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The Clauser-Horne-Shimony-Holt (CHSH) inequalities are the most famous examples of Bell inequalities.
Cabello, Severini, and Winter came up with a graph approach to noncontextuality inequalities, which connects
some graph-theoretic concepts to quantum and classical correlations. For example, the theta body of the
exclusivity graph can be associated with the set of correlations achieved by quantum theory. Following the
Cabello-Severini-Winter (CSW) approach, one may think that the theta body of the CHSH graph TH(GCHSH) is
equal to the quantum set of the CHSH Bell inequality QCHSH, but is this really true? All assumptions about the
CHSH inequalities come from Bell scenarios, while the CSW approach only demands the exclusivity structure
of a noncontextuality (NC) scenario. To deal with the extra structure related to the presence of different players
in a Bell scenario like the CHSH one, the colored-graph approach was introduced. Does it make any difference
to think about the CHSH scenario as a Bell one or a more general NC scenario? The Bell CHSH inequality is
represented by a bicolored graph G and the NC CHSH inequality by a simple graph G, which is the shadow of the
colored graph G. In general, we have that the theta body of the colored graph θc(G) is a subset of the theta body
of its shadow graph TH(G) in the same way that the Lovász number, which corresponds to the quantum bound,
of the simple graph ϑ (G) is greater than or equal to the Lovász number of the colored graph ϑc(G). In the case of
the CHSH inequality, we have that ϑ (G) = ϑc(G). Does this accident also hold for the corresponding quantum
sets? Is it true that TH(G) = θc(G), which would mean that every correlation reached by quantum theory applied
to the CHSH NC scenario could also be obtained at the in principle more restrictive CHSH Bell scenario? In
this paper our answer to such a question is negative. We show that θc(G) � TH(G) and therefore that there are
quantum correlations which cannot be obtained under Bell restrictions.
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I. INTRODUCTION

Bell showed that quantum theory cannot be explained with
either noncontextual hidden variables or local hidden vari-
ables [1,2]. One way to show the impossibility of describing
quantum theory with hidden-variable theories is with Bell
inequalities or the more general noncontextuality (NC) in-
equalities. The most popular example of a Bell inequality
is the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality
[3]. The simplest noncontextuality inequality which is not a
Bell inequality is the Klyachko-Can-Binicioğlu-Shumovsky
inequality [4]. Pentagonal Bell inequalities [5] were later
introduced, showing that the graph structure could also sup-
port Bell inequalities. Pentagonal Bell inequalities [5] give
good examples of different Bell inequalities sharing the same
exclusivity graph, but smaller quantum bounds, with a NC
inequality.

Bell scenarios consist of several parties. The parties share
a common state and perform local measurements on their
parts of the system. The measurements of different parties are
compatible, while alternative (incompatible) measurements
are available to each part. Specific Bell experiments prescribe
the number of parties, the number of measurements among

which they can choose, and the number of elements in the
outcome set. Bell inequalities have the restriction that com-
patible measurements are performed on spatially separated
subsystems. For general noncontextuality inequalities we do
not necessarily need the notion of parties. Instead we deal
with contexts: sets of jointly compatible measurements. This
measurements can be performed in a single laboratory or by
different parties in spacelike separated laboratories. A Bell or
a NC inequality can be written as a positive linear combination
S of probabilities of events and a number α which is an
upper bound to classically reachable values within the given
inequality (details in Sec. II).

