function [66].

[1] Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random
walks, Phys. Rev. A 48, 1687 (1993).

[2] R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum Mechan-
ics and Path Integrals (Courier Corp., North Chelmsford, 2010).

[3] J. Kempe, Quantum random walks: An introductory overview,
Contemp. Phys. 44, 307 (2003).

[4] S. E. Venegas-Andraca, Quantum walks: A comprehensive re-
view, Quantum Inf. Process. 11, 1015 (2012).

[5] A. Ambainis, Quantum walks and their algorithmic applica-
tions, Int. J. Quantum Inf. 01, 507 (2003).

[6] N. Shenvi, J. Kempe, and K. Birgitta Whaley, Quantum
random-walk search algorithm, Phys. Rev. A 67, 052307
(2003).

[7] A. M. Childs and J. Goldstone, Spatial search by quantum walk,
Phys. Rev. A 70, 022314 (2004).

[8] S. D. Berry and J. B. Wang, Quantum-walk-based search and
centrality, Phys. Rev. A 82, 042333 (2010).

[9] L. K. Grover, Quantum Mechanics Helps in Searching
for a Needle in a Haystack, Phys. Rev. Lett. 79, 325
(1997).

062215-10

https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.1142/S0219749903000383
https://doi.org/10.1103/PhysRevA.67.052307
https://doi.org/10.1103/PhysRevA.70.022314
https://doi.org/10.1103/PhysRevA.82.042333
https://doi.org/10.1103/PhysRevLett.79.325


HISTORY STATES OF ONE-DIMENSIONAL QUANTUM … PHYSICAL REVIEW A 106, 062215 (2022)

[10] A. M. Childs, Universal Computation by Quantum Walk, Phys.
Rev. Lett. 102, 180501 (2009).

[11] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V. Kendon,
Universal quantum computation using the discrete-time quan-
tum walk, Phys. Rev. A 81, 042330 (2010).

[12] E. Sánchez-Burillo, J. Duch, J. Gómez-Gardeñes, and D. Zueco,
Quantum navigation and ranking in complex networks, Sci.
Rep. 2, 605 (2012).

[13] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[14] A. M. Childs and D. W. Berry, Black-box Hamiltonian simula-
tion and unitary implementation, Quantum Inf. Comput. 12, 29
(2012).

[15] A. Schreiber, A. Gábris, P. P. Rohde, K. Laiho, M. Štefaňák,
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