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Quantum master equations for a fast particle in a gas
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The propagation of a fast particle in a low-density gas at thermal equilibrium is studied in the context of
quantum mechanics. A quantum master equation in the Redfield form governing the reduced density matrix of
the particle is derived explicitly from first principles. Under some approximations, this equation reduces to the
linear Boltzmann equation. The issue of the positivity of the time evolution is also discussed by means of a
Lindblad form. The Born and Markov assumptions underlying these equations, as well as other approximations
regarding the bath correlation function, are discussed in detail. Furthermore, all these master equations are shown
to be equivalent with each other if the density matrix of the particle is diagonal in the momentum basis, or if the
collision rate is independent of the particle momentum.
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I. INTRODUCTION

How does a quantum particle propagate in a particle de-
tector? This question is not obvious from the perspective of
quantum mechanics because, in principle, it requires includ-
ing the detector and all its constituents in the wave function
of the system. However, the many degrees of freedom of
such a system make any direct solution of the Schrödinger
equation impossible in general. A convenient way to address
this issue is to resort to approximate evolution equations for
the reduced density matrix of the particle, often referred to as
quantum master equations [1–3]. Famous examples include
the Redfield equation and the Lindblad equation [1–3]. The
Redfield equation is a Markovian equation governing the
evolution of systems weakly coupled to an environment. It
was historically developed in the context of nuclear magnetic
resonance [4,5]. However, the Redfield equation is known to
violate the positivity of the reduced density matrix for certain
initial conditions [2,3]. This means that, in special circum-
stances, some eigenvalues of the density matrix, representing
probabilities, could be negative or larger than 1. This issue
is a very active topic in the literature [6–11], and is typically
addressed by resorting to a master equation in the Lindblad
form [12–14], at the cost of additional assumptions. Indeed,
as shown in the literature [12,13], the Lindblad equation is
the most general Markovian master equation preserving the
positivity, and even the complete positivity, of the reduced
density matrix.

Regarding the propagation of a particle in a gaseous envi-
ronment, a good candidate is the Boltzmann equation [15–19].
This essential equation of nonequilibrium statistical mechan-
ics is especially well suited to describe the kinetics of gases.
Attempts to generalize the nonlinear Boltzmann equation to
quantum gases date back to the 1920s with the histori-
cal papers by Nordheim [20] and Uehling and Uhlenbeck
[21]. These quantum Boltzmann equations include modifi-
cations to account for the Fermi-Dirac or the Bose-Einstein

statistics of the quantum gas [22]. However, they are nonlinear
in the distribution function, and actually even more nonlinear
than the original Boltzmann equation. They are beyond the
scope of the present paper, since the quantum statistics of gas
molecules may generally be neglected in particle detectors.

In general, quantum master equations can be used to study
decoherence in open systems. Decoherence is defined as the
decay over time of the off-diagonal elements of the reduced
density matrix of the system due to the entanglement with a
quantum environment [1–3,23]. In the context of collisional
decoherence [2,24–34], entanglement is caused by the colli-
sions between the particle of interest and the gas scatterers.
In practice, the resulting diagonalization of the density matrix
leads to the decrease of the visibility of interference patterns
[23,24,28,29]. Decoherence was originally proposed by Zeh
and Joos as a key ingredient to understand quantum mea-
surement (see Refs. [35–38]). Indeed, these processes share
several common characteristics, especially the fact that they
are both irreversible in most practical situations [2,3,23,38–
40]. Collisional decoherence is now a well-established the-
ory which is successfully confirmed by experiments on
matter-wave interferometry, even for very large molecules
[24,41–54]. However, this theory has never been applied to
the case of fast particles of a few MeVs which is considered
in the present paper.

The main purpose of this paper is to derive a quantum
master equation for the reduced density matrix of a fast parti-
cle propagating in a gas at thermal equilibrium. In particular,
this equation is desired to be consistent in the Wigner rep-
resentation with the linear Boltzmann equation. To this end,
the derivation will resort to the Redfield equation, and will
assume that the interaction potential between the particle and
the scatterers is invariant under spatial translations. In the
framework of the Lindblad equation, it is known that such
an assumption provides constraints on the structure of the
master equation [55–57]. A similar structure is found in this
paper but for the Redfield equation. Furthermore, it turns out
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that the results of this paper are consistent with the master
equations obtained in the literature on the quantum Brownian
motion of a slow particle [25–31]. This consistency suggests
that the assumption of a fast particle does not play a significant
role in the derivation. This is indeed the case, as shown in this
paper. The long-term goal of this project is to develop a fully
quantum model for the propagation of ionizing fast particles,
including alpha particles from typical radioactive sources, in
a gaseous detector such as a cloud chamber or an ionization
chamber [58–60].

This paper is organized as follows. Preliminary remarks
and assumptions introducing the quantum system are pre-
sented in Sec. II. In particular, the momentum states are
defined in Sec. II A, the full Hamiltonian of the system in
Sec. II B, and the thermal state of the gas in Sec. II C.
Section II D gives a reminder about binary collisions, espe-
cially Fermi’s golden rule and the cross section. Then, the
derivation of the quantum master equations is presented in
Sec. III, and is based on the Redfield equation introduced
in Sec. III A. The expansion of the collision terms ulti-
mately leads to the simplified Redfield equation in the end
of Sec. III B, which is the main result of this paper. The issue
of the nonpositivity of this equation is discussed in Sec. III C
with respect to an approximate Lindblad form. Finally, the
simplified Redfield equation is shown to reduce to the linear
Boltzmann equation in Sec. III D. Conclusions are drawn in
Sec. IV.

Throughout this paper, SI units are used. In particular, h is
the Planck constant, h̄ = h/2π is the reduced Planck constant,
and kB is the Boltzmann constant. All the calculations will be
performed in arbitrary dimension d ∈ {1, 2, 3, . . .}. Quantum
operators will be denoted as Â to distinguish them from the
associated eigenvalue A.

II. PRESENTATION OF THE MODEL

A. Momentum states

First, one assumes that all the particles in the system are
contained in the cubic region V of side L. Consequently, the
momentum eigenstates are defined for all r ∈ V as

〈r|k〉 = 1√
V

eik·r, (1)

where V = Ld is the volume of the region V . If periodic
boundary conditions are imposed on the wave function, then
the momentum is quantized to the cubic Bravais lattice:

k = 2π

L
(n1, n2, . . . , nd )ᵀ, (2)

where (n1, n2, . . . , nd ) ∈ Zd . Therefore, the orthogonality re-
lation reads

〈k|k′〉 =
∫
V

1

V
ei(k′−k)·rdr = δk−k′ , (3)

where δx denotes the single-argument Kronecker delta, which
is equal to 1 if x = 0, and zero otherwise. Furthermore, ac-
cording to Eq. (3), the norm of the momentum states is just
〈k|k〉 = 1. The momentum states |k〉 are thus dimensionless,
as it should be for a properly normalized quantum state. In

the limit of infinite quantization volume (V → ∞), the mo-
mentum spectrum becomes continuous and the orthogonality
relation (3) can be approximately expressed in terms of the
Dirac delta:

〈k|k′〉 	 (2π)d

V
δ(k − k′). (4)

This is only approximate because the limit V → ∞ cannot be
rigorously taken at this stage. Note that, in contrast to δ(x),
the square of δx is properly defined: δ2

x = δx. This is why the
discrete basis (1) will be preferred for the calculations.

This way of normalizing the momentum eigenstates pre-
vents possible infinities from occurring when evaluating
integrals [25,27]. This is also physically motivated by the fact
that plane waves are actually idealizations of wave packets
with finite spatial extension, especially when the particles are
confined in a sealed enclosure representing the gaseous detec-
tor. The confinement is crucial to properly define the density
of the gas n = N/V , but also to ensure that the collision rate
with the incident particle is finite. This is why the incident
particle is also assumed to be contained in the region V .

The resolution of identity resulting from the orthogonality
relation (3) reads

1̂ =
∑

k

|k〉〈k| 	 V

(2π)d

∫
Rd

|k〉〈k|dk. (5)

The sum in Eq. (5) implicitly runs over the wave vectors of
the cubic Bravais lattice (2). Except otherwise mentioned, all
the sums over the momentum in this paper will run over the
cubic Bravais lattice. Another corollary of Eq. (1) is the trace
over the momentum states:

Tr Â =
∑

k

〈k|Â|k〉 	 V

(2π)d

∫
Rd

〈k|Â|k〉dk. (6)

More generally, any sum over the discrete momentum basis
can be replaced in the continuum limit by an integral accord-
ing to the rule ∑

k

→
∫
Rd

V

(2π)d
dk. (7)

However, each factor V that will appear in this way will have
to be compensated by a V in the denominator in order to
regularize the limit V → ∞.

B. Hamiltonian and assumptions

One considers a model for a spinless quantum particle of
mass ma interacting with a gas composed of N mobile scatter-
ers of mass mb. In the nonrelativistic regime, the Hamiltonian
of the whole system reads

Ĥ = p̂2
a

2ma︸︷︷︸
Ĥa

+
N∑

i=1

p̂2
i

2mb︸ ︷︷ ︸
Ĥb

+
N∑

i=1

u(r̂ − x̂i )︸ ︷︷ ︸
Û

, (8)

where (r̂, p̂a ) are the position and the momentum of
the particle, and (x̂1, x̂2, . . . , x̂N ) and (p̂1, p̂2, . . . , p̂N ) are
the positions and the momenta of the scatterers, respec-
tively. The wave functions of both the particle and the
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scatterers are subject to the periodic boundary conditions
discussed in Sec. II A. This allows the use of the quantized
momentum states |k〉 defined in Eq. (1) and the subsequent
formalism.