The exclusivity relations of events can be represented by
exclusivity graphs. The relation between NC inequalities and
graph-theoretic concepts applied to exclusivity graphs was
first noted by Cabello, Severini, and Winter [6,7]. In exclusiv-
ity graphs, events get represented by vertices and exclusivity
between events by edges. This graph encodes the central
ingredients of the NC inequality and graph theory brings
clarity to many optimization processes; for example, while
the independence number of the graph gives the classical
bound, the Lovász number is closely related to the quantum
bound [8–10].
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In multipartite scenarios, i.e., scenarios where locality
plays a role, we can further differentiate among exclusivities
originated in different parties and even multiple exclusivities,
coming jointly from different parts. To include this differ-
entiation into the notion of exclusivity graphs, Rabelo et al.
extended the approach to edge-colored graphs, where colors
are used to represent the parts [11]. In a colored exclusivity
graph, two vertices are connected by an edge of a specific
color if that exclusivity comes from that specific part. Multiple
edges become justifiable when two events are exclusive for
more than one part. The multicolored exclusivity graph rep-
resents exclusivity between events and also points out which
parts make them exclusive. This approach, first introduced
to deal with the extra restrictions imposed by Bell scenario,
describes the correlation structure of multipartite (but not nec-
essarily Bell) inequalities more precisely. A more restrictive
graph invariant, the colored Lovász number, can capture the
extra requirements imposed by locality, allowing for tight
bounds where the usual Lovász number could only be an
upper bound. When parties are involved, the simple graph
coming from the Cabello-Severini-Winter (CSW) approach is
called the shadow of the colored graph.

There are examples, such as the pentagonal Bell inequal-
ities, where the colored graph approach leads to a tight
upper bound of the maximum quantum value, while the sim-
ple graph does not. Nevertheless, in the case of the CHSH
inequality, the so far analyzed properties of the colored
and simple graphs are identical. This raises the question of
whether for the CHSH inequality it is possible that the simple
graph already encodes all the restrictions. By comparing the
quantum sets of the simple and colored graph, we show that
the colored graph is indeed a more restrictive description. In
other words, there are behaviors which can be achieved within
quantum theory under CHSH NC restrictions, but not under
Bell restrictions. To do so, we construct a family of graphs
which have intermediate quantum sets. The graphs of this
family are subgraphs of the colored CHSH graph which all
have the same shadow. Since the quantum set of a graph is
convex, we explore it by looking at the maximal value that a
linear function can take on this quantum set for various linear
functions.

This paper confirms that for the CHSH structure, the col-
ored graph is not only a more precise but also a more strict
description of Bell conditions. Since the argument originated
from a CHSH family of colored graphs with the same shadow,
this adds to the understanding of the specific effect of adding
or removing multiple edges from a colored graph. A related
question was addressed in Ref. [12] for different quantum sets.

We start in Sec. II by showing how to associate with each
Bell or NC inequality a (colored) graph and how a (colored)
graph can be associated with classical and quantum sets of
allowed behaviors. Then, in Sec. III we apply these graph
approaches to the CHSH inequality. In Sec. IV we introduce
the family of graphs which later on we will show to have
quantum sets that are supersets of the colored CHSH graph
and subsets of the simple shadow graph. Therefore, their
quantum sets are not equal and the colored graph approach
is indeed a better description of the Bell CHSH inequality.
We also discuss how slight changes of the graph changes the
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FIG. 1. Exclusivity graph G = (V, E ) of the CHSH inequality.
The events appearing in Eq. (6) are represented by vertices and edges
represent their exclusivity structure.

corresponding quantum sets. We provide concluding remarks
in Sec. V.

II. GRAPH APPROACH

Bell and noncontextuality inequalities can be represented
as graphs. Here we will first introduce the CSW (simple)
graph approach [6,7] and later the colored-graph approach for
bipartite Bell and NC inequalities, as presented in Ref. [11].
More details, generalizations, and other approaches can be
found in Refs. [13–15].

In a NC test, measurements of certain contexts are collec-
tively performed. A context C = {x, . . . , z} is a set of jointly
compatible measurements x, . . . , z. In general, these measure-
ments can be performed in a single laboratory or by different
parties in separate laboratories. In the case of Bell tests, the
allowed contexts contain at most one measurement per party.
The occurrence of measuring a context C = {x, . . . , z} and
getting outcomes {a, . . . , c} is called a (measurement) event.
It is denoted by a, . . . ,c|x, . . . ,z. Two events v and v′ are
exclusive if both include some measurement x with distinct
outcomes a �= a′ [14]. Examples of exclusive events are v =
ab|xy and v′ = a′b′|xy, where the measurements x and y lead
to different outcomes a �= a′ and b �= b′, respectively. The
event v′′ = a′′b′|x′′y is exclusive to v as well, if the measure-
ment y leads to different outcomes b �= b′.

