
PHYSICAL REVIEW A 106, 062213 (2022)

Möbius transformation and coupled-wave theory: Complete identification of the transfer matrix
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A Möbius transformation which conformally maps the unit circle onto itself is applied to the scalar coupled-
wave equations, describing electromagnetic wave propagation in Bragg gratings, and reduces them to a first-order
nonlinear differential equation of a single real variable. This equation is analytically integrated for linear detuning
and numerically for more complicated refractive index modulation scenarios, e.g., chirped and apodized Bragg
gratings, offering a platform for identifying both the amplitude and phase of all elements of the transfer matrix
of arbitrarily complex cases. A link between coupled-wave theory and coupled oscillators is established, and
exploring the transformation’s geometrical properties leads to alternative definitions of the photonic band gap.
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I. INTRODUCTION

Uniform Bragg gratings are transparent photonic devices
with a periodic modulation of their refractive index where
for incident monochromatic light, successive reflections add
up coherently to give a strong reflection around the Bragg
wavelength λ0 = 2n̄�, where n̄ is the average refractive index
and � is the grating spatial period [1]. They can be written
via the diffraction pattern from a phase mask illuminated by
UV light [2] and their wavelength-dependent nature resem-
bles Fabry-Pérot étalons, providing less-alignment-sensitive
spatial filters in the visible spectrum which can be easily
incorporated in photonic structures. Chirped Bragg gratings
are used as resonators to produce a wide variety of free
spectral ranges in [3] and various narrowband channels of
roughly equal spacing in fiber lasers in [4]. They can be
tailored to reduce undesirable spectral side lobes [5], stabilize
the single-mode output of continuous-wave fiber lasers [6],
and control dispersion. Indeed, in [7] linearly chirped Bragg
gratings cancel the dispersion of optical waveguides, while in
[8] they determine the pulse width and energy in fiber soliton
lasers. Phase-shifted gratings minimize channel spacing of
wavelength division multiplexers in [9] and they are used
as all-fiber demultiplexers of optical systems with multiple
channels in [10]. The effect of the number of phase shifts on
the transmission spectrum of Bragg filters is explored in [11].

Coupled-wave theory (CWT) is the principal approxima-
tion for obtaining the optical spectrum of Bragg gratings. The
coupled-wave equations (CWEs) match synchronous terms
derived from the Helmholtz wave equation, assuming weak
amplitude of the refractive index modulation and under the
slowly varying envelope approximation [12]. They can be
analytically integrated in special cases (e.g., weak or uni-
form gratings) and numerically in the rest. Some modified,
semianalytical, and CWT-based approaches for high-contrast
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refractive index modulation are discussed in [13]. An example
considering higher-order phenomena and effective-medium
theory to analyze nonuniform gratings is found in [14]. In
[5] a transformation reduces the CWEs to a Riccati equa-
tion and in [15] the propagation in nonlinear Bragg gratings is
exactly solved via the so-called method of single expression
for the electric field which does not consider counterpropa-
gating modes. A classic approach is seen in [16,17] where a
nonuniform grating slab waveguide is divided into N cascaded
quasiuniform divisions. Thereafter, the compound structure’s
optical response is approximated by multiplying all uniform
segments transfer matrices Si, known from CWT, to form
the overall transfer matrix S. This is in principle a reliable
and fast method, albeit troublesome in cases of long gratings
with many periods [12]. The transfer-matrix method is closely
correlated to CWT but contains some ambiguities which are
clarified in [18].

For dynamical systems described by N coupled equa-
tions of N-dimensional parameters, reducing the order leads
to significant simplifications. In [19] a nonlinear coordi-
nate transformation reduces a system of (N � 3)-dimensional
coupled oscillators (Kuramoto model) to N = 3 dimensions,
proved in [20] to be integrable Riccati equations. This method
resembles that of [21,22] where group theory is utilized to
identify underlying symmetries in four-wave mixing, also
parametrizing the problem using only three variables. In [23]
exploring the action of a subgroup of Möbius transforma-
tions, which conformally map the unit disk onto itself, offers
insights into the reduction mechanism: It is related to the
mapping on the Möbius group being a three-dimensional Lie
group.

Inspired by the above, we explore the action of a Möbius
transformation that preserves the unit circle to the CWEs.
The paper is organized as follows: In Sec. II we discuss
challenges in solving CWEs and in Sec. III scrutinizing the
underlying symmetries of the system leads to a particular
Möbius transformation that reduces the CWEs to a first-order
nonlinear differential equation of a single real variable which
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encodes all spectral information. Geometrical properties of
the transformation lead to identification of both the amplitude
and phase of all elements of the transfer matrix for arbi-
trarily complex refractive index modulation scenarios. This
equation is analytically integrated for uniform Bragg gratings
in Sec. IV where it is also related to the Adler equation of
classic oscillators theory. Insights regarding the photonic band
gap are revealed and alternative definitions of the Bragg zone
are given. The nonlinear equation is numerically integrated in
Sec. V where the method’s success is demonstrated in chirped,
apodized, and cascaded Bragg gratings of slightly dissimilar
pitches. We summarize in Sec. VI.

II. CHALLENGES IN SOLVING COUPLED-WAVE
EQUATIONS

The CWEs describing the propagation of the forward and
backward electric field amplitudes A± in a scalar Bragg grat-
ing can be expressed in a vectorial-differential notation as

dA
dz

= M · A, (1)

where A = (A+A−)T, with T denoting transpose, and the char-
acteristic matrix of the system is

M =
(

0 iκe−iϕ

−iκeiϕ 0

)
.