Furthermore, the potential u(r) in Eq. (8) is supposed to be
a spherically symmetric bump function of range R such that

R 
 ς, (9)

where ς (sigma) denotes the mean distance between nearest-
neighboring scatterers defined as

ς =
(

V

N

) 1
d

. (10)

Note that the short-range constraint of Eq. (9) excludes
Coulomb interactions which nevertheless play an important
role in the propagation of fast charged particles in matter
[58–60].

In addition, the mean free path �s defined as
[3,16,19,58–64]

�s = 1

nσ
(11)

is assumed to be large enough compared to the particle wave-
length:

ka,0�s � 1. (12)

In Eq. (12), ka,0 = 2π/λa,0 denotes the initial wave number
of the particle. The condition (12) is generally referred to
in the literature as the weak scattering regime [62] or the
weak disorder regime [61]. This condition will be particularly
important in Sec. III B and in the Appendix.

The density matrices of the entire system, of the gas, and
of the particle will be denoted as ρ̂, ρ̂b, and ρ̂a, respectively. In
particular, the reduced density matrix of the incident particle
is given by

ρ̂a(t ) = Trbρ̂(t), (13)

where Trb denotes the partial trace over the states of the
scatterers. At every time t , the quantum state of the particle
is completely described by the density matrix ρ̂a(t ). At the
beginning (t = 0), the particle is assumed to be in the pure
momentum state ρ̂a(0) = |ka,0〉〈ka,0|. Under the effect of the
collisions between the particle and the scatterers, the partial
trace (13) is expected to decrease the purity of the density
matrix ρ̂a(t ). This process is known as the collisional deco-
herence [24–26,28,29,34], and is the focus of this paper.

Furthermore, having in mind a gaseous particle detector,
the particle of mass ma represents the incident ionizing radi-
ation. This particle is thus significantly more energetic than
the scatterers at the beginning of the interaction. In this way,
the particle slows down under the effect of collisions until
it reaches thermal equilibrium with the gas. According to
Eq. (8), the only way for the particle to lose its energy is
through the recoil of the scatterers. This recoil is supposed
to approximate more realistic energy-loss processes such as
the excitation or the ionization of the gas molecules.

Finally, the Hamiltonian (8) neglects the possible inter-
actions between the scatterers of the gas themselves. This
assumption is reasonable for an ideal dilute gas.

C. Thermal state of the gas

Regarding the gas of scatterers, it is characterized by the
thermal de Broglie wavelength λT, and equivalently by the
thermal wave number kT. They are respectively defined as
[18,65]

λT = h√
2πmbkBT

and kT = 1

h̄

√
2πmbkBT , (14)

where T is the absolute temperature. One assumes that the
thermal wavelength is much smaller than the mean interscat-
terer distance

λT 
 ς, (15)

so that the gas may be described at equilibrium by the classical
Maxwell-Boltzmann statistics, instead of quantum statistics
such as the Bose-Einstein or the Fermi-Dirac statistics. Al-
though quantum master equations may also be derived without
this assumption [22], it is perfectly reasonable in the frame-
work of gaseous particle detectors where condition (15) is
generally fulfilled. Therefore, one assumes that the gas is at
thermal equilibrium and that its density matrix is given by

ρ̂b = 1

Z
e−βĤb , (16)

where Z = Z (β ) is the partition function and β = 1/kBT is
the inverse temperature. Given the equilibrium assumption
(16), the gas will often be referred to as the bath in which the
particle is immersed. In fact, this assumption is not necessary
for the development of the quantum master equations made in
Sec. III. It mainly helps to interpret the partial trace (13), as
one will see soon.

The partition function of Eq. (16) is given by

Z = Tr(e−βĤb ) =
∑

k1,...,kN

e− h̄2

2mbkBT

∑N
i=1 k2

i . (17)

With the factor (17), the density matrix (16) is normalized
according to Trbρ̂b = 1. In principle, the overcount of indis-
tinguishable quantum states under the exchange of particles
should be corrected by the permutation factor N!. However,
this correction is here omitted because it is compensated
nearly everywhere and thus has no consequence on the sought
quantum master equations. Using the continuum approxima-
tion (6) of the sum over k1, . . . , kN and the thermal wave
number (14), the partition function (17) becomes

Z =
(

L

2π

∫
R

e−πk2/k2
T dk

)Nd

=
(

L

2π
kT

)Nd

=
(

V

λd
T

)N

.

(18)

Note that the ratio V/λd
T can be interpreted as the number of

ways that a gas particle the quantum state of which extends
over the effective volume λd

T can occupy the volume V . The
power N comes from the N independent particles to be placed
in the volume V , knowing that the particles are independent
of each other. As mentioned above, the permutation factor N!
has been omitted in Eq. (18).

The density matrix (16) has the particularity of being
diagonal and factorizable in the momentum basis since
[ρ̂b, p̂i] = 0 ∀i but also [p̂i, p̂ j] = 0 ∀i, j. Therefore, one can
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write

〈k1, . . . , kN |ρ̂b|k1, . . . , kN 〉 = ρb(k1, k2, . . . , kN )

=
N∏

i=1

ρb(ki ),
(19)

where ρb(kb) denotes the Maxwell-Boltzmann distribution for
a generic bath particle of momentum kb. This distribution is
given by

ρb(kb) = λd
T

V
e−πk2

b/k2
T . (20)

The distribution (20) is normalized according to∑
kb

ρb(kb) = 1. (21)

It is also useful to look at the position-basis representation of
the density matrix (16). In contrast to the momentum repre-
sentation, the position representation is not diagonal, but can
nevertheless be factorized as follows:

〈x1, . . . , xN |ρ̂b|x̃1, . . . , x̃N 〉 =
N∏

i=1

ρb(xi, x̃i ). (22)

The single-particle density matrix, ρb(x, x̃), in Eq. (22) is
given by the Fourier transform

ρb(x, x̃) = 1

(2π)d

∫
Rd

ρb(kb)eikb·(x−x̃)dkb

= 1

V
e− 1

4π
k2

T(x−x̃)2
.

(23)

The density matrix (23) is symmetric with respect to the ma-
trix transpose x ↔ x̃, and is equal to 1/V along the diagonal
(x = x̃). It also quickly vanishes for large separation distance
‖x − x̃‖ � λT. The characteristic decay length is known as
the coherence length and can be defined as [66,67]


(x̃)2 =
∫
Rd ‖x − x̃‖2|ρb(x, x̃)|2dx∫

Rd |ρb(x, x̃)|2dx
. (24)

In the case of the thermal density matrix (23), one finds the
constant value


2 = d

4π
λ2

T. (25)

This shows that the coherence length of 1 of the gas particle
is of the order of the thermal wavelength λT. Therefore, the
quantum-wave nature of the gas particle is only meaningful
for distances smaller than λT. This fact is also supported by
the remark below Eq. (18) that the quantum state of the gas
particle occupies the effective volume λd

T in the medium.
Last but not least, it is illuminating to calculate the partial

trace of the potential Û = ∑N
i=1 u(r̂ − x̂i ) over the bath, in

order to get a better understanding of the partial trace (13).
Using the facts that Û is diagonal in the position basis and
that the density matrix can be factorized with Eq. (22), one
gets

Trb
(
ρ̂bÛ

) = N
∫
V

ρb(x, x)u(r̂ − x)dx. (26)

In the case of a thermal state, the scatterer density is
ρb(x, x) = 1/V according to Eq. (23). Therefore, the average
(26) is just

Trb
(
ρ̂bÛ

) = N

V

∫
V

u(r̂ − x)dx = N〈u〉, (27)

which is practically independent of the position r̂ of the parti-
cle for short-range potentials.

One notices that the integrals in Eqs. (26) and (27) can
be interpreted as the average potential generated by the scat-
terers. More generally, this means that the partial trace over
the bath states essentially reduces to an average over the
scatterer positions. This is an important remark, because it
shows that the density matrix of the particle of interest, which
is given by the partial trace (13), is completely analogous to
the average of the density matrix over the random configu-
rations of the scatterers considered in the framework of the
Lorentz gas model in Refs. [63,64]. However, in contrast to
those papers, the average is here physically motivated by the
quantum uncertainty over the scatterer positions in the gas.
Indeed, from the physical point of view, the partial trace (13)
makes more sense than an abstract statistical average which
does not necessarily represent the actual situation in a given
random realization of the positions (x1, x2, . . . , xN ).

It should be noted that this physical interpretation of the
configurational average is only valid for gases in which the
disorder is of dynamical origin. This would not be the case for
random impurities in solids at low temperature, for instance,
because this kind of disorder is quenched due to the absence
of free motion. In this latter case, the configurational average
is less physically motivated than in gases.