The exclusivity structure of a set of events {vi}n−1
i=0 can be

represented by exclusivity graphs.
Definition 1. Let {vi}n−1

i=0 be a set of events, describing a
NC test. Their exclusivity graph is the n-vertex graph G =
(V, E ) where each event corresponds to a vertex of vi ∈ V and
{vi, v j} ∈ E whenever the events vi and v j are exclusive.

A weighted exclusivity graph (G, ω) is an exclusivity
graph which has a weight ωi � 0 associated with every vertex
vi ∈ V .

The exclusivity graph representing the CHSH inequality
[3] is shown in Fig. 1. The CHSH inequality is explained in
more detail in Sec. III. Other examples of exclusivity graphs
can be found in the cited references.
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FIG. 2. Events v = ab|xy, v′ = a′b′|xy, and v′′ = a′′b′|x′′y,
where a �= a′, b �= b′, and so on, are represented by vertices. Events
v and v′ are exclusive for both parties. This is represented by a
double edge [orange (light) and blue (dark)]. The events v and v′

are exclusive for the second party only. They are therefore connected
by a blue (dark) edge. The events v′ and v′′ are not exclusive and
therefore not connected.

Simple graphs treat every exclusivity in the same way. In
some cases it is reasonable to distinguish among different
kinds of exclusivity. In a bipartite scenario, there are three
types of exclusivity: exclusivity coming from the first party,
from the second party, and from both parties. Considering
these multiple possibilities, the exclusivity structure of a set
of events {vi}n−1

i=0 can be represented by an edge-colored ex-
clusivity graph [11]. More precisely, we have the following
definition, which is illustrated in Fig. 2.

Definition 2. Let {vi}n−1
i=0 be a set of events describing a

bipartite NC test. Their bicolored exclusivity graph is the
n-vertex colored graph G = (V, (EA, EB)) where each event
corresponds to a vertex vi ∈ V and edge sets EA and EB such
that {vi, v j} ∈ EA whenever the events vi and v j are exclusive
in the first party and {vi, v j} ∈ EB whenever the events vi and
v j are exclusive in the second party. Edges of different sets are
represented by different colors.

A weighted bicolored exclusivity graph (G, ω) is a bicol-
ored exclusivity graph which has a weight ωi � 0 associated
with every vertex vi ∈ V .

With any (weighted) bicolored graph we can associate a
simple (weighted) graph, as in Definition 1, with the same
vertices (and weights) and edge set E = EA ∪ EB. This simple
graph is called the shadow of the colored graph.

In this paper we use calligraphic letters for colored graphs
and italic letters for simple graphs. The bicolored exclusivity
graph GCHSH, representing the CHSH inequality [3], is shown
in Fig. 3. Other examples of colored exclusivity graphs can be
found in Ref. [11]. Colors were added to mark the origin of the
exclusivity, but one question must be asked: Do the colors in
the CHSH graph really imply physically relevant restrictions?
In other words, is there anything allowed by the shadow graph
of Fig. 1 which is forbidden by the colored graph of Fig.
3? In this paper we will denote the simple graph of Fig. 1
by GCSW, since it was introduced by Cabello, Severini, and
Winter. The graph GCSW represents the NC structure of the
CHSH inequality, while the colored graph GCHSH represents
the Bell structure of the CHSH inequality. We will see later,
as an important step in this paper, 15 different bicolored
exclusivity graphs sharing this same graph GCSW as their
shadows.

A Bell or a NC inequality can be written as a positive
linear combination S of probabilities of events and a number α

which is the maximum classically reachable value within the
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FIG. 3. Exclusivity bicolored graph GCHSH = (V, (EA, EB)) of the
CHSH inequality. The events appearing in Eq. (6) are represented by
vertices and edges represent their exclusivity structure. Two parties,
Alice and Bob, are represented by two colors: orange (light) and blue
(dark), respectively. Orange (light) edges represent Alice’s exclu-
sivity structure, while blue (dark) edges represent Bob’s exclusivity
structure.

given inequality

S(G, ω) =
n−1∑
i=0

ωiPi � α(G, ω), (1)

where Pi := P(vi ) is the probability to obtain event vi ∈
{vi}n−1

i=0 and ω is a weight vector with components ωi � 0. A
vector P ∈ Rn with entries Pi is called the behavior of the test
or of the graph.

