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Effect of the charge-carrier–phonon interaction on the fundamental 1/ f voltage noise
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It is known that quantum indeterminacy sets a lower bound on the power spectrum of voltage fluctuations in
any conducting medium. The low-frequency asymptotic of this bound is ∼1/ f in the case of freely propagating
charge carriers. It is found that on account of the charge-carrier–phonon interaction, the asymptotic becomes
∼1/ f γ , γ �= 1. Its general expression is derived in the case of charge carriers subject to the piezoelectric
interaction with acoustic phonons. The sign of (γ − 1) depends on the state filling for charge carriers, so that
γ may exceed unity despite the absence of a low-frequency cutoff. It is shown that under stationary physical
conditions the voltage variance grows with time as tγ−1, in agreement with observations. It is proved that despite
this growth the power spectrum is well defined and finite for γ < 2. A practical attainability of the quantum
bound is discussed. A comparison with the experimental data on 1/ f noise in InGaAs quantum wells and
high-temperature superconductors is made. It is demonstrated that the account of γ �= 1 brings the calculated
noise levels uniformly within an order of magnitude of the measured. This holds true whether the voltage
fluctuations are measured along or across the electric current, though the observed noise levels in the two cases
are significantly different.
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I. INTRODUCTION

It is experimentally established that power spectra of the
voltage fluctuations in all conducting media exhibit a univer-
sal low-frequency behavior: for sufficiently small frequencies
f , the power spectral density S( f ) ∼ 1/ f γ , where the fre-
quency exponent γ is around unity [1–4]. These ubiquitous
fluctuations are often called simply 1/ f , or flicker, noise.
It has been detected at frequencies as high as 106 Hz down
to 10−6.3 Hz [5,6], with no sign of low-frequency spectrum
flattening.

There are various physical processes producing voltage
noise: the charge carrier trapping-detrapping, motion of dis-
locations, conductance fluctuations caused by the temperature
fluctuations, etc. The so-called 1/ f problem can be broadly
formulated as a difficulty to relate 1/ f spectrum to any of
these conventional noise sources. In fact, it is hard to indicate
a physical process, say, in a crystal of pure copper, which
would be characterized by frequencies much lower than 1 Hz.
Furthermore, in specific experiments, 1/ f noise is often ob-
served over frequency bands five to six decades wide (see,
e.g., Refs. [5–10], to mention a few), whereas the bandwidths
of noise produced by the above-mentioned mechanisms are
significantly more narrow. For example, defect motion in
carbon conductors gives rise to the 1/ f spectrum only in
the range f ≈ 102–104 Hz [11]. By the same reason, theories
based on the charge-carrier trapping-detrapping mechanism
[12,13] have been generally unsuccessful either. Namely, if
the 1/ f noise observed in a given frequency range is sup-
posed to originate from the charge-carrier trapping, the inverse
trapping times need to be finely distributed over a much
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wider range in such a way that the Lorentzians produced by
individual traps would sum up to the observed spectrum [14].
Not saying that this mechanism fails in metals, and leaving
aside its quantitative part (which demands not only the fre-
quency profile, but also the noise magnitude be accounted
for), to explain the formation of such a perfect distribution
is itself a difficult task. In practice, on the other hand, contri-
butions of the conventional noise sources are usually easily
identified based on the known material properties and the
sample preparation techniques.

The fundamental 1/ f noise is what remains after all
conventional contributions have been eliminated, either ana-
lytically in the course of spectrum postprocessing by using
appropriate models for the noise mechanisms involved, or
experimentally, by improving the sample preparation technol-
ogy. According to the quantum theory of fundamental 1/ f
noise [15–17], it is generated by quantum fluctuations of the
electromagnetic field produced by freelike charge carriers,
rather than by fluctuations in the material properties of the
conducting medium. Somewhat more specifically, fluctuations
of the electric voltage measured between two probes attached
to the sample are correlated via their interaction with the
same (partially) filled charge-carrier state. By this reason,
the process can be termed one-particle, though the net effect
is an average over many individual contributions. Thus, the
properties of the medium in this picture are important only to
the extent that they affect the charge-carrier propagation.

In Refs. [15,16], flicker noise is considered as an es-
sentially thermal effect related to the photon heat bath, so
that its contribution to the voltage power spectrum vanishes
in the state of photon vacuum. However, it was shown re-
cently that the quantum 1/ f noise actually does not vanish
at zero temperature, remaining at a finite level determined by
quantum uncertainty in the values of voltage measured at
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different times [17]. The consideration of Ref. [17] was re-
stricted by the assumption that the charge carriers are freelike;
namely, their collisions have a negligible effect on the noise
power spectrum. The latter was found to be inversely pro-
portional to frequency, that is, the frequency exponent exactly
equal to unity, γ = 1. On the other hand, the experimentally
measured γ ′s are never strictly equal to unity, if only because
of the inevitable experimental errors. This fact raises two
important questions. First, what is the measure of smallness
of (γ − 1) which would help one decide whether it is really
negligible? The point is that γ is the exponent of a dimen-
sional quantity, so that its deviation from unity brings in a
new dimensional parameter into the power spectrum. In fact,
a pure 1/ f noise power spectrum is generally of the form
S( f ) = κU 2

0 /| f |, where U0 is the voltage bias applied to a
sample, and κ is a dimensionless constant dependent on the
sample properties. As γ deviates from unity, this constant
becomes dimensional, κ → κ( f∗)δ, where δ ≡ γ − 1 and f∗
is a constant with the dimension of frequency. The possibility
to replace 1/ f γ by 1/ f is thus directly related to the value of
this parameter. But f∗ is naturally expected to be very large
when measured in hertz, because it is on the order of the
inverse characteristic time of whatever microscopic process is
responsible for the frequency exponent deviation. We see that
there is a strong correlation between (γ − 1) and the noise
magnitude. Unfortunately, this circumstance is often ignored,
and determination of γ is not paid due attention in experi-
mental studies. Authors usually content themselves by a mere
check that γ is close to unity, to neglect its deviation therefrom
altogether. This is probably because to accurately determine
γ requires sufficiently large frequency spans, usually three
to four decades to achieve an experimental error less than
0.05. Undoubtedly, this sensitivity of the noise magnitude to
the value of δ is one of the main reasons why the numerous
empirical attempts to come closer to the flicker noise origin
have been inconclusive.

The second important question related to the frequency
exponent deviation is that in the absence of a low-frequency
cutoff, allowing for γ > 1 leads to an apparent conflict with
the observed finiteness of the voltage variance. In fact, a
direct consequence of the Wiener-Khinchin relation [18,19]
is that this variance is equal to 2

∫ ∞
0 df S( f ) = ∞. The di-

vergence of this integral at f = 0 is immaterial for γ = 1
(in which case the divergence is only logarithmic), in view
of the existence of a natural low-frequency cutoff, f0—the
inverse lifetime of the universe, which bounds the total noise
power to reasonably moderate values [20]. But this argument
does not resolve the problem for γ > 1, because

∫
df S( f ) ∼

1/ f γ−1 would be unacceptably large for many actual spectra
continued down to f0. The purpose of the present paper is
to answer these questions. It will be shown that account of
the charge-carrier interaction with acoustic phonons modifies
the frequency exponent in such a way that (γ − 1) can be
positive as well as negative. In particular, the corresponding
dimensional parameter in the power spectrum will be identi-
fied (previously, deviations of γ from unity were taken into
account only formally using the techniques of dimensional
continuation [16]). This will be done in the simplest case of a
parabolic energy-momentum dispersion for the charge carri-
ers. Also, it will be demonstrated explicitly how the quantum

indeterminacy resolves an apparent conflict of γ > 1 with the
Wiener-Khinchin theorem in the absence of a low-frequency
cutoff.

The paper is organized as follows. Basic results of the new
approach to the 1/ f problem are summarized in Sec. II A.
Section II B describes the physical model and the method of
calculating the voltage power spectrum. The way the charge-
carrier–phonon interaction shows itself in the present context
is discussed in detail in Sec. III B. The low-frequency asymp-
totic of the power spectrum is then evaluated in Sec. III.
Its explicit expressions are obtained for two measurement
setups—the basic longitudinal and a less common transverse
configuration. After a general analysis of practical attainabil-
ity of the quantum bound, comparisons with the experimental
data in semiconductors and high-temperature superconductors
are made in Sec. IV. The obtained results are further discussed
in Sec. V where conclusions are drawn. The paper has an
Appendix where some general issues of the quantum approach
to the 1/ f problem are taken up.

II. THE NOISE POWER SPECTRAL DENSITY

A. Quantum bound on the voltage power spectrum

For the sake of completeness, we begin by summarizing
basic results of the quantum approach to the fundamental 1/ f
noise [17].