Here κ ≈ πδn̄/λ0 is the grating coupling coefficient, with δn̄
the amplitude of the refractive index modulation. Unless we
are interested in apodized gratings, κ will be assumed constant
and generally complex in the presence of loss or gain. If z0 is
the grating initial point, the z-dependent phase term ϕ ≡ ϕ(z)
accounts for the refractive index variation along the grating
length and is defined as [7]

ϕ(z) =
∫ z

z0

B(s)ds, (2)

where B(z) = 2n̄k0 − K (z), with k0 the free-space wave num-
ber. The grating local spatial frequency is K (z) = K0 +
�K (z), where K0 = 2π/� is constant and �K (z) can be seen
as a perturbation [5].

Let A0 express some known initial conditions at z0. Then
the solution to Eq. (1) may take the matrix-exponential form

A(z) = exp

(∫ z

z0

M(s)ds

)
A0, (3)

only in the on-resonance case, where ϕ = 0, and the system
of Eq. (1) has constant coefficients. This is not true, however,
when the phase term is a nonzero function of the grating
length ϕ(z) since the characteristic matrix M does not gen-
erally commute with its integral at every point of its definition
domain, i.e.,

M(z)

(∫ z

z0

M(s)ds

)
�=

(∫ z

z0

M(s)ds

)
M(z), (4)

where the integration is performed element-by-element.
In uniform gratings, �K = 0 and the inequality (4) is an

equality only at the discrete points ϕ = 2νπ , ν ∈ N, or triv-
ially when κ = 0. Nonetheless, the exponential approximation
can be within an acceptable error margin for small values of

both the grating length L (typically a few millimeters) and
δn̄, giving a slightly smaller optical bandwidth compared to
that accessed via classic CWT solution methods. With an
increment of L or δn̄, within the usual approximation limits
of CWT, the discrepancy of the two bandwidths scales with
L and κ2, respectively, and the mismatch of relation (4) in-
creases. Hence, although the use of the simple equation (3) for
numerical integration is tempting, the noncommutative prop-
erty should not be disregarded unless the grating is uniform,
small, and weak.

The integration approach of Eq. (3) for analyzing nonuni-
form fiber Bragg gratings appears to have been first proposed
in [24] and subsequently used in [25] to solve the CWEs
for gratings with an acoustically induced microbending. In
both cases, the noncommutative property expressed via the
inequality (4) was neglected, leading to minor inconsistencies
between the theoretically predicted and the experimentally re-
alized optical spectra. Eventually, the authors improved their
method in [26] by dividing the total integration length into
multiple parts so that M approximately commutes with its
integral at each sublength.

Whether the grating characteristics render the approxima-
tion of Eq. (3) acceptable or not, or someone resorts to the
brute force of direct numerical integration of Eq. (1), guessing
the initial conditions is essential [27] but nontrivial, especially
when physical arguments must be considered. Such methods
are usually slow [12] as they require integration of a system
of differential equations which are in principle both nonlinear
and complex. Additionally, they are in need of an adaptive
step size, which may affect the stability of the algorithm [28].
It will soon become apparent that the system of Eq. (1) can
be naturally reduced to one nonlinear differential equation of
a single real variable whereby once it is integrated, both the
amplitude and phase of all elements of the solution matrix can
be algebraically determined via simple formulas.

Although we will be mostly concerned with the CWEs
description of Eq. (1), it is worth mentioning the widely
adopted method for solving CWEs, seen, e.g., in [9,10,12],
which uses the auxiliary fields Ã+ = exp(iϕ/2) A+ and Ã− =
exp(−iϕ/2) A− to transform the system of Eq. (1) to the
equivalent

d

dz

⎛
⎝Ã+

Ã−

⎞
⎠=

⎛
⎝ i

2
dϕ

dz iκ
−iκ − i

2
dϕ

dz

⎞
⎠

⎛
⎝Ã+

Ã−

⎞
⎠. (5)

Then, in uniform gratings, the system of Eq. (5) has constant
coefficients and the matrix-exponential form of Eq. (3) is a
well-defined analytic function of the transformed system’s
characteristic matrix M̃. For ϕ a slowly varying function of
z, defining the local reflection coefficient r = Ã−/Ã+, as in
[5,29], reduces the system of Eq. (5) to a complex Riccati
equation, and this reduction mechanism will be naturally asso-
ciated with the system’s underlying symmetries in this paper.

With an analytic solution for uniform gratings known, we
can employ the so-called piecewise transfer-matrix approach
to examine nonuniform cases. Indeed, partitioning the total
length L in such way that each sublength li < π/2L forms
a quasiuniform segment of approximately constant period,
we can obtain the overall transfer matrix by cascading all
transfer matrices of the roughly uniform divisions. Although
this is an effective method, it is problematic in gratings with
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many periods (greater than 105 [12]). Additionally, it contains
some pitfalls which lead to overlooking important physical
phenomena, evident in cascaded gratings with slightly dissim-
ilar pitches or in gratings delineated by a phase discontinuity,
as discussed in Sec. V C. Our method does not impose such
restrictions; being not inherently discrete (N.B. a certain dis-
cretization is of course required for numerical integration),
it can indeed lift any length limitations as the number of
periods is irrelevant. Moreover, it hides any complexity of the
cascaded matrices strict mathematical formalism.

III. MÖBIUS TRANSFORMATION METHOD

A. Transfer-matrix symmetries

Setting the grating initial point at z0 = 0, the overall solu-
tion to Eq. (1) can be explicitly written as

A(z) = S(z)A0, ∀ z ∈ [0,+∞), (6)

where evidently the propagator S is a transfer matrix relating
the amplitudes of the electric fields at the output of the grating
(z = L) to those at the input (z0 = 0). It then follows from
Eq. (1) that S solves

dS
dz

= M · S. (7)

According to Liouville’s formula [see Eq. (1.5) in [27]],

det[S(z)] = det[S(0)] exp

(∫ z

0
tr[M(s)]ds

)
, (8)

and for M traceless, the determinant of the fundamental ma-
trix (Wronskian) is always constant, no matter if loss or gain is
considered. It is then implied by Eq. (6) that S(0) = I, where
I is the 2 × 2 identity, leading via Eq. (8) to the first symmetry
relation

det(S) = 1. (9)

In fact, unimodularity is a fundamental property of traceless
characteristic matrices and will also hold in cases of loss
and gain modulated gratings [cf. Eqs. (6) and (7) in [30]].
Nevertheless, it cannot guarantee reciprocity on its own.