As the notation suggests, the classical bound α(G, ω) as
well as other properties can be obtained from the graph. The
bound α(G, ω) corresponds to the independence number of
the graph. The definition of the independence number is based
on the concept of independent sets of a graph. An independent
set I ⊆ V of a given graph G = (V, (EA, EB)) is a set of ver-
tices which are not adjacent, that is, for all pairs of elements
vi, v j ∈ I it holds that (vi, v j ) /∈ EJ .

Definition 3 (independence number α(G, ω) [14]). The
weighted independence number α(G, ω) of a vertex-weighted
colored graph (G, ω) is

α(G, ω) := max
I⊆V

∑
i∈I

ωi, (2)

where the maximum is taken over all independent sets I ⊆ V .
Independent sets allow us to build the important set of

classical behaviors C(G). The set C(G) is the convex hull
of all characteristic vectors of the independent sets (hence
a polytope). For each independent I ⊆ V , its characteristic
vector xI ∈ Rn has components xI

i = 1 if vi ∈ I and xI
i = 0

otherwise. The interpretation of C(G) is the following: Inde-
pendent sets of events are those deterministic choices allowed
by exclusivities; the only other possibilities are their convex
combinations, interpreted as probabilistic mixtures of those
allowed configurations. Adapting and adopting the notation
from simple-graph theory, the set C(G) can also be denoted by
STAB(G) [16]. The weighted independence number α(G, ω)
is the maximal value of S(G, ω) attainable on C(G). When
every weight is 1, we use α(G) and call it the independence
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number of G. This number is also the cardinality of the largest
independent set of G, justifying its name. All this discussion
of independent sets, classical polytope, and (weighted) in-
dependence number remains the same for simple graphs. In
other words, if G is a colored graph and G its shadow, since
they originate from the same independent sets, their classical
sets also coincide: C(G) = C(G) [in graph-theory notation,
STAB(G) = STAB(G)].

Now we move on to the relevant definitions for the quan-
tum upper bounds ϑ (G) and ϑc(G) and the quantum sets Q(G)
and Q(G).

Definition 4 (orthogonal labeling for simple graphs). Let
{�i}n−1

i=0 be a set of projectors acting on a finite-dimensional
vector space with an inner product. This set is an orthogonal
labeling of a simple graph G = (V, E ) if each �i is associated
with the vertex vi ∈ V and the projectors are orthogonal, that
is, �i� j = 0, whenever {vi, v j} ∈ E .

The Lovász number plays a central role in the CSW graph
approach to quantum contextuality. One good definition for
this number is the following (see Ref. [10] for many others).

Definition 5 (Lovász number). Given a vertex-weighted
graph (G, ω), its Lovász number is given by

ϑ (G, ω) := sup
n−1∑
i=0

ωi〈�|�i|�〉, (3)

where �i are projectors from an orthogonal labeling of the
graph G, |�〉 is a normalized vector, and the supremum is
taken over all possible normalized vectors |�〉 and orthogonal
labels {�i}n−1

i=0 .
In graph theory, the vector |�〉 is called the handle of the

representation [8]. In the following we will use the term when
we talk about the vector which maximizes Eq. (3) [as well as
Eq. (4), in the colored case]. It is not difficult to show that
this optimization process can be done using unidimensional
projectors, usually also represented by vectors, instead of
projectors.

The definition of the Lovász number comes from the
maximization of the function S(G, ω) over a set where
Pi = 〈�|�i|�〉. In graph theory, this set is the Grötschel-
Lovász-Schrijver theta body, denoted by TH(G). Since we
can naturally identify the handle |�〉 with a quantum state
and the projectors of the representation with effects of di-
chotomic projective measurements, in quantum theory, the
vectors P = (Pi )n−1

i=0 obtained in this form are called quantum
behaviors. The set of all possible quantum behaviors for an
exclusivity scenario given by G is called the quantum set of
G, Q(G). One of the most beautiful and important results
in the CSW approach to contextuality is this identification:
Q(G) = TH(G).