Consider a (semi)conducting sample with a constant elec-
tric current through it supplied by two leads attached to the
sample. For simplicity, the sample material will be assumed
macroscopically homogeneous, and so will be the electric
field, E, established inside. Let the voltage across the sample
be measured by means of two voltage probes which may or
may not coincide with the current leads. Also for simplicity,
the probes will be considered pointlike, x1, x2 denoting their
position. From the quantum theory standpoint, the voltage
U (t, x1, x2) measured between the probes at time t is an ob-
servable to which there corresponds a Hermitian (Heisenberg)
operator Û (t ) (for brevity, the arguments x1, x2 are henceforth
suppressed). For a given constant bias U0, this defines another
observable: the voltage fluctuation

�̂U (t ) = Û (t ) − U0. (1)

The power spectrum of a signal measured during time tm is
given, as usual, by

S( f ) = lim
tm→∞

1

tm
{〈(�̂Us(ω))2〉 + 〈(�̂Uc(ω))2〉}, ω = 2π f ,

(2)

where

�̂Us(ω) =
∫ tm

0
dt �̂U (t ) sin(ωt ),

�̂Uc(ω) =
∫ tm

0
dt �̂U (t ) cos(ωt ), (3)

and 〈 f̂ 〉 = tr(ρ̂ f̂ ), ρ̂ being the system density matrix. A cru-
cial point is that the power spectrum as defined by Eq. (2)
is free of the operator-ordering ambiguity suffered by the
voltage autocorrelation function.
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The minimum value, SF ( f ), of the power spectrum is de-
termined by the commutator of �̂Us(ω), �̂Uc(ω),

SF ( f ) = lim
tm→∞

1

tm
|〈[�̂Us(ω), �̂Uc(ω)]〉|, (4)

and is identified as the power spectrum of fundamental noise.
It is important that the expectation value on the right-hand
side of Eq. (4) is an odd function of frequency, so that SF

is determined by the Fourier transform of a contribution to
〈�̂U (t )�̂U (t ′)〉 which is antisymmetric under the interchange
t ↔ t ′,

〈[�̂Us(ω), �̂Uc(ω)]〉 =
∫∫ tm

0
dt dt ′ 〈[�̂U (t ), �̂U (t ′)]〉

× sin(ωt ) cos(ωt ′)

=
∫∫ tm

0
dt dt ′ 〈�̂U (t )�̂U (t ′)〉

× sin(ω(t − t ′)). (5)

This fact allows the use of the standard momentum-space
techniques of quantum field theory to extract the low-
frequency asymptotic of SF ( f ).

Because of the factor 1/tm in Eq. (4), the only terms
that contribute in the limit tm → ∞ are those dependent
solely on (t − t ′). Designating them by a minus subscript,
〈�̂U (t )�̂U (t ′)〉− ≡ S(t − t ′), it is convenient to introduce an
auxiliary function

�( f ) = lim
tm→∞

1

tm

∫∫ tm

0
dt dt ′ S(t − t ′)eiω(t−t ′ ).

On applying Euler’s formula to the integrand, the contribu-
tion of cosine to �( f ) is just S( f ), whereas the modulus of
the other contribution is SF ( f ). A straightforward calculation
brings �( f ) to the form

�( f ) = lim
tm→∞

{∫ tm

−tm

dτS(τ )eiωτ − 1

tm

∫ tm

−tm

dτ |τ |S(τ )eiωτ

}
.

(6)

If S(τ ) is assumed to sufficiently rapidly decrease as |τ | →
∞, the second term in braces vanishes in the limit tm → ∞,

and Eq. (6) takes on the appearance of a Wiener-Khinchin
relation. But 1/ f noise is just the case where this assumption
is invalid. Namely, it will be shown below that on account of
the charge-carrier–phonon interaction, S(τ ) ∼ |τ |γ−1, and the
presence of this term guarantees that the limit of the braced
expression exists.

B. Physical model and the method of calculating SF ( f )

We consider the charge carriers in the sample as non-
relativistic fermions with the electric charge e and effective
mass m, which is sufficient for most practical applications.
For simplicity, they will be taken unpolarized, and all spin
indices will be suppressed throughout. According to Ref. [17],
a system comprised of freelike charge carriers and photons
generates voltage fluctuations which are characterized by a
pure 1/ f power spectrum, S( f ) = κU 2

0 /| f |. This conclusion
is universal in that it holds for any charge-carrier energy-
momentum dispersion; it is the reduced power spectrum, κ,

that only depends on the charge-carrier specifics, in particular
on its effective mass. The space dimensionality does not affect
the frequency exponent either until the dielectric response of
the medium is taken into account. Though these statements
follow from a lengthy explicit calculation [17], they can be
easily understood on dimensional grounds. The point is that
at zero temperature one cannot build a dimensionless quan-
tity out of the parameters characterizing the charge-carrier
dispersion which could appear in the frequency exponent. In
fact, the only such dimensionless quantity—the fine structure
constant α = e2/h̄c ≈ 1/137—is independent of the charge-
carrier properties. It will appear in the frequency exponent
once the relativistic radiative corrections to the charge-
carrier propagator due to the vacuum polarization are taken
into account. On account of these corrections, the pole of
the momentum-space electron propagator, D(p), is modified
according to

D(p) ∼ (p2 − m2)−1 → (p2 − m2)−1

(
m2

|p2 − m2|
)α/π

,

where m is the free electron mass, and p is its 4-momentum
(see, e.g., Ref. [21]). The exponent α/π eventually converts
into the frequency exponent of the voltage power spectrum,
but this contribution is tiny according to the smallness of
relativistic vacuum polarization effects at the charge-carrier
energies characteristic for ordinary solids. Yet, this observa-
tion suggests that a similar nonrelativistic effect related to the
vacua of other quasiparticles present in the system might give
rise to a noticeable deviation of the frequency exponent. Thus,
we include phonons into the list of the system constituents to
take into account the charge-carrier interaction with the lattice
vibrations. This interaction is normally a primary factor that
affects the charge-carrier propagation, whereas the phonon ra-
diation effects bear a great deal of similarity to those involving
photons. Its detailed description will be given later on in this
section. Regarding thermal effects, we discard those related
to the photon heat bath for the reason already mentioned in
the Introduction. As to the phonon heat bath, calculations
show that it is virtual phonon contributions which give rise
to the frequency exponent deviation. Therefore, to simplify
the presentation, real phonons will be excluded from consid-
eration from the outset. On the other hand, dependence of the
charge-carrier density matrix on temperature is of practical
importance, and so in the general formulation given below it
is kept arbitrary.

As was mentioned above, the power spectrum of funda-
mental noise is determined by an odd in τ = t − t ′ part of
the function 〈�̂U (t )�̂U (t ′)〉−. Using the Schwinger-Keldysh
technique [22,23], this expectation value can be written as

〈�̂U (t )�̂U (t ′)〉

= tr

(
ρ̂0TC�̂u

(2)
(t )�̂u

(1)
(t ′) exp

{
−i

∫
C

dt ŵ(t )

})
, (7)

where ŵ(t ) is the interaction Hamiltonian, ρ̂0 is the density
matrix of noninteracting particles—charge carriers, photons,
and phonons (lowercase letters denote operators in the in-
teraction picture), and the so-called Schwinger-Keldysh time
contour C runs from t = −∞ to t = +∞, and then back to
t = −∞, for which the forward branch is designated with
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a superscript (1) and treated as being in the past with re-
spect to any instant on the backward branch designated with
a superscript (2). TC accordingly orders all operators along
the contour C: it is chronological on the forward branch of
C, and antichronological on its backward branch. In Eq. (7),
�̂u(t ) and �̂u(t ′) are assigned the superscripts (2) and (1),
respectively, because their product on the left-hand side is not
time ordered, �̂U (t ) standing to the left of �̂U (t ′) for all t, t ′.
To simplify intermediate expressions, we use units in which
h̄ = c = 1, c denoting the speed of light in vacuum.

The right-hand side of Eq. (7) is suitable for a perturbative
expansion with respect to whatever couplings appear in ŵ(t ).
Since we presently neglect thermal effects related to the heat
bath of photons and phonons, the system density matrix ρ̂0

reduces to that of the charge carriers, �̂, times the photon
and phonon vacua. As usual, on expanding the right-hand
side of Eq. (7) in powers of the coupling constants and using
the macroscopic Wick theorem, it is expressed as the sum of
products of particle propagators. There are four propagators
for each particle, depending on which branch of the contour
C the time arguments of the propagator belong to. Thus, the
fermion propagator is a matrix

D(i j)(x, y) = tr(�̂TCφ̂(i)(x0, x)φ̂( j)†(y0, y)), (8)

where φ̂ is the fermion field, indices i, j take on values
1,2, and the action of TC is extended over single-field op-
erators by specifying that an interchange of two fermionic
operators is accompanied by a factor of (−1). Using the
standard momentum-space decomposition of φ̂(x0, x), the
charge-carrier propagator can be written as the sum

D(i j)(x, y) = D(i j)
0 (x, y) + �(x, y)

of a vacuum part

D(i j)
0 (x, y) =

∫ +∞

−∞

d4 p

(2π )4
D(i j)

0 (p)e−ip(x−y),

D(11)
0 (p) = i

p0 − εp + i0
= [

D(22)
0 (p)

]∗
,

D(12)
0 (p) = 0, D(21)

0 (p) = 2πδ(p0 − εp), (9)

and of a part dependent on the charge-carrier state,

�(x, y) =
∫ +∞

−∞

d3q
(2π )3

d3q′

(2π )3
�(q, q′)e−i(εqx0−εq′ y0 )+i(q·x−q′ ·y),

(10)

where �(q, q′) is the momentum-space density matrix of
charge carriers. It is to be noted that this matrix is not diagonal,
because charge carriers are bound to pass through a sample of
finite dimensions.