D. Binary collision and cross section

Before going to the derivation of the quantum master equa-
tions, let us take a closer look at the binary collision between
the particle and a single scatterer. To this end, the general
Hamiltonian (8) must be restricted to N = 1:

Ĥ = p̂2
a

2ma
+ p̂2

b

2mb
+ u(r̂ − x̂), (28)

where (r̂, p̂a ) are the position and the momentum of the
particle, and (x̂, p̂b) are the position and the momentum of
the scatterer. The effect of the potential term in Eq. (28) can
be determined at the leading order of perturbation theory by
treating Ĥ0 = Ĥa + Ĥb as the unperturbed Hamiltonian and
Û = u(r̂ − x̂) as the ideally small perturbation. The result of
this calculation is the well-known Fermi’s golden rule which
yields the rate of the transition |α〉 → |β〉 between eigenstates
of the unperturbed Hamiltonian [68–72]:

w(β|α) = 2π

h̄

∣∣〈β|Û |α〉∣∣2
δ(Eβ − Eα ). (29)

In Eq. (29), Eα and Eβ are the energy eigenvalues associated
with the eigenstates |α〉 and |β〉, respectively. One can write

Ĥ0|α〉 = Eα|α〉 and Ĥ0|β〉 = Eβ |β〉. (30)

At higher order of perturbation theory, Fermi’s golden rule
(29) still holds formally by replacing the potential Û by
the transition operator T̂ (Eα ) defined by the Dyson series
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[61,62,73–75]

T̂ (E ) = Û + Û Ĝ0(E )Û + Û Ĝ0(E )Û Ĝ0(E )Û + · · · , (31)

where Ĝ0(E ) = (E − Ĥ0)−1 is the Green’s operator asso-
ciated with the unperturbed Hamiltonian. If the states |β〉
constitute a quasicontinuum basis, such as the momentum
basis, then the Dirac delta in Eq. (29) can be eliminated by
integration over |β〉, as one will see soon.

When applied to the binary collision governed by the
Hamiltonian (28), Fermi’s golden rule (29) leads to the dif-
ferential cross section, which is a key ingredient of the master
equations, especially of the Boltzmann equation. Although it
is a relatively standard result of scattering theory, this deriva-
tion is presented here because closely related calculations are
invoked in Sec. III for the many-scatterer Hamiltonian (8).
This follows from the fact that collisions involving different
scatterers are independent. According to Eq. (29), the transi-
tion rate of the collision process (ka, kb) → (k′

a, k′
b) is given

by

w(k′
a, k′

b|ka, kb) = 2π

h̄
|〈k′

a, k′
b|Û |ka, kb〉|2δ(D), (32)

where D is a compact notation for the energy difference:

D = Ek′
a
+ Ek′

b
− Eka − Ekb . (33)

The energies in Eq. (33) are related to the momenta by

Eka = h̄2k2
a

2ma
and Ekb = h̄2k2

b
2mb

, and similarly for Ek′
a

and Ek′
b
.

One considers separately the matrix element and the energy-
conservation Dirac delta in Eq. (32). First, to calculate the
matrix element of the potential in Eq. (32), one uses the
Fourier expansion of the potential

Û = u(r̂ − x̂) = 1

V

∑
q

ū(q)eiq·(r̂−x̂), (34)

where ū(q) is defined as

ū(q) =
∫
V

u(r)e−iq·rdr. (35)

Note that the Fourier decomposition (34) is discrete due to
the finite quantization volume V . From Eq. (34), the matrix
element of Û in the momentum basis can be evaluated using
the fundamental property

eiq·r̂|ka〉 = |ka + q〉. (36)

This property is derived by projecting both sides of Eq. (36)
onto the position basis, and simply means that eiq·r̂ adds up the
momentum q to the particle momentum. Of course, a similar
operator, eiq·x̂, also exists for the scatterer. The momentum
translation operator eiq·r̂ defined in Eq. (36) will play a key
role in Sec. III. Using Eqs. (34) and (36), one gets

〈k′
a, k′

b|Û |ka, kb〉 = 1

V
ū(k′

a − ka )δk′
a+k′

b−ka−kb
. (37)

In Eq. (37), it is clear that the Kronecker delta expresses
the conservation of the total momentum and is due to the
translational invariance of the potential Û . Eliminating one of
the momenta with the delta, the transition rate (32) becomes

wq(ka, kb) = 2π

h̄

1

V 2
|ū(q)|2δ(Dq), (38)

with

Dq = Eka+q + Ekb−q − Eka − Ekb . (39)

In Eq. (38), the notation q stands for the momentum trans-
ferred to particle “a” by the collision with “b.” The energy
difference can also be expressed in the center-of-mass frame
as

Dq = h̄2

2m
[(k + q)2 − k2], (40)

where

m = mamb

ma + mb
(41)

is the reduced mass of the binary system, and

k = mbka − makb

ma + mb
(42)

is the relative momentum between the colliding particles.
This momentum k also represents the momentum of particle
“a” in the center-of-mass frame. Since Dq = 0 due to energy
conservation, Eq. (40) implies that the transferred momentum
q is constrained to a sphere of center −k and of radius k =
‖k‖. Accordingly, the final relative momentum k′ = k + q is
constrained to a sphere centered at the origin and of radius
k, and can thus be written as k′ = k� with ‖�‖ = 1. This
means that, in the center-of-mass frame, the particle momen-
tum changes only in direction but not in magnitude.

To get rid of the Dirac delta in Eq. (38), one considers
that the containment volume V is so large that the momentum
spectrum in Eq. (2) is quasicontinuous. The collision rate then
becomes a differential element defined on the continuum as

dw(k′|k) = V

(2π)d
w(k′|k)dk′, (43)

where the differential element dk′ represents the volume
(2π)d/V occupied by the final momentum state, and w(k′|k)
is given by

w(k′|k) = 2π

h̄

1

V 2
|ū(k′ − k)|2δ(Ek′ − Ek ), (44)

with Ek = h̄2k2

2m and similarly for Ek′ . In this way, the rate
(44) is equal to wq(ka, kb) in Eq. (38). Expressing the volume
element in spherical coordinates with dk′ = k′d−1dk′d�, di-
viding each side by d�, and integrating over k′, one gets the
angular collision rate:

dw

d�
(�|k) = V

(2π)d

∫ ∞

0
w(k′�|k)k′d−1dk′. (45)

Furthermore, one introduces the differential cross section
which is defined as the ratio between the differential collision
rate and the magnitude of the relative flux J = 1

V (va − vb) of
incident particles before the collision [73,74]:

dσ (�|k) = dw(�|k)
1
V ‖va − vb‖

, (46)

where the velocities are related to the momenta by va = h̄ka
ma

and vb = h̄kb
mb

. One can also use the fact that the relative ve-
locity between the particle and the scatterer is related to the
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relative momentum by

va − vb = h̄k
m

, (47)

where m is the reduced mass defined in Eq. (41). One gets
from Eq. (45)

dσ

d�
(�|k) = V 2

(2π)d

m

h̄k

∫ ∞

0
w(k′�|k)k′d−1dk′. (48)

Therefore, evaluating the integral (48) with the collision rate
(44) leads to the differential cross section

dσ

d�
(�|k) = π

2

kd−3

(2π)d

∣∣∣∣2m

h̄2 ū(k� − k)

∣∣∣∣2

. (49)

In dimension 3 (d = 3), Eq. (49) reduces to the known expres-
sion for the cross section at the leading order of perturbation
theory [73–75]. Finally, from Eq. (49), one can determine the
total cross section in the standard way [73–75]:

σ (k) =
∮
Sd

dσ

d�
(�|k)d�, (50)

where Sd represents the unit sphere in the space Rd .

III. DERIVATIONS OF MASTER EQUATIONS

In this section, the derivations of several quantum master
equations for the density matrix of particle “a” are presented
as well as the relations between them. Assumptions focus on
the case of an incident particle faster than the scatterers of the
gas.

The derivation proceeds in four steps: first, one derives the
Redfield equation, which is a general Markovian master equa-
tion obtained at next-to-leading order of perturbation theory
[2–5,29]. To this end, the procedure of Ref. [7] is followed.
Second, one exploits the Fourier expansion (34) to expand the
collision terms in the formalism of quantum operators and to
highlight the bath correlation function. Under the assumption
of the weak scattering regime, this step leads to a simplified
Redfield equation. Third, a reduction of the Redfield equa-
tion to the Lindblad form is presented and discussed. Finally,
the Wigner transform is applied to restore the spatial depen-
dence of the master equation and reveal a linear Boltzmann
equation. These steps turn out particularly useful to stress the
underlying assumptions behind the master equations.

A. Redfield equation

The starting point is the quantum Liouville equation gov-
erning the time evolution of the density matrix of the full
system in the Schrödinger picture:

∂ ρ̂

∂t
= Lρ̂(t ), (51)

where L is the Liouvillian superoperator [2,7,14] defined as

LX̂ = 1

ih̄
[Ĥ , X̂ ], (52)

where Ĥ is the general Hamiltonian (8) and X̂ means any
operator, but especially the density matrix ρ̂(t ). Analogously,

one defines the following Liouvillians,

LaX̂ = 1

ih̄
[Ĥa, X̂ ],

LbX̂ = 1

ih̄
[Ĥb, X̂ ],

L0 = La + Lb, (53)

and the potential superoperator

LUX̂ = 1

ih̄
[Û , X̂ ]. (54)

In Eq. (51), the Liouvillian superoperator L can also be de-
composed into a free part and an interaction part:

∂ ρ̂

∂t
= (L0 + LU)ρ̂(t ). (55)

Treating LU as a perturbation of L0, one introduces the
interaction-picture density matrix ρ̂I(t ) as

ρ̂(t ) = eL0t ρ̂I(t ). (56)

Inserting Eq. (56) into the Liouville equation (55) gives us

∂ ρ̂I

∂t
= LI(t )ρ̂I(t ), (57)

where the interaction Liouvillian is given by

LI(t ) = e−L0tLUeL0t . (58)

Note that LI(t ) explicitly depends on time. The superoperator
LI(t ) in Eq. (58) can be expressed more directly in terms of a
single commutator. Indeed, one has

LI(t )X̂ = 1

ih̄
[ÛI(t ), X̂ ], (59)

where UI(t ) denotes the interaction-picture potential defined
as

UI(t ) = e+ i
h̄ Ĥ0tÛ e− i

h̄ Ĥ0t . (60)

The Liouville equation (57) can be integrated in time to get

ρ̂I(t ) = ρ̂(0) +
∫ t

0
dt ′LI(t

′)ρ̂I(t
′), (61)

where ρ̂(0) = ρ̂I(0) is the initial condition at t = 0. Substi-
tuting Eq. (61) back into the right-hand side of the Liouville
equation (57) leads to

∂ ρ̂I

∂t
= LI(t )ρ̂(0) +

∫ t

0
dt ′LI(t )LI(t

′)ρ̂I(t
′). (62)

Note that Eq. (62) is still exact as it does not rely on a
perturbative approximation.