Furthermore, for n̄, δn̄ ∈ R, meaning also that ϕ, κ ∈ R,
the matrix M is Hermitian, or M = M†, where the dagger is
the Hermitian adjoint. It is then easy to prove that A† · J · A,
where J = ( 1 0

0 −1

)
, is conserved, slightly different from [22]

and for two modes interfering. Indeed, for M Hermitian and
the adjoint acting on each component of (dA+/dz dA−/dz)T,
we have

d

dz
(A† · J · A) = A† · (M · J + J · M) · A. (10)

Since M is also antidiagonal, the matrix M · J is skew Hermi-
tian, or (M · J)† = −M · J, and Eq. (10) yields

d

dz
(A† · J · A) = 0.

Hence, A† · J · A is conserved and I0 = |A+|2 − |A−|2 is con-
stant, in agreement with Eq. (9) in [31] for counterpropagating
modes. This expresses energy (flux) conservation. If A† · J · A
is conserved, so is S† · J · S and for S(0) = I we end up with

the second symmetry relation

S† · J · S = J. (11)

The conditions of Eqs. (9) and (11) are sufficient to guar-
antee that S ∈ SU(1, 1), where SU(1, 1) is the special unitary
group defined in [32] as the set of all 2 × 2 matrices U
with unit determinant such that U† · J · U = J. These are
symmetry-based arguments that lead to the same conclusions
reached in [33] where the form of S is attributed to energy
conservation and time-reversal invariance, which is equivalent
to reciprocity only in energy-conserving systems [34]. Details
on transfer-matrix group-theory symmetries can be found in
Appendix A in [35] and a comprehensive discussion of their
geometrical aspects in [36].

B. Reducing the coupled-wave equations

It is straightforward to show from Eqs. (9) and (11) that
the representation of the SU(1, 1) group takes the well-known
form

S =
(

P Q
Q∗ P∗

)
, |P|2 − |Q|2 = 1, (12)

where the asterisk denotes complex conjugation. By con-
verting the transfer matrix S to a scattering matrix Ss via
Eqs. (69)–(72) in [34], we can verify that both the energy-
conservation condition SsS†

s = I (unitary) and the reciprocity
condition Ss = ST

s (orthogonal) are satisfied.
The matrix representation of Eq. (12) can be natu-

rally associated with a Möbius transformation w = w(w0) :
SU(1, 1) → C, as in [37], defined via

w(w0) = Pw0 + Q

Q∗w0 + P∗ , |P|2 − |Q|2 = 1; w,w0 ∈ C,

(13)
which maps the unit disk D = {|w0| < 1,w0 ∈ C} and its
boundary ∂D = {|w0| = 1,w0 ∈ C} conformally onto them-
selves [38]. In fact, the pseudounitary group SU(1, 1) is
isomorphic to SL(2,R), the set of all real-valued matrices
with unit determinant [32], and represents the most gen-
eral isometric distortion of the upper half plane. As shown
in Chap. 1, Pt. 4 in [32], this isomorphism is achieved
via (

P Q
Q∗ P∗

)
= 1√

2

(
1 −i
−i 1

)(
α β

γ δ

)
1√
2

(
1 i
i 1

)
,

where αδ − βγ = 1 with α, β, γ , δ ∈ R. The SU(2) matrices
pre- and postmultiplying the real-valued matrix are isomor-
phic to rotations by π/2 in SO(3). Under a stereographic
projection, these will first take the unit disk into the upper half
plane to be distorted before returning the distorted upper half
plane to the unit disk, hence preserving it. For its boundary
∂D, it is easy to verify that |w[exp(iθ )]| = 1, θ ∈ R.

Combining now Eqs. (7) and (12) yields

dP

dz
= iκe−iϕQ∗ and

dQ

dz
= iκe−iϕP∗.

Then, the transformation of Eq. (13) determines that the
newly introduced variable w evolves according to the complex
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Riccati equation

dw

dz
= iκ (e−iϕ + eiϕw2), (14)

which appears like Eq. (12) in [5] but with opposite signs
in the exponential terms. However, here w and w0 have the
physical meaning of the local (at some point z) and initial
(precisely at z0 = 0) conductance ρ = A+/A−, respectively,
and not reflectance. As Eq. (14) was deduced via the Möbius
transformation of Eq. (13), this clearly establishes a geomet-
rical approach in examining the spectral characteristics of
Bragg gratings, similar to the usual admittance Y Smith chart
used in electrical engineering to examine transmission lines
[39]. Crucially, (A+, A−) are the homogeneous coordinates
of w corresponding to a singular stereographic projection,
provided (A+, A−) �= (0, 0) [40]. We underline that Eq. (14)
will still hold if the coupling coefficient is z-dependent.