Likewise, the photon propagator matrix reads, in the Feyn-
man gauge,

G(i j)
μν (x, y) = −4πημν

∫ +∞

−∞

d4k

(2π )4
G(i j)(k)e−ik(x−y),

G(11)(k) = i

k2 + i0
= [G(22)(k)]∗,

G(12)(k) = 2πθ (−k0)δ(k2),

G(21)(k) = 2πθ (k0)δ(k2), (11)

where θ (k0) is the step function [θ (k0) = 0 for k0 � 0,
θ (k0) = 1 for k0 > 0]. From here on, the space-time or
momentum-energy coordinates and integrals are written
as “four dimensional,” x = (x0, x), k = (k0, k), kx = k0x0

− k · x.

Similarly to photons, the phonon propagator is a 2 × 2
matrix C(i j) of which only its (11) component will be needed
below explicitly. It reads, in momentum space,

C(11)(l ) = 2iωl

(l0)2 − ω2
l + i0

,

where ωl = u|l |, u denoting the acoustic wave velocity.
The products of particle propagators are integrated over

time with appropriate vertex factors generated by the interac-
tion Hamiltonian ŵ(t ), each vertex belonging to either branch
of the contour C. It is convenient to let all time integration
variables run from −∞ to +∞; vertices on the backward
branch will then carry an extra factor of (−1). Otherwise,
the rules of calculating expression (7) are the same as for
two-point Green’s functions in the scattering theory.

The Hamiltonian of electromagnetic interaction of nonrel-
ativistic charge carriers reads

ŵ(t ) =
∫

d3xφ̂†(x)

[
eâ0(x) + e2

2m
a2(t ) + ie

m
a(t ) · ∇

]
φ̂(x),

(12)

where a(t ) is the vector potential of homogeneous external
electric field,

a(t ) = iE
eiλt − 1

λ
, λ → 0. (13)

According to the gauge choice, a direct Coulomb interaction
of charge carriers is excluded from the interaction Hamil-
tonian [24,25]. In momentum space, the Hamiltonian (12)
generates three types of vertex factors: a factor e of the charge-
carrier interaction with the scalar electromagnetic potential
a0, and two factors of its interaction with the classical vector
potential, −ea · q/m and e2a2/2m.

It remains to specify the charge-carrier interaction with
phonons. Regarding electric fluctuations produced by the
charge carrier, of special importance is its long-range piezo-
electric interaction with acoustic phonons. This is because this
interaction modifies the pole structure of the charge-carrier
propagator which is essential in determining the quantum
bound. The piezoelectric effect is exhibited by many solids
lacking inversion symmetry. Moreover, even if inversion is a
bulk symmetry of the given pristine material, it is often bro-
ken by the presence of impurities, straining, or by finite-size
effects. As a result, the material may become a strong piezo-
electric, as is the case, for instance, with graphene [26,27].
The Hamiltonian of piezoelectric interaction of the charge car-
riers with acoustic phonons is, in momentum representation,

ŵep = i
∑

l

Mλ(l̃ )√
2ωlρ0�0

n̂(l )(âl + â†
−l ), (14)

where âl are the phonon destruction operators, n̂(l ) is the
Fourier transform of the charge-carrier density, ρ0 is the
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FIG. 1. Feynman diagrams representing contributions to S(τ ) of
the lowest order with respect to the electromagnetic coupling. Thick
symbols depict dressing by the charge-carrier–phonon interaction.
Solid lines denote D0, dashed lines �, and wavy lines photon prop-
agators; each dotted line designates a factor of E.

sample density, �0 is the quantization volume, and Mλ(l̃ ) =
−M∗

λ (−l̃ ) is the piezoelectric matrix element which depends
only on the phonon wave-vector direction l̃ = l/|l |. A de-
tailed derivation of this Hamiltonian and discussion of the
underlying physics can be found in Ref. [28]. The meaning
of summation over phonon momenta in the present context
is the following. Consider an acoustic wave propagation in a
system comprised of the sample, say, a thin film, a substrate it
is grown on, and a current source including the wires connect-
ing it to the sample via the current leads. This propagation
essentially depends on the acoustic impedance ratios of the
system elements. In an idealized case of no reflection at the
current leads, acoustic waves propagate as if the system was
of infinite extent. In other words, when counting the phonon
states and performing summations thereon, the quantization
volume �0 can be considered as large as needed to justify
these operations and to replace the sum over l by an integral.

As the elements of Feynman diagrams, D0 and � will
be depicted by solid and dashed lines, respectively, photon
propagators by wavy lines, and phonon propagators by dash-
dotted lines. Each factor of E will be symbolized by a dotted
line. In momentum space, D0 and Gμν are functions of the
corresponding particle 4-momenta, in contrast to � which de-
pends on a pair of 3-momenta q, q′, or in the four-dimensional
notation, on the charge-carrier 4-momenta on the mass shell,
q = (εq, q) and q′ = (εq′ , q′).

III. EVALUATION OF THE LOW-FREQUENCY
ASYMPTOTIC OF SF ( f )

A. Extraction of the leading term of 〈̂�U (t )̂�U (t ′ )〉−

As in the case of pure 1/ f noise, the lowest-order con-
tribution to SF with respect to the external electric field is
represented by two basic diagrams in Fig. 1. The difference
is that the charge-carrier propagators and vertices of their
electromagnetic interaction are now modified by the charge-
carrier–phonon interaction, which is depicted by thickening
their graphic symbols. Diagrams of the type in Fig. 1(b) turn
out to cancel each other, so it is diagrams in Fig. 1(a) which
only contribute to SF . According to the Schwinger-Keldysh
rules, each interaction vertex is assigned an index that takes
on values 1 and 2. Thus, there are eight different diagrams
of the same basic structure as in Fig. 1(a), but only four of

(1)

(1)

(1)

(1)

(2)
t

(2)

(2)

(1)

(2)

(2)
t

(1)

(1)

(2)

(1)

(1)
t

(2)

(2)

(2)

(2)

(1)
t tt

t t

q q

k
q q
k k

q kq k k

q

q q

q

q q

q k q k k

q q
k k

k

k q q
k k

q k kq k

kq q
k k

q k k q k

(a) (b)

(c) (d)

FIG. 2. Nonvanishing diagrams representing the basic diagram
in Fig. 1(a) in the Schwinger-Keldysh formalism. Arrows on the lines
show the energy-momentum flow.

them are nonvanishing. This is because a free charge carrier
cannot emit a real photon (by virtue of the energy-momentum
conservation), and so all interaction vertices in Fig. 1 must be
of the same type—either (1) or (2) [notice also that D(12)

0 (p) ≡
0]. This leaves us with four diagrams of the basic type in
Fig. 1(a) which are drawn in Fig. 2. Arrows on the lines
show the momentum flow; those on the charge-carrier prop-
agators are concurrent with the direction from φ̂† to φ̂. A
line with the 4-momentum k coming in into a vertex with the
4-coordinates x brings in a factor of e−ikx. In particular, k in
all cases is assigned to the photon propagators G(12) and G(21),

so that it satisfies k2 = 0 [cf. Eq. (11)]. The 4-momentum
associated with the vector potential (13) is (λ, 0). Therefore,
the momentum coming in into the interaction vertex ∼a2 is
k′ = (λ + λ′, 0), with each of λ, λ′ being related to one of the
factors a by Eq. (13).

Each diagram in Fig. 2 involves a factor of � (dashed
line), which is proportional to �(q, q′). The latter represents
the one-particle density matrix of charge carriers, and is nor-
malized according to tr�̂ = N, where N � 1 is the number of
charge carriers in the sample. This does not mean, however,
that the power spectrum is proportional to N, because not
every contribution to the integral over q, q′ in these diagrams
also contributes to the power spectrum. It was mentioned in
Sec. II A that the contributions surviving in the limit tm → ∞
are those which depend on t, t ′ via the difference (t − t ′) only.
Therefore, the time component of (q − q′ + k + k′) must be
equal to that of k [cf. 4-momenta assigned to the wavy lines in
Fig. 2 and expression (11) for the photon propagator]. Since
k′0 = λ + λ′ is ultimately set equal to zero, the condition
is q0 = q′0. Now, the charge-carrier energy in the sample
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is quantized. Of course, the spacing of energy levels in a
macroscopic sample is negligible in many respects, so that the
spectrum can be considered quasicontinuous. But its actual
discreteness turns out to be essential in the present context,
because the above condition requires that the energies q0 and
q′0 be the same energy eigenvalue. Therefore, in order to
identify the nonvanishing terms in the power spectrum, one
has to count the number of contributions satisfying this condi-
tion. We recall that the charge-carrier momentum is smeared
in each energy eigenstate, and that the set of all momentum
eigenstates is complete (as is the set of all energy eigenstates).
That is, when the two integration variables q, q′ run indepen-
dently over all momenta, the corresponding energies run over
all energy eigenvalues. Hence, for N occupied states, there
is a total of N2 pairs of states, of which only N have the
same energy. Thus, the fraction of contributions to the power
spectrum that satisfy the above condition is 1/N. In effect,
therefore, the density matrix associated with the dashed line
in Fig. 2 is to be normalized by tr�̂ = 1 or, more explicitly,∫

d3q
(2π )3

�(q, q) = 1. (15)

We note also that it is this instance where the nondiag-
onality of the density matrix shows itself. �(q, q′) is not
diagonal because of finiteness of the sample volume, �.
This fact is conveniently made manifest by expressing � via
the mixed position-momentum distribution function, R(r, Q),
which vanishes for r outside of the sample,

�
(

Q − p
2
, Q + p

2

)
= 1

�

∫
�

d3reip·rR(r, Q). (16)

Probability distributions for the particle position in the sample
or its momentum can be found by integrating R(r, Q)/� over
all momenta or the sample volume, respectively. At the same
time, the dressed charge-carrier propagators (thick lines in
Fig. 2) also involve the function � as part of the corrections
due to the charge-carrier–phonon interaction. But since these
propagators are diagonal in the charge-carrier momentum,
they depend on the diagonal elements of �(q, q′) only. �

entering these contributions is still normalized by tr�̂ = N, so
that �(q, q) is the mean occupation number ν(q), rather than
the probability of state with the given q.