If the particle is supposed to be independent of the envi-
ronment at the beginning, then the initial state factorizes as

ρ̂(0) = ρ̂a(0) ⊗ ρ̂b, (63)

where the initial bath state ρ̂b is taken to be the thermal
equilibrium state (16). The outer product symbol “⊗” will
be omitted in the following calculations. In principle, the
factorization property (63) cannot be preserved at all time for
ρ̂(t ) because of the quick entanglement with the scatterers due
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to the collisions. At later times (t > 0), the density matrix of
the particle should be given by the partial trace over the bath:

ρ̂a,I(t ) = Trbρ̂I(t ). (64)

Note that this definition applies to the interaction picture, but
is also consistent with definition (13) in the standard picture.
Under the partial trace, Eq. (62) becomes

∂ ρ̂a,I

∂t
= Trb[LI(t )ρ̂(0)] +

∫ t

0
dt ′Trb[LI(t )LI(t

′)ρ̂I(t
′)].

(65)

Let us consider the first term in the right-hand side of Eq. (65).
According to Eq. (58), this term reads

Trb[LI(t )ρ̂(0)] = Trb[e−L0tLUeL0t ρ̂a(0)ρ̂b]. (66)

Expression (66) can be simplified using several properties.
The first one is

eL0t = eLat eLbt , (67)

and comes from the commutation relation [Ĥa, Ĥb] = 0. Note
that the quantities related to particle “a,” such as eLat and ρ̂a,
can get out of the partial trace Trb. The second one is the time
invariance of the thermal equilibrium state:

eLbt ρ̂b = ρ̂b. (68)

More generally, property (68) also applies to any stationary
state of the form ρ̂b = f (Ĥb), which is not necessarily an
equilibrium state. The third one is due to the cyclic prop-
erty of the trace, and the unitarity of the mapping eLbt X̂ =
e− i

h̄ Ĥbt X̂ e+ i
h̄ Ĥbt . Whatever the operator X̂ , it reads

Trb(eLbt X̂ ) = TrbX̂ . (69)

Note that the cyclic property of Trb only concerns the op-
erators associated with the bath. Using Eqs. (67)–(69), the
first-order term (66) reduces to

Trb[LI(t )ρ̂(0)] = e−Lat Trb(LUρ̂b)eLat ρ̂a(0). (70)

Expression (70) can be rewritten more explicitly using
Eq. (54). One gets

Trb[LI(t )ρ̂(0)] = e−Lat 1

ih̄
[Trb(ρ̂bÛ ), eLat ρ̂a(0)]. (71)

According to Eq. (27), the term Trb(ρ̂bÛ ) is equal to the
average potential N〈u〉. Since the medium is uniform and
subject to periodic boundary conditions, the average potential
〈u〉 is a constant independent from the position. Therefore, the
commutator in Eq. (71) identically vanishes:

Trb[LI(t )ρ̂(0)] = 0. (72)

In other words, the first-order term in Eq. (65) does not con-
tribute to the time evolution of the density matrix. It only
changes the zero energy reference, but without affecting the
equation of motion. From Eq. (65), the relevant equation is
thus

∂ ρ̂a,I

∂t
=

∫ t

0
dt ′Trb[LI(t )LI(t

′)ρ̂I(t
′)]. (73)

Using Eqs. (58), (67), and (69), the integral term in Eq. (73)
reads

∂ ρ̂a,I

∂t
= e−Lat

∫ t

0
dt ′Trb[LUeL0(t−t ′ )LUeL0t ′

ρ̂I(t
′)]. (74)

Now, one considers a first approximation to close Eq. (74) for
ρ̂a(t ). The density matrix in the right-hand side of Eq. (74) is
assumed to be reasonably approached by

ρ̂I(t
′) = ρ̂I(t ) + O(Û ), (75)

for all times t ′ ∈ [0, t]. Note that the approximation (75) can
be understood as a perturbative approximation at zeroth order
of Û . The fact that ρ̂I(t ′) is replaced by ρ̂I(t ) in this approxi-
mation, instead of ρ̂I(0) for instance, is motivated by the fast
expected decay in t ′ of the integral (74) around the current
time t . This expectation is closely related to the Markov as-
sumption which is further discussed in Sec. III B for a fast
incident particle. Using the fact that ρ̂I(t ) = e−L0t ρ̂(t ), ac-
cording to Eq. (56), and considering the change of integration
variable τ = t − t ′ [7], one can write from Eq. (74)

∂ ρ̂a,I

∂t
= e−Lat

∫ t

0
dτTrb[LUeL0τLUe−L0τ ρ̂(t )]+O(Û 3). (76)

The density matrix ρ̂(t ) in the integral of Eq. (76) can be
further approximated at zeroth order of Û with

ρ̂(t ) = ρ̂a(t )ρ̂b + O(Û ), (77)

where ρ̂b is the thermal equilibrium state (16). This expression
derives from the initial condition (63) and Eq. (75), but it does
not mean that the particle and the bath can be factorized at any
time because the correction term O(Û ) always couples the two
subsystems. Inserting Eq. (77) into Eq. (76) yields

∂ ρ̂a,I

∂t
= e−Lat

∫ t

0
dτK(τ )ρ̂a(t ) + O(Û 3), (78)

where K(τ ) is the correlation superoperator, which acts only
on ρ̂a(t ) and is defined as [7]

K(τ ) = Trb(LUeL0τLUe−L0τ ρ̂b). (79)

Finally, the derivative in the left-hand side of Eq. (76)
can also be related to the Schrödinger-picture state at time t
according to

ρ̂a(t ) = Trbρ̂(t ) = Trb[eL0t ρ̂I(t )] = eLat ρ̂a,I(t ). (80)

This series of equalities comes from Eqs. (13), (56), (67), (69),
and (64) in that order. According to Eq. (80), one has

∂ ρ̂a,I

∂t
= e−Lat

(
∂ ρ̂a

∂t
− Laρ̂a(t )

)
. (81)

Substituting Eq. (81) into Eq. (78), one finds [2–5,7,29]

∂ ρ̂a

∂t
= Laρ̂a(t ) +

∫ t

0
dτK(τ )ρ̂a (t ) + O(Û 3). (82)

Note that Eq. (82) is based solely on the perturbative ap-
proximation, but not yet on the Markovian approximation.
Furthermore, if the particle dynamics is considered on a much
longer time than the characteristic decay time of K(τ ), known
as the bath correlation time, then it is justified to take the limit∫ t

0 → ∫ ∞
0 in Eq. (82) [2–5,7,9–11,14]. Therefore, the particle
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dynamics will be resolved only on a time scale much longer
than the bath correlation time. In this way, one obtains the
Redfield equation [2–5]

∂ ρ̂a

∂t
= Laρ̂a(t ) +

∫ ∞

0
dτK(τ )ρ̂a (t ) + O(Û 3). (83)

This equation is Markovian, in contrast to Eq. (82).
Regarding the other fundamental properties of Eq. (83),

one can check that it preserves the trace of the density matrix
through ∂t Traρ̂a = 0, as a consequence of TraLaρ̂a = 0 and
TrLUX̂ = 0. Therefore, the Redfield equation conserves the
total probability:

Traρ̂a(t ) = 1 ∀t > 0. (84)

Moreover, it also preserves the Hermiticity of the density ma-
trix: ρ̂†

a (t ) = ρ̂a(t ). However, it is not guaranteed to preserve
the positivity of ρ̂a(t ) [2,3].

B. Collision terms

In this subsection, one expands the collision terms of the
Redfield equation (83). According to Eqs. (54) and (58), this
expression is actually a double commutator with the potential

∂ ρ̂a

∂t
= Laρ̂a + 1

(ih̄)2

∫ ∞

0
dτTrb[Û , [ÛI(−τ ), ρ̂aρ̂b]], (85)

where ÛI(t ) is the interaction-picture potential defined in
Eq. (60). Even more explicitly, the double commutator in
Eq. (85) contains four terms which can be compactly written
as

∂ ρ̂a

∂t
= Laρ̂a + ĈG + Ĉ†

G − ĈL − Ĉ†
L, (86)

with the terms

ĈG = 1

h̄2

∫ ∞

0
dτTrb[ÛI(−τ )ρ̂aρ̂bÛ ] (87)

and

ĈL = 1

h̄2

∫ ∞

0
dτTrb[ÛÛI(−τ )ρ̂aρ̂b]. (88)

These terms can be physically interpreted based on the sign of
their contribution: the plus sign means a gain term, and the mi-
nus sign means a loss term, hence the notation. As discussed
later in Sec. III D, the two terms of each type combine to give
the gain or loss term in the classical Boltzmann equation.