Definition 6 (orthogonal labeling for bicolored graphs).
Let {�i = �A

i ⊗ �B
i }n−1

i=0 be a set of projectors acting on a
finite-dimensional vector space with an inner product and a
tensor product structure. This set is an orthogonal labeling
of a bicolored graph G = (V, (EA, EB)) if each �i is associ-
ated with a vertex vi ∈ V and the projectors are orthogonal
according to the exclusivities, that is, �J

i �
J
j = 0 whenever

{vi, v j} ∈ EJ .
Definition 7 (Lovász number for colored graphs). Given

a vertex-weighted colored graph (G, ω), its (colored) Lovász

number is given by

ϑc(G, ω) := sup
n−1∑
i=0

ωi〈�|�i|�〉, (4)

where �i = �A
i ⊗ �B

i are projectors from an orthogonal la-
beling, |�〉 is a normalized vector, and the supremum is taken
over all possible normalized vectors |�〉 and orthogonal label-
ing {�i}n−1

i=0 .
In both cases, if every weight equals 1, we get the cor-

responding (color) Lovász number of the respective graphs
ϑ (G) and ϑc(G).

The colored Lovász number ϑc is the best possible upper
bound to the quantum bound of the underlying Bell or NC
inequality with parts [11,17]. The simple Lovász number ϑ of
its shadow graph is a not necessarily tight upper bound for the
same quantity [7,14].

As in the previous case, the weighted colored Lovász num-
ber comes as the maximization of S(G, ω) at a set of vectors
P = (Pi )n−1

i=0 , where Pi = 〈�|�i|�〉 now with one extra re-
striction: �i = �A

i ⊗ �B
i . It corresponds to the set of quantum

behaviors obeying the bipartite restrictions of the colored
graph G. For this reason, it is identified with the quantum
set of the colored graph Q(G). Following the language of
graph theory, we could also call this set the colored theta body
θc(G). If we were only concerned with one Pi, since there is
no restriction on dimensions, we could include the image of
the uncolored �i as a subspace of a colored one and obtain
the same Pi using a handle orthogonal to the complement of
such subspace. It is not clear, however, whether or when it is
possible to use such a trick simultaneously for every Pi of a
given graph.

A final comment is in order. Since we are only consider-
ing pure states and projection-valued measures (PVMs), this
definition might look too restrictive to be associated with the
quantum set. Since we are dealing only with two-outcome
measurements, Appendix B of Ref. [18] can be used to simul-
taneously dilate compatible measurements including PVMs,
in the sense of Naimark dilation theorem [19,20]. State pu-
rification can also be used, presenting a higher-dimensional
system where PVMs and pure states emulate the same behav-
ior. A detailed discussion of this can be found in Appendix B.

III. THE CHSH BELL-GRAPH AND ITS NC
SHADOWGRAPH

The most popular Bell inequality is the CHSH inequality
[3]. In many textbooks it is represented as

S̃CHSH = 〈x0y0 + x0y1 + x1y0 − x1y1〉 � 2, (5)

where x0, x1, y0, and y1 are dichotomic random variables
which can take values ±1 at each run. These variables can
be seen as measurement results of two parties, where one
party, Alice, chooses from a measurement set X = {x0, x1}
and the second party, Bob, chooses from a measurement set
Y = {y0, y1}. In classical theories, the maximal value which
can be reached is 2. Using quantum measurements x and
y on distinct systems, the expectation value of measuring a
state |�〉 is given by 〈�|x ⊗ y|�〉. All involved measurements
are two-outcome measurements. The maximal quantum value
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FIG. 4. Family of 15 different colored graphs with the same shadow GCSW. On the top is the graph GCHSH with four double edges. One row
below is the graph G44,43, which can be obtained from GCHSH by removing one edge (and using a color-graph isomorphism, if necessary). The
next level shows the five different possibilities of removing an edge from G44,43, preserving the shadow GCSW. The following level lists all the
graphs obtained in this process which have just one double edge, while the bottom level shows the four subgraphs of GCHSH with shadow GCSW

and no double edges. There is a line between a graph in one level and another graph in the row below if the latter can be obtained by removing
one edge from the former (and possibly a change of colors).