As will be seen below, the principal effect of the charge-
carrier–phonon interaction is to shift the frequency exponent,
while its contribution to the prefactor is relatively small. Sum-
marizing the above, it then follows that in the considered
approximation, the reduced power spectrum is independent
of the number of charge carriers.

It is important for the above consideration that the power
spectrum is defined in the limit tm → ∞. In actual exper-
iments, however, one always deals with finite measurement
times which are usually ∼1/ω. To justify applicability of the
obtained results in such circumstances, we note that for tm
on the order of 1/ω, the above energy condition is replaced
by |q0 − q′0| � h̄ω. Therefore, the counting of relevant states
remains the same until h̄ω exceeds the energy spacing. The
latter is 1/(D�), where D is the density of states of charge
carriers in the given material. We see that taking tm ∼ 1/ω

is inconsequential with regard to the noise magnitude at

FIG. 3. Account of the charge-carrier interaction with phonons.
(a) The lowest-order charge-carrier self-energy. (b) The lowest-order
vertex correction.

sufficiently low frequencies,

ω � 1

h̄D�
. (17)

The density of states varies significantly from one solid to
another, but virtually always D � 1022/(eV cm3), while the
volume of samples used in the flicker noise studies is typically
10−12 to 10−8 cm3. Within these limits, therefore, condition
(17) is well satisfied already for f � 1 Hz, but it can be vi-
olated at larger frequencies and/or larger samples, in which
cases the measured power spectrum would be larger, roughly
by a factor of (h̄ωD�)2.

The low-frequency asymptotics of the corrected propagator
and interaction vertices will be obtained in the next sec-
tion, and then used in Sec. III C to extract the low-frequency
asymptotic of SF ( f ).

B. Low-frequency phonon corrections to the propagator
and interaction vertices of charge carriers

On account of the charge-carrier interactions, its propaga-
tor is modified according to

D(i j)
0 (p) → D

(i j)
0 (p) = D(i j)

0 (p) + D(ik)
0 (p)σ (kl )(p)D(l j)

0 (p),

(18)

where σ (kl )(p) is the charge-carrier self-energy, and summa-
tion over repeated indices is implied [25,29,30]. This Dyson
equation is to be resolved with respect to D

(i j)
0 , and in general,

the resulting expressions are rather complicated because each
component of D(i j)

0 involves σ (kl ) with all pairs of indices k, l.
But since D(12)

0 = 0, the off-diagonal components of σ (i j) do
not contribute to the components D

(11)
0 , D

(22)
0 which only

appear in Fig. 2. Each of these thus depends only on the
respective component of the self-energy, and Eq. (18) is easily
solved to give

D
(11)
0 (p) = i

p0 − εp − σ (p) + i0

and similarly for D
(22)
0 , where σ (p) ≡ σ (11)(p) is the usual

Feynman self-energy of the charge carrier. In the second order
of perturbation theory, it is represented by the diagram shown
in Fig. 3(a), and a similar diagram in which the solid line
is replaced by a dashed line. The two interaction vertices in
this diagram are of the same type: both are either (1) or (2),
according to the type of the charge-carrier propagator which
the self-energy correction refers to. Although its external lines
are off the charge-carrier mass shell, the pole position of
the inner charge-carrier propagator in Fig. 3(a) does matter,
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because the energy-momentum exchange with phonons can
move the charge carrier on the mass shell. The effect of virtual
phonons on the charge-carrier propagation thus depends on

the charge-carrier state filling (the mean occupation number
ν; cf. Sec. III A). The vacuum (empty band) contribution of
Fig. 3(a) reads

σvac(q + k) = i

ρ0

∫
d3l

(2π )3

∫ +∞

−∞

dl0

2π

|Mλ(l̃ )|2[
(l0)2 − ω2

l + i0
][

q0 + k0 + l0 − εq+k+l + i0
] . (19)

This integral is nonanalytic at k0 = 0, and it is this nonanalyticity that contributes to the frequency exponent deviation. In the
case of parabolic dispersion of the charge-carrier energy, εq = ε0 + q2/2m, where ε0 is an arbitrary constant, the integration
is elementary, though the resulting expression is rather cumbersome [28]. In contrast, its part containing the nonanalytic
contribution can be rendered far more compact, and can be simply extracted as follows (similar integrals below which represent
corrections to the interaction vertices are easily dealt with in the same way). First, integration over l0 is done by taking the
residue of the integrand at l0 = −ωl . The l integral is customarily simplified by replacing |Mλ(l̃ )|2 with its angular mean, M2

λ.

Neglecting also the photon momentum k in comparison to that of the charge carrier yields

σvac(q + k) = 1

2uρ0

∫
d3l

(2π )3

M2
λ

|l |(k0 − u|l | − q · l/m − l2/2m + i0)
. (20)

The nonanalytic contribution comes from integration over
small phonon momenta. Therefore, the term ∼l2 in the de-
nominator can be neglected, whereupon the integral is easily
done. The result can be written as

σvac(q + k) = M2
λ

(2π )2ρ0u
(
u2 − v2

q

)k0 ln
|k0|
lmu

+ σ0, vq ≡ |q|
m

,

where σ0 is the contribution of finite l ′s, hence, analytical
at k0 = 0, and lm is an auxiliary dividing momentum. lm is
conveniently defined by the condition that the expansion of
σ0 in powers of k0 has no linear term. σ0 can then be omit-
ted, because σ0|k0=0 amounts merely to a redefinition of the
parameters ε0, m, whereas O((k0)2) terms in σ0 are irrelevant
in the low-frequency limit. Moreover, lm can be evaluated as
2π/d, d denoting the lattice constant. This is because the
contribution of finite l ′s to the self-energy integral is only
logarithmic. Therefore, within the logarithmic accuracy, lm
may be set equal to the maximal phonon momentum in the
first Brillouin zone.

The state-dependent contribution to the charge-carrier self-
energy is obtained by replacing 1/(p0 − p2/2m + i0) with
2π iν(p)δ(p0 − p2/2m) in the integrand of Eq. (19), where
ν(p) is the mean occupation number of the state with momen-
tum p. Since the singular contribution is due to integration
over l → 0, the factor ν(p) can be replaced by ν(q), and
the integral is then done just as easily as before. The total
self-energy is thus

σ (q + k) = (1 − 2ν(q))M2
λ

(2π )2ρ0u
(
u2 − v2

q

)k0 ln
|k0|
lmu

. (21)

The interaction with phonons affects electromagnetic inter-
actions of the charge carriers as well. The lowest-order vertex
correction is drawn in Fig. 3(b), and its evaluation is quite
similar to that just performed for the self-energy. The result
is that when a charge carrier with momentum q on the mass
shell exchanges momentum k with the electromagnetic field,
the interaction vertex is multiplied by [1 + �(q, k)], where

�(q, k) = M2
λ (2ν(q) − 1)

(2π )2ρ0u
(
u2 − v2

q

) ln
|k0|
lmu

. (22)

It is not difficult to check that in the diagrams of Fig. 2 this
correction to any of the two side vertices just cancels the con-
tribution (21) to the charge-carrier propagator connecting it to
the central vertex. The phonon correction to the central vertex
itself is slightly different from Eq. (22), for the charge-carrier
lines attached to it are both off the mass shell,

�(q + k, k′)

= M2
λ (2ν(q) − 1)

(2π )2ρ0u
(
u2 − v2

q

)
×

(
ln

|k0 + k′0|
lmu

+ k0

k′0 ln

∣∣∣∣1 + k′0

k0

∣∣∣∣)
= M2

λ (2ν(q) − 1)

(2π )2ρ0u
(
u2 − v2

q

)
×

(
ln

|k0 + k′0|
lmu

+ 1 − 1

2

k′0

k0
+ 1

3

(
k′0

k0

)2

+ · · ·
)

.

However, the additional terms do not change the general struc-
ture of the low-frequency asymptotic of SF ( f ), giving rise
only to relatively small corrections to its magnitude. On the
other hand, the logarithmic term is important as it alters the
analytical structure of Feynman integrals.

Denoting

δ(q) = M2
λ (1 − 2ν(q))

(2π )2ρ0u
(
u2 − v2

q

) , (23)

the product of the factor [1 + �(q + k, k′)] with the propaga-
tor D(q + k + k′) can be rewritten, within the second-order
accuracy, as

[1 + �(q + k, k′)]D(11)
0 (q + k + k′)

= i
1 − δ(q) ln |k0+k′0|

lmu

k0 + k′0 + i0
= i

(k0 + k′0 + i0)

∣∣∣∣ lmu

k0 + k′0

∣∣∣∣δ(q)

.