1. Gain term

First, let us take a closer look at the gain term (87). In
order to expand this term, one approach is to use the Fourier
decomposition of the full particle-scatterer potential

Û =
N∑

i=1

u(r̂ − x̂i ) = 1

V

N∑
i=1

∑
q

ū(q)eiq·(r̂−x̂i ), (89)

where ū(q) is defined according to Eq. (35). Expression (89) if
very handy because the imaginary exponential eiq·(r̂−x̂i ) can be
factored into the system and the bath operators. This factoriza-
tion is allowed by the commutation [r̂, x̂i] = 0. Substituting

Eq. (89) into Eq. (87), one gets

ĈG =
∫ ∞

0

dτ

h̄2V 2

N∑
i, j

∑
q,q̃

ū(q)ū∗(q̃)

× Trb
(
e− i

h̄ Ĥ0τ eiq·(r̂−x̂i )e
i
h̄ Ĥ0τ ρ̂aρ̂be−iq̃·(r̂−x̂ j )

)
.

(90)

It is possible to simplify Eq. (90) without projecting every-
thing onto the eigenbasis of the free Hamiltonian Ĥ0. One
option is to commute the first two exponentials in the trace
using the momentum translation property

e−iq·(r̂−x̂i ) f (k̂a, k̂i )e
iq·(r̂−x̂i ) = f (k̂a + q, k̂i − q),

(91)

for any function f (x, y). Property (91) solely derives from
Eq. (36). According to Eq. (91), one can write

e− i
h̄ Ĥ0τ eiq·(r̂−x̂i ) = eiq·(r̂−x̂i )e− i

h̄ Ĥ ′
0τ , (92)

where Ĥ ′
0 is the modified Hamiltonian of the form

Ĥ ′
0 = Ek̂a+q + Ek̂i−q +

N∑
j( �=i)

Ek̂ j
. (93)

Equation (93) represents the system energy after the collision
process (ka, ki ) → (ka + q, ki − q) with the ith scatterer.
Furthermore, it is convenient to define the Hamiltonian dif-
ference

D̂q,i = Ĥ ′
0 − Ĥ0 = Ek̂a+q + Ek̂i−q − Ek̂a

− Ek̂i
, (94)

in the same way as Eq. (39). Note, however, that D̂q,i is a
quantum operator. With this notation, Eq. (90) reads

ĈG =
∫ ∞

0

dτ

h̄2V 2

N∑
i, j

∑
q,q̃

ū(q)ū∗(q̃)eiq·r̂

× Trb
(
eiq̃·x̂ j e−iq·x̂i e− i

h̄ D̂q,iτ ρ̂b
)
ρ̂ae−iq̃·r̂, (95)

where one has used the cyclicity of the bath operators
within the trace Trb. Expression (95) can be simplified fur-
ther by means of a useful additional property. Letting Â =∑

k Ak|k〉〈k| be an operator diagonal in the momentum basis,
the trace of the translated operator eiq·r̂Â will be zero, except
for q = 0. In other words, one has the property

Tr(eiq·r̂Â) = δqTr Â. (96)

Applied to the trace of Eq. (95) with Â = e− i
h̄ D̂q,iτ ρ̂b playing

the role of the diagonal operator in the momentum basis,
Eq. (96) becomes

Trb(eiq̃·x̂ j e−iq·x̂i Â) = [δq−q̃δi j + δqδq̃(1 − δi j )]TrbÂ. (97)

Expression (97) translates the following statement: if i = j,
then the momenta q and q̃ must be equal to each other so
as to eliminate the exponentials; otherwise, if i �= j, then q
and q̃ must both be equal to zero. Obviously, the second case
corresponds to a trivial collision with no actual change of the
system state. Although these terms i �= j are not zero, they can
be omitted from the calculation, because they will be elim-
inated anyway by the corresponding opposite contributions
from the loss terms in Eq. (86). After simplifying Eq. (95)
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with Eq. (97), one last step comes from the observation that
each term of given i is identical. Therefore, one can replace the
sum over i by a factor N , and rename ki to kb for convenience
since it now corresponds to a generic bath particle. Finally,
one obtains

ĈG =
∑

q

eiq·r̂
(∫ ∞

0
dτ K̂q(τ )

)
ρ̂ae−iq·r̂, (98)

where K̂q(τ ) is the system-bath interaction operator defined as

K̂q(τ ) = N

h̄2V 2
|ū(q)|2Trb(e− i

h̄ D̂qτ ρ̂b), (99)

in order to gather all the dependencies on the time τ . The
Hamiltonian difference operator in Eq. (99) reads

D̂q = Ek̂a+q + Ek̂b−q − Ek̂a
− Ek̂b

. (100)

It should be noted that K̂q(τ ) in Eq. (99) is actually a non-
Hermitian operator which does not commute with ρ̂a or eiq·r̂
in general.

2. System-bath interaction operator

In this subsection, one shows that the operator (99) de-
creases fast enough in τ for the time integral in Eq. (98) to
converge. This operator can be written as

K̂q(τ ) = N

h̄2V 2
|ū(q)|2e− i

h̄ (Ek̂a+q−Ek̂a )τ κq(τ ), (101)

where κq(τ ) is the bath correlation function given by the trace
over the bath in Eq. (99),

κq(τ ) =
∑

kb

e− i
h̄ (Ekb−q−Ekb )τ ρb(kb), (102)

and the single-particle bath distribution ρb(kb) introduced in
Eq. (20). In the continuum limit (V → ∞), one gets in terms
of the velocity vb = h̄kb

mb

κq(τ ) = e−i h̄q2

2mb
τ

∫
Rd

eivb·qτ fb(vb)dvb, (103)

where fb(vb) is the usual Maxwell-Boltzmann velocity dis-
tribution normalized to unity. The result of the integral in
Eq. (103) is

κq(τ ) = e−i h̄q2

2mb
τ e− q2τ2

2βmb . (104)

This shows that Eq. (101) decays with τ and that the time
integral in Eq. (98) is meaningful, as it should be. The charac-
teristic time of this decay is known as the bath correlation time
and is defined in this paper for the given momentum transfer
q as

τb =
√

βmb

q2
=

√
d

vbq
, (105)

where v2
b = 〈v2

b〉 = d/(βmb) is the mean-square velocity of
the scatterers. On the one hand, one notices that the time τb

has no upper bound because the transferred momentum q can
be arbitrarily small. On the other hand, τb possesses a rough

lower bound given by

τb � R

vb
, (106)

where R is the range of the potential u(r). Indeed, the corre-
lation function Eq. (101) is weighted by the Fourier transform
ū(q), which, for well-behaved potentials, is expected to decay
at momenta larger than 1/R. Furthermore, the lower bound
R/vb can be compared to the duration of a single collision
between the incident particle and a scatterer: τa ∝ R/va. If the
incident particle is fast (va � vb), then Eq. (106) implies that
τb � τa. If, in addition, there is no longer time scale relevant
to the collision than τa, then one can consider τb as arbitrarily
large and safely take the limit τb → ∞ in the calculations.

This result contrasts with the assumption of infinitely small
τb, which would be needed to consider the bath as delta
correlated and to motivate the reduction to a Lindblad equa-
tion [7,11,29,76]. According to Eq. (105), the assumption
τb → 0 would hold only if the bath velocities are very large
compared to the incident particle (vb � va). However, assum-
ing a delta-correlated bath in the present calculation would
lead to a flawed equation continuously increasing the particle
energy with no friction and no thermalization. Therefore, this
approach is not followed here.

Now, one has to account for the time integral in the Red-
field equation (98). The integral over τ will be given by [77]∫ ∞

0
e± i

h̄ D̂qτ dτ = lim
ε→0+

±ih̄

D̂q ± iε

= π h̄δ(D̂q) ± ih̄ p.v.
1

D̂q
, (107)

where p.v. denotes the Cauchy principal value. It should be
noted that Eq. (107) is very general and can be used to inte-
grate Eq. (98) regardless of the particle velocity. Therefore,
the rest of the derivation is not restricted to a fast particle.
According to Eq. (107), the time integral in Eq. (98) splits
into two terms: ∫ ∞

0
dτ K̂q(τ ) = 1

2
Ŵq − iŶq. (108)

The operator Ŵq contains the Dirac delta of Eq. (107), and Ŷq
contains the principal value. These operators respectively read

Ŵq = Wq(k̂a ) = 2π

h̄

n

V
|ū(q)|2Trb[δ(D̂q)ρ̂b] (109)

and

Ŷq = Yq(k̂a ) = n

h̄V
|ū(q)|2Trb

(
p.v.

1

D̂q
ρ̂b

)
, (110)

where n = N/V is the number of scatterers per unit volume.
Note that Ŵq and Ŷq are Hermitian and have the units of
an inverse time. Moreover, Ŵq can be interpreted as a rate
operator for the collision ka → ka + q and is defined this way
to be consistent with the binary collision rate (38) up to a
factor N . In particular, Ŵq can be expressed directly in terms
of Eq. (38) as follows:

Ŵq = NTrb[wq(k̂a, k̂b)ρ̂b]. (111)
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With the notations (109) and (110), the gain term (98) be-
comes

ĈG =
∑

q

eiq·r̂
(

1

2
Ŵq − iŶq

)
ρ̂ae−iq·r̂. (112)

Finally, one can also split the gain term notation ĈG into the
rate and principal value parts for easier manipulation:

ĈG = R̂G − iP̂G, (113)

with the notations

R̂G = 1

2

∑
q

eiq·r̂Ŵqρ̂ae−iq·r̂ (114)

and

P̂G =
∑

q

eiq·r̂Ŷqρ̂ae−iq·r̂. (115)

3. Simplified Redfield equation

The calculation of the loss term (88) follows a very similar
reasoning to that of ĈG. One finds the result

ĈL =
∑

q

(
1

2
Ŵq − iŶq

)
ρ̂a, (116)

where the operators are given by Eqs. (109) and (110). As the
gain term, one can split ĈL into the rate and principal value
parts

ĈL = R̂L − iP̂L, (117)

with

R̂L = 1

2

∑
q

Ŵqρ̂a (118)

and

P̂L =
∑

q

Ŷqρ̂a. (119)

Now, all the collision terms can be grouped into Eq. (86) to
get

∂ ρ̂a

∂t
=Laρ̂a + R̂G + R̂†

G − R̂L − R̂†
L

− i(P̂G − P̂†
G − P̂L + P̂†

L ). (120)

The principal value terms in the second line of Eq. (120) can
be interpreted as coherent quantum contributions. It is shown
in the Appendix that these principal value terms are negligible
in the weak scattering regime (ka�s � 1). Therefore, it is
reasonable to omit them at this point, and only retain the rate
terms in the first line of Eq. (120).