goes beyond the classical bound and is given by the Tsirelson
bound 2

√
2 [9]. This inequality can also be written in the form

(1) as

SCHSH = P(00|00) + P(00|01) + P(00|10)

+ P(01|11) + P(11|00) + P(11|01)

+ P(11|10) + P(10|11) � 3, (6)

where P(v) is the probability of obtaining the event v. In
this form, the inequality can be represented as an exclusivity
graph. The colored exclusivity graph of the inequality in (6) is
shown in Fig. 3. We refer to this graph as the CHSH Bell graph

GCHSH, while the simple graph GCSW of Fig. 1 representing
only the NC exclusivities will be referred as the CHSH NC
graph. The independence number of both graphs is α = 3
and the simple as well as the colored Lovász number is ϑ =
ϑc = 2 + √

2, which corresponds to the classical and quantum
maximal values of the CHSH inequality in (6), respectively.

In general, a colored graph better describes the under-
lying test than the simple graph. This results in a colored
Lovász number which is smaller than or equal to the Lovász
number of its shadow graph and therefore can give a tighter
bound to the maximal quantum value. In the case of the
CHSH inequality, the NC graph GCSW already gives the
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precise quantum bound of the inequality. In graph terms, the
original Lovász number coincides with its colored version:
ϑ (GCSW) = ϑc(GCHSH).

The coincidence between the Lovász number of the CHSH
NC graph GCSW and its colored version GCHSH says that the
maximal quantum value coincides whether we see the CHSH
inequality as a Bell or a NC inequality. Is it true that any
quantum correlation allowed by GCSW can also be obtained
in the more restrictive colored version GCHSH? We show not
only that the quantum set of the NC graph QCSW allows for a
larger quantum set than the quantum set of the colored CHSH
Bell graph QCHSH, but also that there are many other colored
graphs with the same shadow which generate intermediate
quantum sets. We are interested in exploring the differences
among those sets.

IV. RESULTS

We first state some general properties of any quantum
set. The quantum set is convex. Moreover, for a behavior
P ∈ Q, every behavior P′ ∈ R|V | where P′

i � Pi for all vi ∈ V
is fulfilled is a behavior of Q as well [21]. We are therefore
only interested in finding behaviors on the boundary of the
quantum set. Other useful properties are given in Remark 1
and Theorem 1.

Remark 1. The quantum set Q of a weighted graph (G, ω)
is independent of the weight ω.

Theorem 1. Let ϑc(G, ω) be the colored Lovász
number of a weighted graph (G, ω). If there exist
an orthogonal labeling {�i} of (G, ω) and a han-
dle |�〉 such that

∑n−1
i=0 ωi〈�|�i|�〉 = ϑc(G, ω),

the behavior P induced by this orthogonal labeling
and handle is on the boundary of the quantum set
Q(G).

Remark 1 comes from the fact that only exclusivities play
a role in the definition of quantum behaviors. Theorem 1
follows from the linearity of the function being optimized and
the convexity of Q(G). Since every weighted graph induces
an inequality, the family of weighted graphs (G, ω) sharing
the same quantum set Q(G) induces a family of inequali-
ties S(G, ω) = ∑n−1

i=0 ωiPi � ϑc(G, ω), actually defining the
quantum set of G. It is noteworthy that these inequalities are
maximized by in general different quantum behaviors, since ω

defines a direction in the space where behaviors are defined.
By finding behaviors which maximize S(G, ω), we can find
behaviors on the boundary of Q(G).

We are interested in how and why the quantum set of the
graph GCHSH differs from the quantum set of its shadow graph
GCSW. In order to compare the CHSH Bell quantum set QCHSH

with the CHSH NC quantum set QCSW, we introduce a family
of colored graphs whose quantum sets are supersets of QCHSH

but subsets of the set QCSW.
It is technically easier to compare colored graphs with col-

ored graphs. We will show that there are colored graphs whose
quantum sets are subsets of the quantum set of the CHSH NC
graph Q(GCSW) but supersets of the quantum set of the CHSH
Bell graph Q(GCSW). It also gives us hints how specific edges
influence the behavior of a graph. This observation, which
is essential in our approach, is summarized in the following
remark.