It can be shown that the latter expression is actually the true
infrared asymptotic of the charge-carrier propagator.
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C. Low-frequency asymptotic of the power spectrum

Using the result of Sec. III B and applying Schwinger-Keldysh rules to the diagrams in Fig. 2, their contribution to the function
S(τ ) = 〈�̂U (t ′ + τ )�̂U (t ′)〉− takes the form

S(τ ) = i(4πe2)2E2

2m

∂2

∂λ∂λ′

∫
d4k

(2π )4

d3q
(2π )3

d3q′

(2π )3
�(q, q′)[eik·(x1−x2 ) − 1]ei(q−q′ )·x1

×
{

e−ik0τ−ik′0t G(11)(q − q′ + k + k′)D(11)(q + k + k′)
∣∣∣∣ lmu

k0 + k′0

∣∣∣∣δ(q)

D(11)(q + k)G(12)(k)

− eik0τ−ik′0t ′
G(21)(k)D(22)(q′ − k)

∣∣∣∣ lmu

k0 + k′0

∣∣∣∣δ(q′ )

D(22)(q′ − k − k′)G(22)(q − q′ + k + k′)

+ e−ik0τ−ik′0t G(12)(k)D(11)(q′ − k)

∣∣∣∣ lmu

k0 + k′0

∣∣∣∣δ(q′ )

D(11)(q′ − k − k′)G(11)(q − q′ + k + k′)

− eik0τ−ik′0t ′
G(22)(q − q′ + k + k′)D(22)(q + k + k′)

∣∣∣∣ lmu

k0 + k′0

∣∣∣∣δ(q)

D(22)(q + k)G(21)(k)

}∣∣∣∣∣
λ=λ′=0

+ (x1 ↔ x2), (24)

where “+(x1 ↔ x2)” means that the preceding expression is to be added with x1 and x2 interchanged. This Fourier decomposition
is only valid for an odd-in-τ part of S(τ ); its part symmetric under t ↔ t ′ is kept for a while for notational simplicity, but it will
be eventually omitted. It is not difficult to see that as long as δ(q) < 1, λ differentiations of factors exp(−ik′0t ), exp(−ik′0t ′)
in the integrand give rise to symmetric terms which are to be omitted. The leading low-frequency term in SF ( f ) corresponds
to contributions in which ∂2/∂λ∂λ′ acts on the charge-carrier propagators D(11)(q ± k ± k′), D(22)(q ± k ± k′), because these
approach their poles as k0 → 0. Since in practice δ(q) � 1, the infrared correction factors may be left undifferentiated. By
virtue of |k| = |k0|, one has εq+k = εq + |k0|O(|q|/m), and therefore, in the nonrelativistic limit, D(11)(q + k + k′) = i/(q0 +
k0 + λ + λ′ − εq+k) ≈ i/(k0 + λ + λ′). Expanding also eik·(x1−x2 ) to second order and performing integration over k gives

S(τ ) = 8e4E2(x1 − x2)2

3m

∫ ∞

0
dk0 eik0τ

k0

∫
d3q

(2π )3

d3q′

(2π )3
�(q, q′)

(∣∣∣∣ lmu

k0

∣∣∣∣δ(q)

+
∣∣∣∣ lmu

k0

∣∣∣∣δ(q′ )
)

ei(q−q′ )·x1 + ei(q−q′ )·x2

(q − q′)2
. (25)

It is now easy to check that similar transformations of the Schwinger-Keldysh integrals corresponding to the basic diagram
in Fig. 1(b) yield expressions which pairwise cancel each other (this is because these diagrams involve an odd number of the
charge-carrier propagators, which makes the sign of their contributions alternate).

We observe that the frequency integral in the antisymmetric part of S(τ ) is convergent, provided that δ < 1, namely,∫ ∞

0
dk0 sin(k0τ )

|k0|1+δ
= −χ (τ )|τ |δ sin

(
πδ

2

)
�(−δ), (26)

where χ (x) = x/|x|, and �(x) is the Euler function. The obtained expression is to be substituted into the right-hand side of
Eq. (6). One has ∫ tm

−tm

dτ χ (τ )|τ |δeiωτ = 2iχ (ω) cos

(
πδ

2

) ∫ tm

0
dx xδe−|ω|x − 2it δ

m

ω
cos(ωtm) + O

(
t δ−1
m

)
,

1

tm

∫ tm

−tm

dτ τ |τ |δeiωτ = −2it δ
m

ω
cos(ωtm) + O

(
t δ−1
m

)
.

We thus see that despite that these expressions diverge in the
limit tm → ∞, their difference does converge to a finite value:

lim
tm→∞

{∫ tm

−tm

dτ χ (τ )|τ |δeiωτ − 1

tm

∫ tm

−tm

dτ τ |τ |δeiωτ

}
= 2iχ (ω)|ω|−1−δ cos

(
πδ

2

)
�(1 + δ). (27)

In practice, the voltage probes are usually aligned parallel
to E (the noise measured in this configuration is sometimes
called longitudinal). In this case, E2(x1 − x2)2 = U 2

0 . The
remaining momentum integrals are conveniently evaluated
by expressing �(q, q′) via the mixed position-momentum

distribution function according to Eq. (16). Since R(r, Q)
vanishes for r outside of the sample, (q′ − q) = p is of the
order of the inverse linear sample size which in practice is
much larger than the lattice constant. Therefore, |p| � |q| for
all relevant charge-carrier momenta, so that (1/|q| + 1|q′|) ≈
2/|Q|. The integral over p = q′ − q in Eq. (25) is then just
a Fourier decomposition of the Coulomb potential. In view
of the assumed macroscopic sample homogeneity, R(r, Q) =
R(Q) within the sample, where R(Q) is normalized by

∫
d3Q

(2π )3
R(Q) = 1.
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Combining Eqs. (25)–(27) and restoring cgs units, the low-
frequency asymptotic of the power spectrum finally takes the
form

SF ( f ) = 2e4g

πmh̄c3

U 2
0

| f |
∫

d3q
(2π h̄)3

R(q)

∣∣∣∣ f∗
f

∣∣∣∣δ(q)

, (28)

where

δ(q) = (1 − 2ν(q))M2
λ

(2π )2h̄ρ0u
(
u2 − v2

q

) , f∗ = u

d
, (29)

and g is a geometrical factor (it is defined following Ref. [17]):

g = 1

3�

∫
�

d3r
(

1

|r − x1| + 1

|r − x2|
)

.

In some experiments, however, the voltage probes are
located differently. In the rather rare case of (x1 − x2) per-
pendicular to E, the so-called transverse noise is measured.
Specifically, if the current leads and voltage probes are at-
tached to the surface of a rectangular film of length l and
width w, then |x1 − x2| = w, |E|l = U0, so that the factor
g in Eq. (28) is to be replaced by

gtr =
(w

l

)2 1

3�

∫
�

d3r
(

1

|r − x1| + 1

|r − x2|
)

. (30)

It follows from Eq. (28) that because of the dependence of δ

on the charge-carrier momentum, the voltage power spectrum
is a superposition of many 1/ f γ contributions with different
γ ′s. Numerical evaluation of the integral in Eq. (28) reveals
that despite this complication, it is perfectly well approxi-
mated as | f∗/ f |δ̄ with some δ̄, so that

SF ( f ) = 2e4g

πmh̄c3

U 2
0

| f |γ̄ f γ̄−1
∗ , (31)

where γ̄ = 1 + δ̄ is an effective frequency exponent. This is
illustrated in Fig. 4 where the right-hand side of Eq. (28) is
plotted in the simplest case of R(q) ∼ N (ε(q)), with N (ε) =
[exp(ε − μ)/T + 1]−1 the Fermi distribution, for various val-
ues of temperature T and chemical potential μ. The strength
of the electron-phonon coupling can be quantified by the
parameter M2

λ/(2π )2h̄ρ0u3 (equal to 0.1 in the figure), which
is the value of δ(q) for q = 0 and vanishing mean occupa-
tion number. The apparent pole of δ(q) at vq = u is a result
of neglecting the term ∼l2 in Eq. (20) when extracting the
nonanalytic contribution. This simplification is justified for
all q except in a very small vicinity of |q| = mu, where the
integral actually has a branch point and is finite. The width of
this region �|q| ∼ √

mh̄ f → 0 as f → 0; therefore, its con-
tribution to the integral in Eq. (28) can be discarded, because
it does not affect the leading low-frequency term of SF ( f ). It
is seen from Fig. 4 that δ(0) is just a characteristic variation
of the effective frequency exponent with respect to variations
in the charge-carrier temperature and chemical potential. The
corresponding variation of the power spectrum at 1 Hz is on
the order of ( f∗/1 Hz)δ(0) = 101.4 ≈ 25.

We conclude that the power spectrum of fundamental noise
is of the form typical of the observed flicker noise: it is a
power law in frequency and is quadratic with respect to the
voltage bias. At last, it is to be recalled that these results,
including expression (29), are valid under the condition of

FIG. 4. Power spectrum (arbitrary units) versus frequency as
given by Eq. (28) with f∗ = 1014 Hz, m the free electron mass,
u = 106 cm/s, and all other physical parameters chosen so that
M2

λ/(2π )2 h̄ρ0u3 = 0.1, for T = 0.01 K, μ/T = −10 (solid, γ̄ =
1.10), T = 0.01 K, μ/T = −1 (dotted line, γ̄ = 1.08), T = 300 K,
μ/T = 10 (dashed line, γ̄ = 1.0), T = 300 K, μ/T = −15 (dash-
dotted line, γ̄ = 0.975), where γ̄ is the line slope as read off directly
from the plot.

no acoustic reflection at the current leads. Though this is the
relevant condition for low-frequency phonons, we note that
in the opposite case of complete acoustic reflection, the long-
wavelength phonon modes would be cut off, so that δ(q) = 0.