Should we confine the action of Eq. (13) to the in-
variant under the transformation unit circle ∂D (|w0| = 1),
the symmetries of the system imply that |w| = 1. This of
course restricts the space of the solutions to those of energy-
conserving systems. It is then convenient to set w = exp(iψ ),
ψ ∈ R, so that Eq. (14) simplifies to a first-order nonlinear
differential equation of a single real variable which encodes
all the information of the transfer matrix, namely,

dψ

dz
= 2κ cos (ψ + ϕ), ψ ∈ R. (15)

Remarkably, Eqs. (14) and (15) resemble Eqs. (23a) and (23b)
in [23] or the equivalent, previously derived, Eqs. (10) and
(11) in [41], respectively, which model coupled oscillators
systems. In fact, our Eq. (15) is a special case of the aforemen-
tioned since it does not contain the extra term g of [23] and
finding an analytic solution is plausible under corresponding
preconditions (see Sec. IV). This is a consequence of the
action of a Möbius transformation that preserves the open
unit disk and its boundary. The reduction of the CWEs to a
Riccati equation is consistent with the response of [20] to the
coupled-oscillator problem in [19] and reveals the insights of
the reduction mechanism via the local reflection coefficient of
[5]. Additionally, in the framework of the linear classical spin
Hamiltonian, Eq. (1) appears like the equation of motion [cf.
Eq. (6) in [42]] with the solution taking the form of a Möbius
transformation too.

C. Identifying the transfer matrix

The nonlinearity of Eq. (15) suggests that numerical tech-
niques must be implemented. A recommendation could be
MATLAB’s ordinary differential equation (ODE) solvers which
integrate ψ ′ = F(z, ψ ) from z0 to zL, with an initial condition
ψ0, via the Runge-Kutta iterative method. However, even if
Eq. (15) is numerically solved, identifying both the amplitude
and phase of the P and Q parameters, and thus the grating
transfer matrix, is still a challenge. This can be overcome by
exploring a fundamental property of linear fractional transfor-
mations.

In point of fact, the Möbius transformation

w0 → w : w = aw0 + b

cw0 + d
, ad �= bc; a, b, c, d ∈ C

is completely defined by the cross ratio

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
= (w0 − w01)(w02 − w03)

(w0 − w03)(w02 − w01)
,

mapping finite distinct points w01, w02, and w03 of the w0

plane onto finite distinct points w1, w2, and w3 of the w plane
[43]. Hence, a Möbius transformation is uniquely determined,
up to an overall scaling, by its values at three pairs (w01,w1),
(w02,w2), and (w03,w3). Its coefficients are given by the
determinants

a =
∣∣∣∣∣∣
w01w1 w1 1
w02w2 w2 1
w03w3 w3 1

∣∣∣∣∣∣, b =
∣∣∣∣∣∣
w01w1 w01 w1

w02w2 w02 w2

w03w3 w03 w3

∣∣∣∣∣∣,

c =
∣∣∣∣∣∣
w01 w1 1
w02 w2 1
w03 w3 1

∣∣∣∣∣∣, and d =
∣∣∣∣∣∣
w01w1 w01 1
w02w2 w02 1
w03w3 w03 1

∣∣∣∣∣∣. (16)

To identify the elements of the transfer matrix, at least
three images of three points are needed, as explained in Sec. 6
in [44] and Sec. 4 in [45], i.e., three pairs of (ψ0 j, ψ j ),
j = 1, 2, 3. Such identification is achieved by solving Eq. (15)
three times, each with a different initial condition ψ0 j . This is
appropriate since the physically meaningful boundary condi-
tion is that the local conductance at the end of the grating is
infinite [impose A−(L) = 0] and the ordered pair (A+, A−) no
longer corresponds to a unique w, rendering ψ0 indifferent.
The values of ψ0 j lie in (−∞,+∞) with w0 j = exp(iψ0 j )
lying on the unit circle and can be arbitrarily chosen. We elect
points of the upper half plane, say, ψ01 = 0, ψ02 = π/2, and
ψ03 = π , but these can be any points as long as they are finite
and discrete. Then the determinants of Eq. (16) provide us
with a, b, c, and d .

Despite the Möbius transformation’s uniqueness, its repre-
sentation is only unique up to a complex multiplier [32]. Still,
we can normalize its representation matrix to one with unit
determinant and identify both the amplitude and phase of all
elements of the transfer matrix as(

P Q
Q∗ P∗

)
= 1

(ad − bc)1/2

(
a b
c d

)
.

Thereafter, the optical spectrum may be accessed via the re-
flection and transmission coefficients r = −Q∗/P∗ and t =
1/P∗, respectively.

Solving Eq. (15) three times seems less efficient than
solving Eq. (14) once, as in [5]. In the latter, the inten-
sity reflectance is directly retrieved as R = rr∗ whereas in
energy-conserving systems, the intensity transmittance is sim-
ply T = 1 − R and the optical spectrum is fully determined.
Notwithstanding, the phase of the transmission coefficient,
important in dispersion compensation, cannot be determined.
Additionally, solving the Riccati equation (14) strongly de-
pends on the initial condition guessing which in our method
in unimportant. The most important aspect of our method lies
in completely determining both the amplitude and phase of
all elements of the transfer matrix which for this analysis is
a three-dimensional Lie group, similarly to [23], with real
parameters |P|, arg(P), and arg(Q). This proves beneficial
in systems where the SU(1, 1) symmetry is broken and the
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reflection seen from the left, rL = −S21/S22, may differ from
the one seen from the right, rR = S12/S22.

Such examples are Bragg gratings with modulated loss and
gain [30], or as they later became known parity-time (PT )
symmetric Bragg gratings [46], which induce unidirectional
invisibility despite satisfying Lorentz reciprocity [47]. In this
instance, although the unimodularity condition of Eq. (9) will
still hold, the Hermiticity condition of Eq. (11) breaks and S /∈
SU(1, 1). Then we could generally state that S ∈ SL(2,C),
meaning that the Möbius method should be adjusted to a more
general representation, i.e.,

S =
(

S11 S12

S21 S22

)
→ w = S11w0 + S12

S21w0 + S22
,

with S11S22 − S12S21 = 1. This would in principle force the
Riccati equation (14) to take its complete form, with an
additional w term being included, and would result in the
appearance of constants, depended on the two coupling co-
efficients of the modulated waveguides, multiplying each
term. Then the variable ψ will effectively become complex
ψ ∈ C so that w = x exp(iy), with x, y ∈ R, meaning that
information will then be encoded in two variables. Such a
generalization is also required to include optical absorption
but is beyond the scope of the present work.