Finally, from Eqs. (114), (118), and (120), one obtains the
sought quantum master equation

∂ ρ̂a

∂t
=Laρ̂a + 1

2

∑
q

(eiq·r̂{Ŵq, ρ̂a}e−iq·r̂ − {Ŵq, ρ̂a}),

(121)

where {Â, B̂} = ÂB̂ + B̂Â denotes the anticommutator. Equa-
tion (121) will also be referred to as the simplified Redfield
equation because it neglects the principal value terms. Due to

this approximation, it is not equivalent to the original Redfield
equation (83). In the limit of infinite quantization volume
(V → ∞), Eq. (121) can be expressed on the continuum spec-
trum of momenta using the replacement rule (7). However,
this step is deferred to Sec. III D.

C. Comment on positivity

The Redfield equation (121) is not guaranteed to preserve
the positivity of the particle density matrix ρ̂a, since it is not
of the Lindblad form [2,3,12–14]. The reason is that the rate
operator Ŵq in the gain term of Eq. (121) acts on one side of
ρ̂a or the other, but not on both sides at the same time as in the
Lindblad equation. As a consequence, some of the eigenvalues
of ρ̂a can possibly reach negative values. This can be consid-
ered as a problem or not depending on the physical context
[2,3,6–11]. In this section, it is shown by means of an approx-
imate Lindblad form that this issue does not compromise the
validity of Eq. (121) in the framework of fast particles. Indeed,
it is possible to obtain an approximate Lindblad equation from
Eq. (121) by factoring the rate operator as

Ŵq = Â†
qÂq = ÂqÂ†

q, (122)

for some non-Hermitian operator Âq. In general, this operator
can be expressed as

Âq =
√

Wq(k̂a )eiφq (k̂a ), (123)

where φq is a real function which possibly depends on ka. It
should be noted that Âq is not unique because the complex
phase φq cannot be fixed in this way. More generally, instead
of Eq. (122), one could consider the following factorization
of the rate operator:

Ŵq = Trb[Aq(k̂a, k̂b)†Aq(k̂a, k̂b)ρ̂b]. (124)

Doing so, a different scattering amplitude can be attributed
to each collision process (ka, kb) → (ka + q, kb − q). In
particular, the factorization (124) would be needed to relate
Eq. (121) to the quantum Boltzmann equation in Lindblad
form of Ref. [26]. The downside of Eq. (124) is that it
requires one to factor the Dirac delta of energy conservation
in Eq. (109). However, the square root of a delta cannot be
properly defined. This problem is closely related to the delta
squaring issue encountered in the collisional decoherence
literature [24–26,29,34,37,78]. This cannot be addressed by
the approach presented in this paper. This is why Eq. (124)
will not be used here. On the other hand, this issue can be
avoided in general with the use of Eq. (122), because it
amounts to evaluating the square root of a smooth distribution
of q averaged over the thermal bath ρ̂b. This does not pose
the mathematical problem encountered with the factorization
(124). However, as mentioned before, the complex phase of
Âq in Eq. (123) is arbitrary and hence the resulting Lindblad
equation will not be uniquely determined.

Using Eq. (122), the first anticommutator in Eq. (121)
can be written as a completely positive map plus some
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correction terms:

{Ŵq, ρ̂a}
2

= Âqρ̂aÂ†
q + Âq[Â†

q, ρ̂a] − [Âq, ρ̂a]Â†
q

2
.

(125)

Therefore, if one defines the quantum jump operator

L̂q = eiq·r̂Âq, (126)

then the Redfield equation (121) can be rewritten exactly as

∂ ρ̂a

∂t
= Laρ̂a +

∑
q

(
L̂qρ̂aL̂†

q − 1

2
{L̂†

qL̂q, ρ̂a}
)

+ Î,

(127)

where Î contains the correction coming from Eq. (125), that
is,

Î =
∑

q

eiq·r̂ Âq[Â†
q, ρ̂a] − [Âq, ρ̂a]Â†

q

2
e−iq·r̂. (128)

If the correction Î is neglected, then the master equation (127)
is of the Lindblad form, ensuring the completely positive evo-
lution of ρ̂a. In order to interpret the nature of the correction Î
in the context of a fast incident particle, it is useful to assume
that the deviation of the particle momentum around some
central momentum ka,0 is small:

k̂a = ka,0 + δk̂a with ‖δk̂a‖ 
 ‖ka,0‖. (129)

Therefore, the amplitude operator Aq(k̂a ) can be expanded at
the first order of δk̂a. One has

Aq(k̂a ) = Aq(ka,0) + δk̂a · ∇ka Aq(ka,0) + O
(
δk̂

2
a

)
.

(130)

Substituting Eq. (130) into Eq. (128) leads to the result

Î =
∑

q

eiq·r̂
(

−iWq(ka,0)
∂φq

∂ka,i

(ka,0)[δk̂a,i, ρ̂a]

+ Si j

2
[δk̂a,i, [δk̂a, j, ρ̂a]]

+ i
Ai j

2
{δk̂a,i, [δk̂a, j, ρ̂a]}

)
e−iq·r̂, (131)

where the summations over the repeated indices i and j have
been implied. The quantities Si j and Ai j in Eq. (131) are
respectively the symmetric and antisymmetric tensors defined
as

Si j = 1

2

(
∂Aq

∂ka,i

∂A∗
q

∂ka, j

+ ∂A∗
q

∂ka,i

∂Aq

∂ka, j

)
ka,0

,

Ai j = 1

2i

(
∂Aq

∂ka,i

∂A∗
q

∂ka, j

− ∂A∗
q

∂ka,i

∂Aq

∂ka, j

)
ka,0

. (132)

The three terms of Eq. (131) can be interpreted respectively
as a positional drift term, a positional diffusion term, and a
momentum-dependent drift term. In particular, a term of the
form [δk̂a,i, [δk̂a, j, ρ̂a]], responsible for the particle diffusion

in position space, is known in the literature to restore the com-
plete positivity of the Caldeira-Leggett master equation [2,28–
31,34].

All the terms in Eq. (131) rely on gradients of Aq(ka ) with
respect to ka, and involve commutators [δk̂a, ρ̂a]. Therefore,
the correction Î can be neglected in two circumstances: either
Aq(ka ) slowly varies with ka, or ρ̂a is nearly diagonal in the
momentum basis. On the one hand, the former cannot be
guaranteed in general because the complex phase of Aq is
not known. On the other hand, the latter is reasonable if the
incident wave packet is much larger than its own wavelength.
As this condition can be fulfilled for ionizing fast particles,
given their small wavelength of subatomic scale, this implies
that the positivity of ρ̂a is approximately preserved by the
Redfield equation (121).

Finally, if the incident wave is a plane wave, then one
has [δk̂a, ρ̂a] = 0 and equivalently [k̂a, ρ̂a] = 0. Furthermore,
since the medium is uniform, ρ̂a remains diagonal in the
momentum basis. In that special case, the evolution prescribed
by the Redfield equation (121) is guaranteed to be completely
positive.

D. Linear Boltzmann equation

In this section, it is shown that the Redfield equation (121)
reduces to a linear Boltzmann equation, and thus describes the
transport of particle “a” within the gas. For this purpose, the
space dependence is restored through the Wigner transform
which is defined as the Fourier transform of the off-diagonal
part of the density matrix [65,79–81]. When the density matrix
is represented in momentum basis, the Wigner transform reads

f (r, k) = W (ρ̂) =
∫
Rd

〈
k + s

2

∣∣∣ρ̂∣∣∣k − s
2

〉 eis·r

(2π)d
ds, (133)

where f (r, k) is known as the Wigner function. This is a real
function of the position r and the momentum k. This function
is also referred to as a quasiprobability distribution because of
its similarity with the classical phase-space distribution. How-
ever, in contrast to a usual probability distribution, f (r, k)
may be negative, typically in the presence of quantum inter-
ferences.