IV. COMPARISON WITH EXPERIMENT

The existence of a quantum bound on the voltage power
spectrum naturally raises the question of its practical at-
tainability. It is to be noted, first of all, that there are two
fundamental reasons why this bound cannot be strictly at-
tained experimentally even in perfectly clean samples. A
formal reason is that this might happen only in a state which
is an eigenstate of the operator

�̂Uc(ω) + i�̂Us(ω) =
∫ tm

0
dt �̂U (t )eiωt , (32)

as can be easily inferred from Eq. (3) and the fact that SF ( f )
is the minimum of S( f ). But such eigenstates are of infinite
norm, because the spectrum of �̂U (t ) is continuous. Fur-
thermore, the voltage measurement entails the system state
variations such that �U at each instant are found in a more
or less narrow range of values dependent on the measurement
accuracy. The system state is thus driven over states which
are closer to eigenstates of the operator �̂U (t ), rather than to
those of Eq. (32).

The other, practical reason why the observed power spectra
cannot be arbitrarily close to the quantum bound is the back-
action of the voltage measurements on the currents flowing
in the conductor. In addition to the direct influence of the
voltage measurement on the electromagnetic field state, dis-
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cussed so far, interaction with the measuring apparatus also
alters the system state in the charge-carrier sector. Namely,
a perturbation in the electric current caused by the voltage
measurement at some instant will affect the voltages at later
times and, hence, also the voltage power spectrum. Since it
is due to a purely electromagnetic interaction between the
charge carriers and the measuring apparatus, this effect is
formally of the same (sixth) order with respect to the ele-
mentary charge as that of the direct charge-carrier collisions
via their Coulomb interaction. As such, therefore, it is not
captured by the lowest-order approximation used throughout,
and so the presence of these perturbations implies that the
observed noise power will be higher than predicted. It can be
mentioned in this connection that on the practical side, there
is another important source of uncertainty in measuring the
power spectrum, which is related to determination of the static
bias voltage used in the definition of the voltage fluctuation.
This voltage is itself an estimated quantity, and care must
be taken in the signal processing in order to ensure that its
error does not affect the power spectrum (e.g., resetting the
mean value of the signal to a predetermined constant prior
to each data-collecting run, or removing a constant mean
after “prewhitening” the data; the latter also helps to reduce
the variance of the experimental power spectrum estimate
[6]). At the same time, since the lower bound on the power
spectrum is determined by an odd-in-τ contribution to S(τ ),
it is insensitive to the voltage mean used in the definition of
�̂U (t ). Since the voltage variance takes on its minimum value
when evaluated using the true mean, it follows that errors in
the static bias amplify the measured noise power, hence its
deviation from the lower bound.

Thus, it appears that the observed spectral powers of 1/ f
noise should markedly exceed the bound set by quantum
indeterminacy. On the other hand, the task of minimization
of the measurement influence on the system under study has
always been an essential part of any experimental strategy.
This suggests that the noise levels observed in sufficiently
clean samples upon elimination of the conventional noise
sources can be expected to be not very far from the lower
bound. To see how far they actually are from the value (28),
we consider below several typical cases which are also quite
revealing on their own with regard to the problems they pose
to the traditional view on the flicker noise as originating from
the conductance fluctuations.

A. Time dependence of the voltage variance

It has been experimentally established that the voltage
variance grows roughly logarithmically with the measurement
time [8,31,32]. The present approach does not allow an ex-
plicit calculation of the voltage variance, because what is
left of the function 〈�̂U (t )�̂U (t ′)〉 at t ′ = t is its symmetric
part which was discarded in the above considerations. Yet, an
asymptotic growth of the voltage variance at large times can
be described indirectly as follows. Consider first the case of
a pure 1/ f noise, SF ( f ) = A/| f |, where A > 0 is a constant
dependent on the sample properties. One has S( f ) � SF ( f ),
and, as we just argued, the last inequality is actually a strict
one. Next, we note that a 1/|ω| asymptotic of the power spec-
trum suggests that at large |τ |′s, S(τ ) contains a term ∼ ln |τ |.

In fact, in a perfect analogy to the derivation of Eq. (27), but
this time for an even-in-τ part of S(τ ), one finds∫ tm

−tm

dτ ln |τ |eiωτ = − π

|ω| − 2 ln tm
sin(ωtm)

ω
+ O(1/tm),

1

tm

∫ tm

−tm

dτ |τ | ln |τ |eiωτ = −2 ln tm
sin(ωtm)

ω
+ O(1/tm),

so that the power spectrum for S(τ ) = ln |τ | converges to
−π/|ω|. It is also straightforward to check that an additive
constant in S(τ ) does not contribute to the power spectrum.
It follows that in order to have a low-frequency asymptotic
A/| f | of the power spectrum, the symmetric part of S(t −
t ′) = 〈�̂U (t )�̂U (t ′)〉− must have a large-time asymptotic
(−2A) ln(|τ |/τ0), where τ0 > 0 is an arbitrary constant. As
discussed at length in Ref. [17], the notion of autocorrelation
is not well defined, because in a given system state, �U (t )
cannot have definite values at different times. But the fact that
S(τ ) grows with τ implies that the observable [Û (t ) − Û (t ′)]
is smeared over a range of values which also grows with τ, at
least as

√|S(τ )|. Therefore, the symmetric variance

σU = 1
2 [〈�̂U

2
(t )〉 + 〈�̂U

2
(t ′)〉]

must grow at least as |S(τ )|. More formally, this follows from
the inequality

0 � 〈[�̂U (t ) + �̂U (t ′)]2〉 = 〈�̂U
2
(t )〉 + 〈�̂U

2
(t ′)〉

+ 〈�̂U (t )�̂U (t ′)〉 + 〈�̂U (t ′)�̂U (t )〉.
Thus, σU � 2A ln(|τ |/τ0) at large τ . If one of the time argu-
ments is kept fixed, say, t ′ = 0, then this result can be rewritten
for the voltage variance at time t > 0 as

〈�̂U
2
(t )〉 = B ln

(
t

τ0

)
, (33)

where B = const × A, with a number of order unity as the
proportionality constant.

Quite similarly, in the case of 1/ f γ noise, one finds

〈�̂U
2
(t )〉 = Ctγ−1 + D, (34)

where C and D are some constants. Since adding a constant to
S(τ ) does not change S( f ), the value of D cannot be deduced
from the power spectrum itself. In principle, it is to be found
by calculating the symmetric part of S(τ ) explicitly, a task
which is avoided by the present approach. Empirically, D is
determined, together with the other parameters, from best fits
of Eq. (34) to the experimental data. An example is given in
Fig. 5.

B. Noise in InGaAs quantum wells

1. Longitudinal noise

As a second example, we take Ref. [10] reporting noise
measurements in In1−xGaxAs quantum wells of significantly
different sizes. The charge carriers in this case are electrons
(n) and holes (p). Since κ ∼ 1/m, it is sufficient to consider
the lightest charge carriers whose masses are mn = 0.06m0

and mp = 0.09m0, respectively, where m0 is the free electron
mass (these are approximate values, as the masses depend on
the sample thickness, composition, etc.). As was discussed in
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FIG. 5. Voltage variance versus time as read off from Fig. 5 of
Ref. [8] (marks, the experimental uncertainty was not specified),
and fitted using Eq. (33) with B = 0.0805 mV2, τ0 = 1.36 s (dashed
line, the residual standard deviation is 0.05 mV2) and Eq. (34) with
C = 0.24 mV2 s−0.12, D = −0.047 mV2, γ − 1 = 0.12 (solid line,
the residual standard deviation is 0.03 mV2).

the Introduction, there is a strong correlation between δ and
the noise magnitude. In terms of calculational uncertainty this
means that the theoretical value of S( f ) is rather sensitive to
the error in δ. In the present case, an experimental error in
δ is around 0.03 [33]. Taking into account that in InGaAs,
d ≈ 5 × 10−8 cm, u = (2.5–5) × 105 cm/s, one finds that this
error gives rise to a factor of ( f∗)0.03 ≈ 1013×0.03 ≈ 2.5 in the
noise magnitude. Yet, the error in a theoretical estimate of δ

is even larger. By this reason, when comparing Eq. (31) with
the experiment, the measured values of γ are used in place
of the effective frequency exponent γ̄ . Table I compares, in
terms of the reduced power spectrum κ = S( f ) f γ /U 2

0 , the
theory with the experimental data taken from Figs. 4–7 of
Ref. [10]. In cases where the measured spectra have the fre-
quency exponent equal to unity within the experimental error,
they are compared to Eq. (31) with γ̄ = 1. In the instances
where |γ − 1| exceeds the experimental error, two values of

κ are given in the table: one is calculated for the measured γ ,
and the other for γ = 1. We observe that in all samples, the
measured κ is no more than an order of magnitude larger than
the calculated. Notably, in sample V5, this is brought about by
the effect of γ �= 1 which increases κth fivefold. In sample V2,
on the contrary, the effect is to decrease κth so that the ratio
κexpt/κth becomes some four times. Taking into account the
calculational accuracy and also what was said at the beginning
of Sec. IV with regard to attainability of the quantum bound,
these observations lead us to conclude that the observed noise
levels are nearly minimal.