IV. UNIFORM BRAGG GRATINGS

A. Adler equation

It turns out that Eq. (15) has an analytic solution in a
closed form for the case of linear detuning, where ϕ = δkz,
with δk = 2n̄k0 − K0 the z-independent detuning parameter.

Changing the variable according to f = ψ + δkz, Eq. (15)
reduces to

df

dz
= 2κ cos f + δk, (17)

which is the so-called Adler equation [48], typically giving
an oscillator’s phase as a function of time. Equations of this
type describe Josephson junctions [49] and were recently
studied in the context of laser physics for injection lock-
ing [50]. Comparing Eq. (17) with Eq. (21) in [51], it is
straightforward to realize that they are identical, provided
A = 2κ , λAdl = δk/2κ , and β = π/2. This is no surprise since
a variety of coupled oscillators, with obvious similarity to
CWEs, are known to be expressed via the Adler equation, the
solutions of which are proved in Appendix D in [51] to be
Möbius maps. Such a connection is particularly intriguing and
N-dimensional optical systems modeled by globally coupled
equations of the type

dAj

dz
= X (A1, . . . , AN ) + �(A1, . . . , AN ) cos Aj,

with j = 1, . . . , N and X and � independent of the subscript j
being 2π periodic in each argument, would be of great interest
to examine in the context of optics.

With boundary data z → z0 and f0 → ψ0 + δkz0, Eq. (17)
can be integrated as∫ f

f0

df

1 + (2κ/δk) cos f
= δk(z − z0),

where the integral is calculated via the Weierstrass substitu-
tions t = tan( f /2) and t0 = tan( f0/2). After some algebraic
manipulations, the solution to Eq. (15) is found to be

ψ (z, λ) = 2 tan−1

(
δk
2�

cos
(

ψ0−ϕ

2

)
sinh(�z) + sin

(
ψ0−ϕ

2

)
cosh(�z) + κ

�
cos

(
ψ0+ϕ

2

)
sinh(�z)

− δk
2�

sin
(

ψ0−ϕ

2

)
sinh(�z) + cos

(
ψ0−ϕ

2

)
cosh(�z) + κ

�
sin

(
ψ0+ϕ

2

)
sinh(�z)

)
, (18)

where � = [κ2 − (δk/2)2]1/2 is an eigenvalue of the charac-
teristic matrix of Eq. (5). At δk = ±2κ , we can simply take
limδk→±2κ ψ and simplify Eq. (18).

Identifying the parameters P and Q from Eq. (18) is not
readily accessible but it is feasible since we established that
Eq. (17) has Möbius-like solutions. Indeed, by expressing

w = 1 + ui

1 − ui
and w0 = 1 + u0i

1 − u0i
,

where u = tan(ψ/2) and u0 = tan(ψ0/2), and after some al-
gebraic manipulations, we eventually get w to the form of
Eq. (13) and identify the same parameters as those seen in
Eqs. (4) and (5) in [18], specifically

P(z) = e−iδkz/2 p(z) and Q(z) = e−iδkz/2q(z), (19)

where

p(z) = cosh(�z) + i
δk

2�
sinh(�z),

q(z) = i
κ

�
sinh(�z).

Thus, we have demonstrated the fundamental reason of why
our proposed method yields the well-known analytic result for
uniform Bragg gratings seen, e.g., in [52].

At this point, we note that the transfer matrix

S̃ =
(

p q
q∗ p∗

)
(20)

solves Eq. (5) and may be naturally related to a Möbius
transformation wS̃ = eiK0zw, where w is that of Eq. (13). We
also note that it is trivial to reconstruct the transfer matrix
for the actual electric fields. In fact, for E = A+ exp(ik̄z) +
A− exp(−ik̄z), where k̄ = n̄k0, it reads

SE =
(

eiK0z/2 p eiK0z/2q
e−iK0z/2q∗ e−iK0z/2 p∗

)
. (21)

The intensity reflectance and transmittance of a uniform
Bragg grating of length L are obtained by imposing the
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FIG. 1. Spatial evolution of ψ as a function of the Bragg grating
length L for various detuning parameters δk, as per Eq. (18). The
base parameters are � = 0.538 194 µm, n̄ = 1.44, δn̄ = 10−4, and
ψ0 = 0.

boundary condition A−(L) = 0. These are, respectively,

R = |r|2 =
∣∣∣∣A−(0)

A+(0)

∣∣∣∣
2

=
∣∣∣∣−Q∗(L)

P∗(L)

∣∣∣∣
2

and

T = |t |2 =
∣∣∣∣A+(L)

A+(0)

∣∣∣∣
2

=
∣∣∣∣ 1

P∗(L)

∣∣∣∣
2

.

In Fig. 1 the spatial evolution of ψ with the grating length is
shown for various detuning parameters δk. By contrast, Fig. 2
depicts the spectral evolution of ψ for fixed grating length and
scanning wavelength. Both figures refer to linear detuning.

B. The photonic band gap revisited

The condition � ∈ R defines the Bragg zone and in the
absence of loss or gain, Fig. 1 indicates that curves lying
inside the Bragg zone have no inflection points whereas out-
side, where � = |�|i ∈ C, they have at least one. This simple

FIG. 2. Spectral evolution of ψ as a function of the wavelength
λ for fixed Bragg grating length L = 10 mm, as per Eq. (18). The
parameters are the same as those of Fig. 1.