Remark 2. Let G ′ = (V, E ′) and G = (V, E ) be two graphs
with E ′ ⊆ E such that G ′ is a subgraph of G. Then the quantum
set Q(G) is a subset of the quantum set of G ′: Q(G) ⊆ Q(G ′).

Remark 2 comes from the fact that edges of the graph
are restrictions on its quantum set. Removing edges from a
graph is therefore equivalent to having fewer restrictions on
the quantum set. This usually allows for a larger quantum
set. Note additionally that the quantum set of a colored graph
always lays inside the quantum set of its shadow graph.

Figure 4 shows the family of subgraphs of GCHSH which
all have the same shadow. There are 15 graphs which are
different among each other up to colored graph isomorphisms.
We introduce a notation to distinguish among them: For each
color we count the number of edges in each component of the
graph and write them as indices. We use commas to separate
between colors. For example, the graph G44,311 denotes a bi-
colored graph where the graph of the first color contains two
nonadjacent subgraphs with four edges each and the second
color graph contains three nonadjacent subgraphs with 3, 1,
and 1 edges, respectively. In the cases where this notation
is not sufficient to select just one graph in the family, we
use superscripts to discriminate between them. Note that the
introduced notation is suitable for this family of interest and
for the purposes of this paper, but it is not a way of well
characterizing colored graphs in general.

In order to compare the sets QCHSH and QCSW, we use as in-
termediate sets the quantum sets of some graphs of this family.
We choose the graphs G33,33 and G44,1111, since they are both
very distant from GCHSH and from each other in the genealogic
tree of Fig. 4. Using the Navascués-Pironio-Acín (NPA) hi-
erarchy [22,23], we numerically find, for some choices of
weights, upper bounds for ϑc(G, ω). These numerical results
give upper bounds to the real maximal quantum bound. We
then approximate points in the boundary by obtaining explicit
behaviors from orthogonal labelings and handles. As it will be
shown, for some choices of graph and weight, the agreement
of these two approaches is really good. This shows that we
know to a pretty good approximation points in the boundary
of the corresponding quantum set direction. For other cases a
small gap is still present, demanding more research.

Figure 5 shows upper and lower bounds of the graphs
GCHSH, G33,33, and G44,1111, weighted with the weight vector

ωε
5(0−1−7−) = (1 − ε)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
8
1
8
1
8
1
8
1
8
1
8
1
8
1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
5
1
5
1
5
1
5
1
5

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where ε ∈ [0, 1]. Note that applying ω1
5(0−1−7−) to the given

graphs and comparing graphs of the pentagonal inequalities,
given in Ref. [11], we can directly answer our first question:
There are behaviors in QCSW which are not in QCHSH. We want
to understand better where the quantum boundaries are equal
and where they differ.
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FIG. 5. Upper and lower bounds of the colored Lovász
numbers ϑc(GCHSH, ωε

5(0−1−7−)), ϑc(G33,33, ω
ε
5(0−1−7−)), and

ϑc(G44,1111, ω
ε
5(0−1−7−)). For ε = 0 we have in all cases ϑc ≈ 0.427.

For ε = 1 we have ϑc CHSH ≈ 0.436 and ϑc 33,33 = ϑc 44,1111 ≈ 0.442.
The curve of ϑc(G33,33, ω

ε
5(0−1−7−)) has a kink at ε ≈ 0.85.