At last, it is instructive to estimate theoretically the max-
imum of |γ − 1|, which is well quantified by the value of
δ(0) (cf. the end of Sec. III C). M2

λ is customarily evaluated
as (eh14)2, where the piezoelectric constant h14 = −1.4 × 109

V/m. The lowest acoustic wave velocity, u = 2.5 × 105 cm/s,
is for propagation in the direction [110]; substitution of these
figures together with ρ0 = 5.3 g/cm3 in Eq. (29) gives δ(0) =
0.14. The figures used are for samples with low indium frac-
tion; in the case x = 0.47 (which is of special interest for
microelectronics as it provides the best electron mobility and
other characteristics of single crystals), δ(0) drops to 0.09.

2. Transverse noise

Reference [10] is one of a handful of papers that deal with
the transverse noise, that is, voltage fluctuations in a direc-
tion perpendicular to the current flow in the sample [34–36].
Within the conventional model of flicker noise as originating
from the conductance fluctuations, the theory (based on a phe-
nomenological inclusion of the term 1/ f into the fluctuation
spectrum) predicts that for a given electric field, the power
spectrum is independent of the distance |x1 − x2| between
the voltage probes [36]. On the other hand, according to the
present theory, SF ( f ) is proportional to this distance squared
[cf. Eq. (25)]. The computed and measured values of κ are
summarized in Table II. First of all, a sample-to-sample com-
parison of the last columns in Tables I and II reveals that the
observed levels of transverse noise in all cases are signifi-
cantly lower than the corresponding levels of the longitudinal
noise. Second, it is seen that the reduction by a factor of
(w/l )2 predicted by Eq. (30), which varies in the range 1/16
to 1/4, brings κth to values which are roughly in the same
ratios to the measured values as in the case of longitudinal

TABLE I. Reduced power spectra of flicker noise as measured in Ref. [10] (κexpt) and calculated according to Eq. (31) (κth) for various
InGaAs heterostructures. Top values in braces are for γ = 1; bottom values are for measured γ , and are the ones to be compared with κexpt.

The calculational uncertainty in κth is a factor of 2.5 (see the text), whereas uncertainty in κexpt estimated from the vertical spread of the
measured power spectra is a factor of 2 [33]. Also given are the quantum well dimensions [width (w), length (l), and thickness (a)] and the
corresponding value of geometrical factor g. Uncertainties in these parameters (∼10%) are negligible in the total uncertainty of κth.

Sample w (µm) l (µm) a (nm) g (cm−1) γ κth (Hzγ−1) κexpt (Hzγ−1)

V1 1 2.2 10 9630 1 3.5 × 10−10 1.75 × 10−9

V1.5 1.5 3.3 10 6420 1 2.3 × 10−10 4.5 × 10−10

V2 2 4 10 5140 0.97

{
1.7 × 10−10

6.9 × 10−11 3.1 × 10−10

V5 5 20 20 1260 1.05

{
4.4 × 10−11

2.1 × 10−10 1.5 × 10−9

V80 80 300 20 80 1 1.9 × 10−12 4.1 × 10−12
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TABLE II. Same as in Table I, but for transverse noise.

Sample gtr (cm−1) γ κth (Hzγ−1) κexpt (Hzγ−1)

V1 2310 1 7.2 × 10−11 2.4 × 10−10

V1.5 1540 1 5.1 × 10−11 1.3 × 10−10

V2 1310 0.96

{
4.3 × 10−11

1.3 × 10−11 3.9 × 10−11

V5 100 1.05

{
3.3 × 10−12

1.5 × 10−11 7.5 × 10−11

V80 7 1 2.5 × 10−13 3.9 × 10−13

noise. The general conclusion regarding the observed noise
magnitudes is thus the same as that drawn from Table I.

C. “Huge” noise in high-Tc superconductors

It is of considerable interest to make a similar comparison
for high-temperature (high-Tc) superconductors, as they are
known to exhibit anomalously high levels of 1/ f noise. It
so happened that the noise in these materials was first mea-
sured in samples of sizes unusually large for flicker noise
studies—the linear sample dimensions were several millime-
ters [37]. Subsequent measurements in much smaller samples
gave much lower noise levels though. This issue was consid-
ered in detail in Ref. [38] where it was demonstrated that the
anomaly in the noise levels is spurious. Namely, it is a conse-
quence of an inappropriate normalization of the power spectra
using Hooge’s formula [39] according to which S( f ) ∼ 1/�,

whereas actually S( f ) is inversely proportional to the linear
sample size. Here we will only show in a couple of examples
that the “huge” noise is in fact not far from the minimum
given by Eq. (28). The results of Sec. III are applicable in
this case because the charge-carrier density in the normal
state of high-Tc superconductors is small compared to that in
normal metals, so that the charge-carrier energy-momentum
dispersion is well described in terms of the band effective
mass.

The work [40] reports 1/ f -noise measurements in bulk
samples of YBa2Cu3Oy. The samples used were single crys-
tals with l = w = 0.2 cm, a = 0.01 cm. The authors give the
value 1.06 ± 0.1 for the frequency exponent. The charge car-
riers in this case are holes. A precise determination of the
hole effective mass in this material is difficult; the experiment
suggests that mp ≈ (2–3)m0, and that it is nearly constant in
the range of y′s for which the material exhibits superconduc-
tivity, that is, for sufficiently small oxygen deficiency [41,42].
In the work under consideration, such is sample B, and the
value of κ measured near the superconducting transition is
κexpt = 3 × 10−14 Hz0.06 (as deduced from Fig. 2 of Ref. [40]
assuming δ = 0.06; experimental uncertainty was not spec-
ified). On the other hand, Eq. (31) with mp = 3m0 yields
κth = 2.2 × 10−14 Hz0.06, with the calculational uncertainty
a factor of 20 implied by the experimental error 0.1 in δ. It
is worth noting that the value of the Hooge parameter found
by the authors of Ref. [40] for this sample is 2.1 × 103, that
is, six orders of magnitude higher than the canonical value
2 × 10−3 [39].

In 1994, a systematic investigation of the flicker noise in
thin films of YBa2Cu3Oy was undertaken in order to deter-

mine its dependence on the oxygen content, y [43]. The Hooge
parameter was found to be ≈ 14. This is still large compared
to pure metals, but several orders of magnitude lower than
those reported previously for the compound, and the authors
of Ref. [43] attributed this reduction to the quality of their
thin films. All samples had a = 8.5 × 10−6 cm, l = 0.5 cm,
w = 0.07 cm, and δ was found to be in the range 0–0.1.
The reduced power spectrum was found to exhibit a sharp
minimum at y ≈ 6.5, where the measurements gave κexpt =
3 × 10−15 Hz0.05 (as deduced from Fig. 3 of Ref. [43] assum-
ing δ = 0.05; experimental uncertainty was not specified). On
the other hand, substitution of the sample dimensions together
with mp = 3m0, δ = 0.05 in Eq. (31) gives g = 6 cm−1 and
the theoretical minimum κth = 10−14 Hz0.05, with the calcu-
lational uncertainty a factor of 4.5.

V. DISCUSSION AND CONCLUSIONS

We have shown that on account of the charge-carrier–
phonon interaction, the low-frequency asymptotic of the
quantum bound on the voltage power spectrum becomes
∼1/ f γ , where (γ − 1) can be of either sign depending on
the filling of the charge-carrier states. This asymptotic is also
quadratic with respect to the voltage bias, so that it is typical
of the observed flicker noise spectra.

An important outcome of our consideration is that the
law 1/ f γ with 1 < γ < 2 is consistent with an unbounded
growth of the correlation function S(τ ) at large times. Namely,
the power spectrum defined by Eq. (2) does exist despite
S(τ ) ∼ τ γ−1, and formula (6) is the correct way to compute
it in this case. Directly related to this behavior of S(τ ) is
the fact that the voltage variance 〈�U 2(t )〉, though finite,
also grows with time as tγ−1. As unusual as it might appear,
this growth was nonetheless demonstrated in Sec. IV A to be
perfectly consistent with the assumed stationarity of physical
conditions, and confirmed by the experiment.

Next, as shown in Sec. IV by comparing Eq. (31) with the
experimental data, the observed noise levels are in most cases
only a few times as high as the theoretical minimum, being in
all cases within an order of magnitude therefrom. In view of
the comparatively large uncertainty in the calculated noise lev-
els which makes them actually order-of-magnitude estimates,
a conclusion suggested by the comparison is that the noise
observed in the considered experiments is nearly minimal.
This does not exclude a possibility that the noise level might
be somewhat lower, but was raised to the observed values by
an independent measurable effect. In fact, the photon heat bath
contribution to the 1/ f noise in high-Tc superconductors at
room temperature is comparable to the vacuum contribution
[38].

The existing order-of-magnitude accuracy of determining
the noise magnitude, which might be deemed as disastrous
in other areas of science, is yet sufficient to make further
important conclusions. First, a significant drop of the noise
levels on switching from the longitudinal to transverse config-
uration, observed in Ref. [10], takes place without exception
in all samples studied. This rules out the conventional in-
terpretation of 1/ f noise as a result of fluctuations in the
sample conductivity, which predicts the same noise level in
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the two configurations. On the other hand, the amount of
drop is well correlated with the law SF ( f ) ∼ (w/l )2 predicted
by Eq. (30). From a more general standpoint, dependence of
S( f ) on the sample dimensions as given by this equation nat-
urally resolves the puzzle of inexplicably high values of
noise observed in comparatively large samples. Specifically,
in the case of high-Tc superconductors, the noise magnitudes
in millimeter-size samples, normalized according to Hooge’s
formula, were found to be 106 to 1010 times as high as
in micrometer-size thin films. Why samples of comparable
quality are so distinct with regard to their noise levels can
be explained only if one admits that the scaling S( f ) ∼ 1/�

implied by Hooge’s formula is incorrect. A comparison made
in Sec. IV C demonstrates, on the contrary, that when analyzed
on the basis of Eq. (28), the noise observed in millimeter-
size high-Tc superconductors is as ordinary as in the other
instances considered.