FIG. 3. Dispersion relation of uniform Bragg gratings for one
harmonic, accessed via Floquet-Bloch theory and CWT [as per
Eq. (22)]. The parameters are � = 0.464 29 µm, n̄ = 1.4, and δn̄ =
0.1. Material or waveguide dispersion is neglected.

criterion is easily verified by exploring the sign of d2ψ/dz2

and it is consistent with the stability condition |λAdl| � 1 of
the Adler equation in [51].

The general dispersion relation of uniform Bragg gratings
can be accessed by expanding the components of the forward
propagating field, as identified in Eq. (21). From the various
exponential terms, we see that the possible wave numbers k
supported by the medium must satisfy

k = K0

2
+ sgn(δk)

[(
n̄k0 − K0

2

)2

−
(

k0δn̄

2

)2
]1/2

, (22)

where sgn(δk) ensures that k → 0 as k0 → 0 and that k →
n̄k0 as k0 → ∞. Observing Eq. (22), it is evident that a pho-
tonic band gap, similar to that of photonic crystals, exists at

k0 ≈ K

2n̄

(
1 ± δn̄

2n̄

)
.

In this regime, the wave vector k has a constant real part and
a nonzero imaginary, indicating strong attenuation, and wave
propagation is not allowed. This is visualized in Fig. 3, where
the dispersion obtained via CWT for one harmonic is found
in excellent agreement with that of the exact Floquet-Bloch
theory, where a stepwise refractive index variation is assumed
[53]. The dispersion expression of Eq. (22) is equivalent to
the phase rotation number η of Eq. (11) in [51] if λeig = −eη,
where λeig is an eigenvalue of the matrix in Eq. (20), as
discussed in [33].

The abovementioned classic approaches can be consis-
tently related to the Möbius transformation method. As far
as dispersion is concerned, it is actually the electric fields
that we are ultimately interested in. Furthermore, the grating
dispersion characteristics must be independent of its length,
assuming no material or waveguide dispersion. Therefore, we
consider a unit-cell grating of length equal to the period �

of the refractive index sinusoidal modulation and realize that
the electric-field transfer matrix of Eq. (21) reduces to S̃(�),
where we have dropped the −1 factor for simplicity. The
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FIG. 4. Fixed points γ of the Möbius transformation wS̃(�) in
the complex plain for various detuning parameters in the range δk ∈
[−6κ, 6κ]. The Bragg grating length is set to � and the parameters
are the same as those of Fig. 3.

eigenvalues of S̃(�) are found to be

λeig = Re[p(�)] ± ({Re[p(�)]}2 − 1)
1/2

, (23)

while the associated Möbius transformation’s fixed points,
found by solving γ = wS̃(�)(γ ), are

γ = ±(|q(�)|2 − {Im[p(�)]}2)1/2 + i Im[p(�)]

q∗ ,

being related via λeig = q∗(�)γ + p∗(�). The equivalent
inside-the-Bragg-zone condition of Sec. III in [33] (or of Sec.
3 in [54]), for SU(1, 1) symmetric structures, |Re[p(�)]| � 1,
leads to real eigenvalues and |γ | = 1. It follows that the fixed
points of wS̃(�) lie on the unit circle ∂D for wavelengths inside
the Bragg zone and either inside or outside ∂D otherwise. For
linear detuning, the latter are fixed on the real axis R − {±1},
as illustrated in Fig. 4. Tracing back to the corresponding
wavelength of each fixed point on ∂D estimates the band gap.
We are thus led to the following definition of a photonic band
gap: The photonic band gap of a periodic dielectric structure
consists of the fixed points of wS̃ laying on the unit circle. Im-
portantly, this alternative definition is not restricted to linear
detuning, being applicable to any SU(1, 1) symmetrical struc-
ture with arbitrarily complex refractive index modulation. In
fact, Eq. (23) implies that

λ
(1)
eig + λ

(2)
eig = −2 Re[p(�)] and λ

(1)
eigλ

(2)
eig = 1.

Then there are two possibilities: Either λ
(1)
eigλ

(2)
eig ∈ C or

λ
(1)
eigλ

(2)
eig ∈ R. In the latter, following the arguments of [33],

we may write λ
(1)
eig = ±eη and λ

(2)
eig = ±e−η, which clearly

demonstrates the nonoscillating field behavior, a signature of
the photonic band gap. With the eigenvalues being purely real,
it is straightforward to show that

|γ |2 =
∣∣λ(1,2)

eig − p∗∣∣2

|p|2 − 1
= 1 ⇒ |γ | = 1.

FIG. 5. Classification of the Möbius transformation and the
Bragg zone as per Eq. (24), alongside the optical spectrum. The
Bragg grating length is L = 5 mm and the parameters are the same
as those of Fig. 1. At the stared points, g and σ coincide.

Hence, the introduced definition of the photonic band gap
is also applicable to cases of arbitrarily complex refractive
index modulation scenarios as we have made no assumptions
about p.