The Wigner transform can be directly applied to the Red-
field equation (121). In particular, the free propagation term
becomes

W (Laρ̂a ) = −va · ∇r fa(r, ka ), (134)

where va = h̄ka
ma

is the particle velocity. Therefore, the Wigner
transform of Eq. (121) reads

∂ fa

∂t
(r, ka ) + va · ∇r fa(r, ka ) = W

(
R̂
)
, (135)

where R̂ gathers all the collision terms in Eq. (121) which have
to be transformed. First, let us consider the loss term for a
given value of q:

W
(

{Ŵq, ρ̂a}
2

)

=
∫
Rd

〈
ka + s

2

∣∣∣ {Wq(k̂a ), ρ̂a}
2

∣∣∣ka − s
2

〉 eis·r

(2π)d
ds. (136)
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More explicitly, using the notation ρa(x, y) = 〈x|ρ̂a|y〉 for the
density matrix, Eq. (136) reads

W
(

{Ŵq, ρ̂a}
2

)
=

∫
Rd

Wq
(
ka + s

2

) + Wq
(
ka − s

2

)
2

× ρa

(
ka + s

2
, ka − s

2

)
eis·r

(2π)d
ds. (137)

In general, the integral over s in Eq. (137) cannot be evalu-
ated and expressed in terms of fa(r, ka ), as in the classical
Boltzmann equation. For this purpose, one has to make the
additional assumption that the density matrix ρa is close to
being diagonal in momentum basis. If the medium is uniform
and if the envelope of the wave function does not vary too
quickly in space, then this assumption is justified. An im-
portant consequence of this assumption is that the relevant
values of ‖s‖ are ‖s‖ 
 ‖ka‖. A complementary assumption
is that the collision rate Wq(ka ) little depends on the particle
momentum ka. This assumption is reasonable if there is no
scattering resonance. Therefore, the rate factor in Eq. (137)
can be expanded in series of s around s = 0 as follows:

Wq
(
ka + s

2

) + Wq
(
ka − s

2

)
2

= Wq(ka ) +
d∑

i, j

sis j

8

∂2Wq(ka )

∂ka,i∂ka, j
+ · · · . (138)

The zeroth-order term in Eq. (138) does no longer depend
on s, and thus one gets the Wigner function fa(r, ka ). The
second-order term quadratically depends on s, leading to a
Hessian matrix with respect to the position∫

Rd

sis jρa

(
ka + s

2
, ka − s

2

)
eis·r

(2π)d
ds = − ∂2

∂ri∂r j
fa(r, ka ).

(139)

Combining Eqs. (138) and (139) into Eq. (137) yields

W
(

{Ŵq, ρ̂a}
2

)
=Wq(ka ) fa(r, ka )

− 1

8

d∑
i, j

∂2Wq(ka )

∂ka,i∂ka, j

∂2

∂ri∂r j
fa(r, ka ) + · · · .

(140)

Following the same approach, the Wigner transform of the
gain term in Eq. (121) reads

W
(

eiq·r̂ {Ŵq, ρ̂a}
2

e−iq·r̂
)

= Wq(ka − q) fa(r, ka − q)

− 1

8

d∑
i, j

∂2Wq(ka − q)

∂ka,i∂ka, j

∂2

∂ri∂r j
fa(r, ka − q) + · · · .

(141)

This is the same expression as Eq. (140) but replacing ka by
ka − q according to the unitary transformation (91). In the
following calculations, the second lines of Eqs. (140) and

(141) will be neglected, because it can be made arbitrarily
small for a sufficiently large wave packet, and is exactly zero
for an incident plane wave. In addition, these lines are also
negligible if the total collision rate Wq(ka ) does not depend
on ka. Remarkably, the same assumptions have already been
exploited in Sec. III C to derive the Lindblad form (127).
Therefore, under either of these assumptions, the linear Boltz-
mann equation obtained here also approximately describes a
completely positive evolution for the density matrix.

Using Eqs. (140) and (141), the Wigner transform of the
collision terms reads

W
(
R̂
) =

∑
q

Wq(ka − q) fa(r, ka − q)

−
∑

q

Wq(ka ) fa(r, ka ). (142)

The total collision rate Wq(ka ) for the collision ka → ka + q
can be related to the binary collision rate wq(ka, kb) by
Eq. (111) which is reformulated here:

Wq(ka ) = N
∑

kb

wq(ka, kb)ρb(kb). (143)

As a reminder, wq(ka, kb) represents the rate of the collision
(ka, kb) → (ka + q, kb − q). In Eq. (143), ρb(kb) is normal-
ized to unity as

∑
kb

ρb(kb) = 1. Inserting Eq. (143) into
Eq. (142) leads to

W
(
R̂
) =

∑
kb,q

Nwq(ka − q, kb) fa(r, ka − q)ρb(kb)

−
∑
kb,q

Nwq(ka, kb) fa(r, ka )ρb(kb). (144)

These two sums can be combined by tweaking the first one a
bit. In this regard, one successively performs the two substitu-
tions q → −q and kb → kb − q in the first sum of Eq. (144).
The result is

W
(
R̂
) =

∑
kb,q

Nw−q(ka + q, kb − q) fa(r, ka + q)ρb(kb − q)

−
∑
kb,q

Nwq(ka, kb) fa(r, ka )ρb(kb). (145)

The interest of these substitutions is that the following prop-
erty of the binary collision rate can be used:

w−q(ka + q, kb − q) = wq(ka, kb). (146)

Property (146) can be derived from definition (38), and is
a consequence of the time-reversal symmetry of the micro-
scopic collision. Then, the two collision terms in Eq. (145)
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can be gathered as follows:

W
(
R̂
) =

∑
kb,q

Nwq(ka, kb)

× [ fa(r, k′
a )ρb(k′

b) − fa(r, ka )ρb(kb)], (147)

where the notations are k′
a = ka + q and k′

b = kb − q, as in
Sec. II D. Now, one takes the limit of infinite quantization
volume (V → ∞) so that the sums over the momenta turn
into integrals. Using the differential collision rate (43) and
integrating over k′ = k + q instead of q, one gets

W
(
R̂
) =

∫
Rd

dkb

∫
Rd

dk′ N
dw

dk′ (k′|k)

× [ fa(r, k′
a ) fb(k′

b) − fa(r, ka ) fb(kb)], (148)

where the notations implicitly became k′
a = ka + (k′ − k)

and k′
b = kb − (k′ − k). Note that, from Eq. (147) to

Eq. (148), ρb(kb) has been replaced by fb(kb), which is nor-
malized according to

∫
Rd fb(kb)dkb = 1. Then, splitting the

radial and angular parts of the integral (148) over k′ with
k′ = k′�, integrating over k′, and using Eq. (46) to make
appear the center-of-mass differential cross section, one finds

W
(
R̂
) =

∫
Rd

dkb

∮
Sd

d� nv
dσ

d�
(�|k)

× [ fa(r, k′
a ) fb(k′

b) − fa(r, ka ) fb(kb)], (149)

where v = ‖va − vb‖ is the relative velocity of the colliding
particles, which is directly proportional to the relative momen-
tum k according to Eq. (47). The notations are now

k′
a = ka + (k� − k) = ma

M
K + k�,

k′
b = kb − (k� − k) = mb

M
K − k�, (150)

where K = ka + kb is the total momentum of the colliding
particles, and M = ma + mb is their total mass. Finally, sub-
stituting Eq. (149) into Eq. (135) leads to the traditional form
of the Boltzmann equation in the absence of external forces
[15–19]:

∂ fa

∂t
+ va · ∇r fa =

∫
dkbd� nv

dσ

d�
(�|k)

× [ fa(r, k′
a ) fb(k′

b) − fa(r, ka ) fb(kb)].
(151)

It may look surprising that Eq. (151) has the same form as
the classical linear Boltzmann equation. However, it should
be noted that fa(r, ka ) is still a Wigner function able to de-
scribe distributions of quantum nature. In particular, nothing
prevents fa(r, ka ) from being locally negative due to quantum
interferences. In some way, one could say that the Boltzmann
equation may also be thought of as a quantum master equa-
tion.

IV. CONCLUSIONS

In this paper, several quantum master equations have been
derived explicitly to describe the propagation of a fast quan-
tum particle in a gas at thermal equilibrium, namely, the
simplified Redfield equation (121), the Lindblad form (127),

and the Boltzmann equation (151). The starting point of the
derivation was the quantum Liouville equation (51) of the
full multiparticle problem. The Hamiltonian of the system,
given in Eq. (8), neglects the interaction between individual
scatterers.

First, the Redfield equation (83) was derived using pertur-
bation theory on the interaction potential at next-to-leading
order and the Markov assumption. Then, the collision terms
of the Redfield equation were expanded using the Fourier
decomposition (89) of the potential. In the process, the
system-bath interaction operator K̂q(τ ) defined in Eq. (99)
was shown to decay to zero in time, hence ensuring the con-
vergence of its time integral. In the case of a fast particle,
the time scale of this decay turns out to be much longer
than the collision time. This shows that the assumption of a
delta-correlated bath, which could possibly be made for a very
slow particle (va 
 vb) and which would lead to a Lindblad
equation, is not relevant for a fast particle. Despite this, the
time integral of K̂q(τ ) can be evaluated regardless of the
particle velocity, leading to energy conservation Dirac deltas
and principal values. In the Appendix, the principal values
were shown to be negligible in the weak scattering regime
(ka,0�s � 1). This approximation led to the simplified Red-
field equation (121) which is the central result of this paper.
The best feature of Eq. (121) is its four-term structure, made
of two adjoint gain terms and two adjoint loss terms, which
directly comes from Eq. (62), the exact equation of the full
problem. Therefore, due to this similarity, one should expect
Eq. (121) to reliably approach the populations and coherences
of the full problem governed by the quantum Liouville equa-
tion (51).

On the other hand, the four-term structure of Eq. (121)
prevents it from being of the Lindblad form and thus from
guaranteeing the completely positive evolution of the density
matrix in all circumstances. It was shown in Sec. III C that
Eq. (121) can be cast in the Lindblad form (127) by factoriza-
tion of the rate operator Wq(k̂a ). The reduction to a Lindblad
equation is exact in the sense Î = 0 only when ρ̂a is diagonal
in the momentum basis, or when Wq(ka ) does not depend
on ka. In particular, the first condition seems reasonable in
the framework of ionizing fast particles as their wavelength
is typically much smaller than the spatial extent of the wave
packet. This supports the idea that Eq. (121) approximately
preserves the complete positivity of the density matrix of fast
particles.