At last, in light of the presented results, it is worth to outline
a possible route to empirically decide whether the flicker noise
level measured in a given material is close to the quantum
bound. Assuming that the contributions of conventional noise
sources have been eliminated in either of the ways mentioned
in the Introduction, in order to see if the remainder is the
fundamental noise it is crucial to have a reliable estimate of
the frequency exponent. Its experimental error can be reduced
by increasing the frequency span and by accumulating exper-
imental data. Scanning wider bandwidths is also helpful in
identifying conventional noise sources, while statistical means
permit establishing various trends such as the frequency expo-
nent dependence on the charge-carrier density. Even a crude
measurement of this particular dependence may give a hint as
to whether the quantum indeterminacy dominates the power
spectrum. In fact, a rule of thumb is that at temperatures such
that the mean charge-carrier velocity markedly exceeds the
sound speed (which is normally the case, e.g., at room tem-
perature), the frequency exponent grows with the increasing
charge-carrier density [cf. Eq. (29)]. This trend is reversed
only at very low temperatures (cf. Fig. 4). A more detailed
verification of this dependence will require careful evaluation
of the momentum integral in Eq. (28), in particular, elabora-
tion of the kinetic model to obtain a realistic charge-carrier
momentum distribution. It is advantageous to use a setting
where the charge-carrier density can be varied independently
of temperature and separately in each sample (e.g., when the
sample is part of the field effect transistor). This would allow
one to exclude sample-to-sample variations in δ which are
often significant, and also to check the dependence of S( f )
on the total number of charge carriers in the sample. Probing
this dependence is another way to rule out conventional mech-
anisms which all predict the inverse proportionality, while the
quantum bound depends on the sample dimensions rather than
the number of charge carriers. On the other hand, studying the
sample geometry effects is hindered by the sample-to-sample
variations in δ unless the sample size variation is sufficiently
large, as in the case of high-Tc superconductors discussed
above.

The data that support the findings of this study are avail-
able within the article. Any further details of calculations are
available from the author upon request.
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APPENDIX: SOME COMMENTS ON THE QUANTUM
THEORY OF 1/ f NOISE

There are a number of statements and/or frequently asked
questions regarding the quantum theory of flicker noise which
exist primarily in a verbal form. They are briefly discussed
and answered in this Appendix.

1. Low-frequency photons are of large spatial extent (as their
wavelength c/ f is much larger than the typical size of 1/ f

experimental setup), implying that the 1/ f power spectrum
should depend on everything on Earth, if the noise is somehow

related to such photons

Curiously, this argument is never applied to thermal noise,
although the notion of energy per one electromagnetic degree
of freedom with a given frequency is used in the derivation
(original as well as modern one, based on the fluctuation-
dissipation theorem) of its power spectrum. In fact, a full
version of the Nyquist formula which emphasizes Planck’s
notion of energy quantum reads

S( f ) = 4Rh f

eh f /T − 1
,

where R is the sample resistance, and h = 2π h̄ [44]. This
reduces to the familiar 4RT in the case of f � T/h, but the
idea of energy quanta exchange in a circuit which underlies
the derivation of the power spectrum remains valid no matter
how large the photon wavelength is compared to the circuit
size. A misleading premise in the above statement in italic
is that a photon can be assigned a “size,” and that this size
is equal to the photon wavelength. But it is known already
from nonrelativistic quantum mechanics that the de Broglie
wavelength of a particle does not determine the size of the
region where it is smeared. The latter depends on how waves
with different wavelengths are superposed, and may or may
not be of the order of a characteristic wavelength. Moreover,
an important specifics of the photon is that it lacks the notion
of spatial probability distribution, which deprives the photon
position, size, etc., of meaning altogether.

2. Charge carriers cease to radiate low-frequency photons once
the experimental setup is enclosed into a Faraday cage, thus

removing this mechanism from the list of possible flicker noise
sources

This statement is false as the charge carriers do radiate
low-frequency photons even when enclosed in a Faraday cage.
This becomes evident when the system “accelerating charge
plus Faraday cage” is considered at distances much larger than
the cage size. It then radiates as any other accelerating charge.
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3. The transit time of the charge carrier in a sample is often
shorter than the inverse frequency at which the noise is detected.

Therefore, the underlying process cannot be one-particle

This argument is incorrect in that it ascribes individuality
to a charge carrier. A proper description of an elementary
process of the noise generation mechanism considered in
the present theory is that the quantized electromagnetic field
interacts not with a concrete charge carrier moving over a
particular path through the sample, but with the charge car-
riers filling a given energy eigenstate. As a result of particle
collisions, the charge carriers continually undergo transitions
between different states, so that the whole effect includes
contributions from all possible charge-carrier states. Like any
other high-frequency process, these transitions do not affect
the low-frequency component of the electromagnetic field. By
virtue of the indistinguishability of identical particles, it does
not matter which charge carrier occupied a given state at a
given instant. Of all possible information about the charge-
carrier dynamics, the noise power spectrum thus depends only
on the mean state occupation numbers [cf. Eqs. (28) and (29)].

4. Relation to Handel’s theory

The term “quantum 1/ f noise” is historically associated
with the name of Handel, who first attempted to describe
flicker noise as a purely quantum phenomenon by relating it
to the infrared divergence in the coupling of electric charges
to photons [45,46]. The original derivation has been amended
and modified in several respects [47–52] in response to nu-
merous severe critics, which has resulted in two different
formulas for the spectral density, the so-called coherent and
conventional quantum 1/ f effects. They read, respectively,

Scoh( f ) = 2αU 2
0

π | f |N , (A1)

where N is the number of charge carriers in a sample, α =
e2/(h̄c) ≈ 1/137 is the fine structure constant, and

Sconv( f ) = 2αAU 2
0

π | f |N , A = 2

3

(
�v

c

)2

, (A2)

where �v is the change of the charge-carrier velocity in
a characteristic scattering process [51]. Since normally the
charge carriers are nonrelativistic, A � 1.

An approach advanced in the present paper is related nei-
ther to the infrared divergences in the scattering amplitudes
or propagators of the charge carriers, nor to the decoherence
phenomena induced by their interaction with the environment
which plays the central role in Handel’s considerations. Re-
garding the value of the frequency exponent, a major distinc-
tion between the present approach and Handel’s is that γ in
the latter is actually slightly less than unity, γH = 1 − αA < 1.
This fact, though not reflected in the canonical expressions

(A1) and (A2) which neglect αA ≪ 1 in the exponent, has
always been emphasized by Handel himself as guaranteeing
convergence of the total noise power [45,52]. On the other
hand, the numerous flicker noise measurements unequivocally
demonstrate that (γ − 1) can be positive as well as negative,
and as the results of the present approach show, the charge-
carrier interactions with phonons lead to deviations of γ from
unity which can be of either sign consistently with finiteness
of the total noise power.

Another important distinction between expressions (A1)
and (A2) and Eq. (28) is the factor of N in their denom-
inators. This dependence on the number of charge carriers
implies that for a fixed charge-carrier density, Scoh, Sconv ∼
1/�, whereas SF given by Eq. (28) scales in the inverse
proportionality to the linear size of the sample (cf. expressions
for the geometrical factor g in Sec. III C). By this reason,
on increasing the sample size, Handel’s formulas more and
more underestimate the noise level, resulting in many-order
discrepancies with the experiment in millimeter-size samples
(cf. Sec. IV C).

5. Relation to self-organized criticality

One of the origins of 1/ f noise in dissipative dynami-
cal systems is the occurrence of the so-called self-organized
critical states [53,54]. In these states, the system has no char-
acteristic length scales except for its size. Local perturbations
of the system in such states are therefore correlated in time by
power laws, because the lack of characteristic spatial length
scale naturally leads to a lack of characteristic time scale.
The corresponding power spectra are thus also power laws,
S( f ) ∼ 1/ f γ , where 0 < γ < 2. As the results of the present
approach show, power spectra of the voltage fluctuations have
low-frequency asymptotics of the same type, which raises the
question of whether these results can be interpreted in terms
of self-organized criticality. This is impossible for the follow-
ing reasons. Quantum indeterminacy underlying the present
approach provides no such implication between the existence
of spatial and temporal scales (or the absence thereof) as
that assumed in the approach based on self-organized criti-
cality. Voltage fluctuations do not involve large time scales
merely because all microscopic processes are characterized
by very small times, while quantum indeterminacy itself has
no intrinsic time scale. Consequently, the system need not be
in a critical state to exhibit flicker noise. A closely related
issue is the existence of a low-frequency cutoff for the 1/ f
spectrum. Such a cutoff always exists whenever time scales
are related to spatial scales, because any physical system is of
finite spatial extent. Thus, the power spectra describing self-
organized phenomena eventually deviate from the 1/ f γ law at
low frequencies. On the other hand, quantum indeterminacy
sets no low-frequency cutoff, and, as was demonstrated in
Sec. III C, no such cutoff is needed to ensure finiteness of the
voltage variance as long as γ < 2.
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