A further interesting aspect of the photonic band gap is
related to the general classification of the Möbius transfor-
mation, following an idea proposed in [55,56]. In uniform
loss- and gain-free gratings, the trace of the matrix in Eq. (20)
turns out to be real and classifies the transformation. For
σ = [tr(S̃)]2, the transformations may be elliptic (0 � σ <

4), parabolic (σ = 4), or hyperbolic (4 < σ < ∞), although
there exist other classification classes too. This is expected
since the trace of transfer matrices is known to be related to the
so-called Bloch angle via tr(S̃) = 2 cos θB [see Eq. (1.55) in
[57]], where λeig = e±iθB (cf. phase rotation number η). Out-
side the Bragg zone, the Möbius representation is elliptic, at
the edges it crosses the σth = 4 threshold to become parabolic,
and inside is hyperbolic. These are visualized in Fig. 5 where
the optical spectrum of a uniform Bragg grating is plotted
alongside the normalized to their peak values σ , σth, and a
piecewise rectangular function identifying the Bragg zone via
� as

g(λ) =
{

1 if Im[�(λ)] = 0 .
0 if Im[�(λ)] �= 0

(24)

At the threshold crossing points, σ and g coincide, thus re-
vealing yet another aspect of the Bragg zone: At the two
edges marking the parabolic regime, the transformation’s
fixed points concur taking the values γ1 = γ2 = ±1 missing
from the real axis of Fig. 4. This substantiates the fact that
parabolic Möbius transformations have only one fixed point.
Such geometrical approaches to classic problems in optics
have recently attracted much attention (see, e.g., [58]) and
appear to serve as convenient platforms for exploring funda-
mentally complicated concepts.
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FIG. 6. Linearly chirped Bragg grating intensity reflectance for
various chirp coefficients F . The Bragg grating length is L = 10 mm
and the parameters are the same as those of Fig. 1. The inset illus-
trates the phase � of the reflection coefficient r = |r|e�i for F = 0
and F = 5 π .

V. ADVANCED REFRACTIVE INDEX MODULATION
SCENARIOS

A. Linear and quadratic chirping

In the linear chirping case, the refractive index variation
along the grating length is modeled via �K (z) = (2F/L2)z,
where the constant F is the chirp coefficient measuring the
degree of chirping [5,12]. At this instance, Eq. (2) acquires an
additional z2 term to become

ϕ = [2n̄k0 − K0 − (F/L2)z]z.

By defining an effective z-dependent detuning as δkeff(z) =
2n̄k0 − K0 − (F/L2)z, it is evident that linear chirping
changes the Bragg wavelength along z, thus broadening and
shifting the spectrum with the direction of the shift, towards
the red or the blue, depending on the sign of F . Then the
expression for the phase term can be substituted into Eq. (15),
which is now written as

dψ

dz
= 2κ cos[ψ + δkeff(z)z]. (25)

Unlike the previous case, Eq. (25) cannot be analytically inte-
grated and the algorithm of Sec. III C must be implemented.
We note that in the Appendix in [59], an analytic solution
to the CWEs for linear chirping is reported, without however
solving Eq. (25). Their proposed solution involves the highly
complex Whittaker function and the authors underline the
difficulty in assessing its validity for nonlinear chirping. We
are confident that our Eq. (25) will lead to analytic solutions
for nontrivial cases and employing group theory appears as a
favorable candidate.

In Fig. 6 the intensity reflectance of a linearly chirped
Bragg grating is plotted against the normalized detuning D =
δkeff(L)L/2π for large values of F . An increment of F broad-
ens the spectrum, decreasing simultaneously its peak value.
The same algorithm can be applied for any kind of grat-
ing pitch variation. In the case of quadratic chirping, where
�K (z) = (12F/L3)z2, the intensity reflectance is illustrated in

Normalized

FIG. 7. Quadratically chirped Bragg grating intensity reflectance
for various chirp coefficients F . The Bragg grating length is L =
10 mm and the parameters are the same as those of Fig. 1.

Fig. 7. The symmetrical response of the linearly chirped Bragg
grating is compared to the asymmetrical of the quadratically
chirped, whereby an increment of the chirp coefficient causes
the reduction of the side lobes’ peaks on the right of the Bragg
wavelength and their level’s accretion on the left (see [5]).

B. Apodized Bragg gratings

Up until this point, the grating coupling coefficient has
been assumed to be z-independent. As it is a common practice
to write fiber Bragg gratings via laser beams with a Gaussian
profile [12], the beam’s characteristics will be inherited by the
refractive index modulation profile. Then the coupling coeffi-
cient will become z-dependent and may be modeled similarly
to Eq. (10) in [7] as

κ (z) = πδn̄

λ0
exp

[
−16

(z − L/2)2

L2

]
(26)

so that it gradually decreases at the ends of the coupling
region, thus suppressing the side lobes. As long as Eq. (26)
remains real, the Hermiticity of the characteristic matrix M
is uninterrupted and the method of Sec. III is applicable.
As depicted in Fig. 8, using a Gaussian taper function, the
optical response becomes smoother and the side lobes are
suppressed. An increment of the grating length will asymp-
totically provide an almost-top-flat response for a sufficiently
broad bandwidth. Moreover, considering the insets of Figs. 6
and 8 for, say, F = 0, yet another advantage of apodization is
revealed: The phase response becomes approximately linear,
which is much desired for dispersion compensation (see [60]).

Comparing Figs. 6 and 8, the Gaussian tapper function
of Eq. (26) may have suppressed the side lobes but has also
decreased the peak values of the intensity reflectances. A com-
promise could be achieved by using a raised-cosine profile for
the coupling coefficient,

κ (z) = πδn̄

λ0

1

2

[
1 + cos

(
π (z − L/2)

L

)]
. (27)

The resulting optical spectrum can be seen in Fig. 9.
Different apodization profiles can be combined with any

kind of chirping for tailor-made applications. Our proposed
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FIG. 8. Gaussian apodized linearly chirped Bragg grating inten-
sity reflectance. The scenario is that of Fig. 6 and the coupling
coefficient profile is given by Eq. (26). The inset illustrates the phase
� of the reflection coefficient r = |r|e�i for F = 0 and F = 5 π .