Last but not least, the linear Boltzmann equation (151)
was derived in Sec. III D from the simplified Redfield equa-
tion. This derivation highlights the consistency between the
simplified Redfield equation (121) and the Boltzmann equa-
tion regarding the transport of the particle. In addition, this
derivation is based on the same assumptions as for the
Lindblad form (127), namely, either ρ̂a is diagonal in the
momentum basis or Wq(ka ) is independent of ka. This con-
cordance shows that the evolution predicted by the linear
Boltzmann equation is also completely positive in first ap-
proximation. Furthermore, Eq. (151) has the same form as
the classical Boltzmann equation, but it governs the evolution
of the Wigner function of the particle, which is a quantum
distribution. Therefore, the Boltzmann equation can also be
considered as a different kind of quantum master equation for
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the propagation of a particle in a gas, beside the Redfield and
Lindblad equations.

In the future, it would be useful to study the differences of
predictions between the master equations derived in this paper
and the quantum Liouville equation of the full multiparticle
problem. One important issue concerns the spatial diffusion
induced by the noncommutation of the rate operator Ŵq and
the density matrix ρ̂a. This effect is expected to be significant
for wave packets of small spatial extent compared to their
central wavelength. In this paper, terms contributing to spatial
diffusion have been highlighted in the Redfield equation (121)
and the Lindblad equation (127) with Î = 0, but seem ab-
sent from the Boltzmann equation (151). Such terms have
long been conjectured in the collisional decoherence literature
[2,3,28–32,34] to ensure the completely positive time evolu-
tion of the density matrix. However, they have never been the
subject of a precise comparison with the predictions of the
quantum Liouville equation of the full problem, so that their
physical significance is still an open question today.

Finally, in a later paper, I plan to study the properties of the
Redfield equation (121) in more detail, especially the friction,
the deflection, and the decoherence of a fast particle in a gas.
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APPENDIX: PRINCIPAL VALUE TERMS

In this Appendix, one estimates the total contribution of the
four principal value terms which emerged in Sec. III B from
the time integral

∫ ∞
0 dτ in the Redfield equation. In particular,

it is proved that this contribution is negligible in the weak
scattering regime, that is, when the mean free path is much
larger than the wavelength (k�s � 1). The total contribution
is given by the last bracket of Eq. (120), that is,

P̂ = (P̂G − P̂†
G) − (P̂L − P̂†

L ). (A1)

According to Eqs. (115) and (119), one can write

P̂ =
∑

q

eiq·r̂[Ŷq, ρ̂a]e−iq·r̂ − [Ŷq, ρ̂a]. (A2)

In addition, the unitary operators e±iq·r̂ can be applied directly
in the commutator:

P̂ =
∑

q

[eiq·r̂Ŷqe−iq·r̂, eiq·r̂ρ̂ae−iq·r̂] − [Ŷq, ρ̂a]. (A3)

In order to get an estimate of Eq. (A3), one considers the
following rough approximations for the density matrices:

eiq·r̂ρ̂ae−iq·r̂ ≈ ρ̂a,

eiq·r̂ρ̂be−iq·r̂ ≈ ρ̂b. (A4)

In principle, these approximations require that q is much
smaller than the inverse coherence length 
−1 defined in
Eq. (24) for both the particle and the scatterers. Under the
first approximation of Eq. (A4), Eq. (A3) can be written as
the commutator

P̂ = [�̂, ρ̂a], (A5)

where the operator �̂ is defined as

�̂ =
∑

q

eiq·r̂Ŷqe−iq·r̂ − Ŷq. (A6)

Furthermore, under the second approximation of Eq. (A4),
one finds the nontrivial approximate property

eiq·r̂Ŷqe−iq·r̂ ≈ −Ŷ−q, (A7)

which comes from definition (110) and the facts that

eiq·(r̂−x̂b ) 1

Ek̂a+q + Ek̂b−q − Ek̂a
− Ek̂b

e−iq·(r̂−x̂b )

= 1

Ek̂a
+ Ek̂b

− Ek̂a−q − Ek̂b+q
, (A8)

and that |ū(q)|2 = |ū(−q)|2. If one uses the change of variable
q → −q under the summation symbol, then Eq. (A6) reduces
to

�̂ = −2
∑

q

Ŷq. (A9)

Using Eq. (110) and the notation 〈X̂ 〉b = Trb(ρ̂bX̂ ) for the
average over the bath states, one gets

�̂ = − 2n

h̄V

∑
q

|ū(q)|2
〈

p.v.
1

D̂q

〉
b

. (A10)

The sum over q can be replaced by a sum over the final
momentum by means of k′ = k + q. One writes

�̂ = − 2n

h̄V

2m

h̄2

∑
k′

〈
|ū(k′ − k̂)|2 p.v.

1

k′2 − k̂
2

〉
b

, (A11)

where k̂ = (mbk̂a − mak̂b)/(ma + mb) is the relative momen-
tum operator according to Eq. (42). In the continuum limit
(V → ∞) and splitting the integral into the radial and angular
parts, Eq. (A11) reads

�̂ =− 2n

h̄(2π)d

2m

h̄2

∫ ∞

0
dk′ k′d−1

∮
Sd

d�

×
〈
|ū(k′� − k̂)|2 p.v.

1

k′2 − k̂2

〉
b

. (A12)

To evaluate these integrals, it is convenient to generalize the
differential cross section initially defined in Eq. (49) to colli-
sions off the energy shell:

dσ

d�
(k′�|k) = π

2

k′d−3

(2π)d

∣∣∣∣2m

h̄2 ū(k′� − k)

∣∣∣∣2

. (A13)

In this way, the angular part of the integral in Eq. (A12)
reduces to the off-shell total cross section:

σ (k′|k) =
∮
Sd

dσ

d�
(k′�|k)d�. (A14)
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Therefore, Eq. (A12) simplifies into

�̂ = −2n

h̄

2

π

h̄2

2m
p.v.

∫ ∞

0
dk′

〈
k′2

k′2 − k̂2
σ (k′|k̂)

〉
b

. (A15)

The remaining integral in Eq. (A15) cannot be found in closed
form in the general case, because of the dependence on an
unknown cross section σ (k′|k̂). Since one is seeking for an
order of magnitude for �̂, one supposes that the integral in
Eq. (A15) is of the order of k̂σ (k̂), where σ (k) is the on-shell
total cross section from Eq. (50). Indeed, one expects σ (k′|k̂)
in Eq. (A15) to have a peak around k′ = k̂, and to quickly
vanish when k′ strongly deviates from k̂. Therefore, one finds
the approximation

�̂ = −2n

h̄

h̄2

2m
C

〈
k̂σ (k̂)

〉
b, (A16)

where C is a dimensionless prefactor. As this paper focuses on
the case of fast particles, one assumes that the incident particle
travels much faster than the scatterers (va � vb). Therefore,
the relative velocity, v̂ = ‖v̂a − v̂b‖ = h̄k̂/m, can be approxi-
mated by v̂a = h̄k̂a/ma, and one can write from Eq. (A16)

�̂ = −2n

h̄

h̄2

2ma
Cσ0k̂a, (A17)

where σ0 = 〈σ (k̂)〉b. Note that, strictly speaking, the total
cross section σ0 still depends on k̂a. However, this dependency
is neglected so that σ0 is treated as a constant. One last approx-
imation is that the deviation of the particle momentum around
some central momentum is small:

k̂a = ka,0�0 + δk̂a with ‖δk̂a‖ 
 ka,0. (A18)

In Eq. (A18), ka,0�0 denotes the average momentum of
the incident particle. This approximation is consistent with
the high-velocity assumption for the particle. According to
Eq. (A18), any power γ ∈ R of the momentum k̂a can be

approximated as follows:

k̂γ
a = kγ

a,0 + γ kγ−1
a,0 �0 · δk̂a + O

(
δk̂

2
a

)
. (A19)

In particular, expansion (A19) can be used for γ = 1 in
Eq. (A17). The commutator in Eq. (A5) then reads

P̂ = [�̂, ρ̂a] = −2n

h̄

h̄2

2ma
Cσ0�0 · [δk̂a, ρ̂a]. (A20)

Expression (A20) turns out to be closely similar to the free
propagation term [Ĥa, ρ̂a] in the quantum Liouville equation.
This similarity becomes even more apparent if one uses the
approximation (A19) for γ = 2 to approach the Hamiltonian

Ĥa = h̄2 k̂2
a

2ma
. The result is

[Ĥa, ρ̂a] = h̄2

2ma
2ka,0�0 · [δk̂a, ρ̂a]. (A21)

In fact, Eq. (A21) is proportional to Eq. (A20) according to

P̂ = [�̂, ρ̂a] = −1

h̄
C

nσ0

ka,0
[Ĥa, ρ̂a]. (A22)

Therefore, the contribution of the principal value terms to the
Redfield equation (120) can be approached by

∂ ρ̂a

∂t
=

(
1 − C

nσ0

ka,0

)
Laρ̂a + R̂. (A23)

This result shows that the principal value terms affect the
propagation velocity of the particle by a correction of the order
of the dimensionless factor Cnσ0/ka,0. This correction is small
under the condition

nσ0

ka,0

 1, (A24)

which is equivalent to the weak scattering condition (12). In
this regime, the principal value terms are negligible compared
to the free motion of the particle. Since condition (A24) is
typically fulfilled for particles of a few MeVs in a gas, the ap-
proximation made near Eqs. (120) and (121) is well justified.
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