method can easily access every possible scenario, with poten-
tial applications in phase-reconstruction problems where for
a targeted optical spectrum (peak reflectance, bandwidth, and
time delay) one may have to determine the grating parameters
by trial-end-error. In such problems, an analytic solution is in
principle unachievable, particularly for strong gratings. This
topic is part of the wider family of inverse scattering problems
and optimization algorithms still attract scientific interest. The
methods proposed in [61,62], which utilized the Hilbert trans-
formation and were strictly based on causality and stability
conditions that relate the amplitude of the response function
to its phase, were found in [63] to significantly fail for realis-
tic imperfect gratings. Currently, the two dominant synthesis
techniques are the so-called genetic programming [64,65]
and layer peeling [66,67] algorithms. In the first, a certain
weighting mechanism is required and relies on a trial-end-
error method for error estimation, with the main drawbacks
being high complexity and long running times. In contrast, the

FIG. 9. Raised cosine apodized linearly chirped Bragg grating
intensity reflectance. The scenario is that of Fig. 6 and the coupling
coefficient profile is given by Eq. (27).

layer peeling algorithm (continuous or discrete) is based on
evaluating the grating strength as waves propagate. Although
it is by far the best technique proposed to date, in cases of
strong gratings the algorithm is severely affected by noise. To
deal with this, a regularization method was proposed in [68]
which reduces the grating strength by a factor of μ with the
price being a slight decrease in accuracy. The optimal value of
μ can be found by trial-and-error algorithms and we contend
that our method, which encodes all spectral information to a
single real variable, might prove useful.

C. Cascaded Bragg gratings with slightly dissimilar pitches

In [18] the problem of two cascaded Bragg gratings of
equal lengths L/2 and slightly dissimilar pitches �1 �= �2

was addressed via the piecewise transfer-matrix approach.
When cascading N gratings, there are three common pitfalls
to be avoided. First, the transfer matrix strongly depends on
the location l0 where the amplitudes of the electric fields are
presumed to be known. This implies that for A(l0) known,
the expression of Eq. (21) for z = z − l0 does not lead to the
correct spectrum and the formalism of Eq. (3) in [18] should
be adopted instead. Second, if the transformation leading to
Eq. (5) is preferred, as, e.g., in [9,10,12], the overall transfer
matrix is not just

S̃ = S̃N (zN−1, zN ) · · · S̃1(z0, z1),

but the intermediate terms

N j, j+1(z j ) = M j+1(z j ) · M−1
j (z j ),

where j = 1, . . . , N − 1 and

M j =
(

eiϕ j/2 0
0 e−iϕ j/2

)
, (28)

sandwiched between S̃ j+1(z j+1 − z j ) and S̃ j (z j − z j−1) must
be considered. Otherwise, no spectral hole will appear if the
relevant condition 1/�2 − 1/�1 = 1/L of Eq. (20) in [18] is
met. It is notable that the widely used CWEs description of
Eq. (5) fails to capture the induced spectral hole, given its
importance in sensing applications (see, e.g., [69,70]). Finally,
gratings delineated by a phase discontinuity should not be
modeled by phase matrices, similar to that of Eq. (28), but
by the phase term of Eq. (2). In other respects, it will result in
erroneous spectra, evident via simple phase-sensitive experi-
ments (cf. Fig. 9 in [18]).

To demonstrate the success of our method in hiding such
complexity, we compare the optical spectra of two cascaded
gratings of slightly dissimilar pitches accessed via the revised
transfer-matrix approach of [18] and via the Möbius transfor-
mation method. The compound grating has an overall transfer
matrix

Stotal = S2 · S1,

with elements given by

S11 = P2(L/2)P1(L/2) + Q2(L/2)Q∗
1(L/2),

S12 = P2(L/2)Q1(L/2) + Q2(L/2)P∗
1 (L/2),

where Pi and Qi (i = 1, 2) refer to a uniform grating segment
of spatial period �i and are calculated via the expressions
(19). Also, S21 = S∗

12 and S22 = S∗
11.
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FIG. 10. Optical spectrum of two cascaded Bragg gratings of equal lengths L/2 and slightly dissimilar pitches �1 �= �2 found via (a) the
transfer matrix method and (b) the Möbius transformation method. The parameters are �1 = 0.517 74 µm, �2 = 0.517 61 µm, n = 1.4486,
L = 3 × 10−3/n, and δn = 10−3. The scanning wavelength resolution is set to 10−3.

For the Möbius method, the only essential concern is the
ϕ term of Eq. (15) which is now a discontinuous piecewise
function, namely,

ϕ(z) =
{
δk1z, 0 � z � L/2
δk2z, L/2 < z � L

for δk1 �= δk2. The optical spectra of the two methods are
compared in Fig. 10 for �1 and �2 such that they satisfy the
spectral hole condition. Doubtlessly, both methods capture the
induced spectral hole at λ = n̄(�1 + �2) = 1499.8 nm. The
higher-order fluctuations are due to MATLAB’s ODE solvers
limitation when dealing with discontinuous functions which
nevertheless clearly provide the necessary accuracy.

VI. CONCLUSIONS

Inspired by group theory, we applied a Möbius transfor-
mation to the CWEs of Bragg gratings which established
a link between CWT and coupled oscillators and revealed
insights into the photonic band gap of arbitrarily complex re-
fractive index modulation scenarios. Restricting the action of

the transformation to the unit circle reduced the scalar CWEs
to a first-order nonlinear differential equation of a single real
variable. Exploring the geometrical properties of the transfor-
mation and numerically solving the equation led to algebraic
identification of both the amplitude and phase of all elements
of the transfer matrix. The method is fast, reliable, and in
principle applicable to any phenomenon governed by CWEs
with performance independent of the number of periods, being
inherently continuous. Additionally, it may provide a useful
tool for promptly reverse engineering Bragg gratings. We
believe that our method can simplify the analysis and design
of photonic structures governed by CWEs via an optics-based
version of Smith charts. A next step will be a generalization
to include optical absorption and modulated gain to examine
structurally chiral media and PT -symmetric Bragg gratings.
Further applications in globally coupled oscillators appear
within reach.
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