It is noteworthy that we found the given curves of GCHSH

and G44,1111 with orthogonal labeling {�i} and a handle |�〉
in Hilbert spaces H2 ⊗ H2, while we need a Hilbert space
H2 ⊗ H3 in order to approximate the curve of G33,33. This
is consistent with the fact that the first and second graphs
give Bell inequalities which can be maximally violated by
two qubits, while the former only gives a generalized Bell
inequality, demanding extra dimensions in one part [24]. In
the case ε = 0, all graphs have the same Lovász number which
can be reached with the orthogonal labeling and handle known
from the case of CHSH inequality: {�CHSH

i } and |�CHSH〉.
For ε = 1, the graphs reduce to the graphs of the first and
third pentagonal inequalities IP

1 and IP
3 , respectively, where

the optimal solutions are given in [5]. Note that we introduced
the labels IP

1 and IP
3 to refer to the inequalities in Ref. [5],

which were originally called the first Bell inequality and third
Bell inequality, respectively. For GCHSH and G44,1111, we ap-
proximate the analytic curve by a superposition of |�CHSH〉
and |�IP

1 〉 or |�IP
3 〉 and rotations of the projectors from �CHSH

i

to �
IP
1

i and �
IP
3

i , respectively. In the case of G33,33, we can
approximate the curve with a superposition of |�CHSH〉 and

|�IP
3 〉 and rotations of the projectors from �CHSH

i to �
IP
3

i for
i �= 1 and �1 = |22〉〈22|. A more detailed phenomenologi-
cal description of the results can be found in [13] and in
Appendix A. Using the same method, we can analyze other
paths with the goal to generalize to manifolds on the boundary
which could be described parametrically.

FIG. 7. Upper bounds of the colored Lovász numbers of the
graphs given in Fig. 6, weighted with ωε as given in Eq. (8). For
ε = 0 we have in all cases ϑc ≈ 0.427. Four of the five curves are
different and therefore the quantum sets of the underlying graphs are
different as well. Some explicit numbers are given in Table I.

A related interesting question is how changes in the
graph influence the quantum set. To explore these changes,
we compare the upper bound of colored Lovász numbers
of the chain of graphs given in Fig. 6 for certain weight
vectors ω.

In order to understand how removing one edge in the graph
changes the quantum set, we start proceeding in the same
way as before and surprisingly the five graphs of this chain
only generate three distinct curves. Since symmetry is closely
related to degenerescence, we then move to the weight vectors

ωε
5(0−1−7−) = (1 − ε)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
8
1
8
1
8
1
8
1
8
1
8
1
8
1
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
κ2

κ3

κ4

κ5

κ6

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

with random variables κi � 0, such that
∑6

i=2 κi = 1 and
ε ∈ [0, 1]. One example with random variables (κi)6

i=2 ≈
(0.26, 0.18, 0.19, 0.13, 0.24) is shown in Fig. 7. Some explicit
results of the colored Lovász numbers ϑc(G, ωε ) of this ex-
ample are given in Table I. We can see that for most graphs
there are some ε such that the colored Lovász number is
greater than the colored Lovász number of its supergraphs and

FIG. 6. Chain of subgraphs. The chain is constructed as follows: We start with GCHSH (on the left) and remove edges one at a time until we
reach G44,1111 (on the right). Each graph is a subgraph of all graphs on its left side. Equivalently, each quantum set of a graph is a subset of all
quantum sets of graphs on its right side.
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TABLE I. Some explicit numbers ϑc(G, ωε ) of the curves in Fig.
7, rounded to the fourth digit.

ε GCHSH G44,43 G1
44,33 G44,311 G44,1111

0.3 0.4292 0.4292 0.4292 0.4296 0.4296
0.5 0.4326 0.4326 0.4326 0.4339 0.4340
0.9 0.4432 0.4456 0.4456 0.4485 0.4486

therefore the quantum sets are indeed different. The colored
Lovász numbers of G44,43 and G1

44,33 appear to be the same
for the given choice of (κi) and every value of ε we tested.
This indicates that the boundaries of the quantum sets of these
two colored graphs share this manifold. However, these two
quantum sets do not coincide. A different choice of weights
can distinguish them, as shown in Ref. [25], where examples
with different random numbers can also be found.

We make the same calculations for several more weight
vectors and see that in all cases the colored Lovász numbers
ϑc(G33,33, ω) are smaller than or equal to ϑc(G44,1111, ω). This
may indicate that the quantum set Q33,33 is a subset of the
set Q44,1111. This is surprising since the structures of the
graphs G33,33 and G44,1111 are very different and G33,33 is not a
subgraph of G44,1111. We uploaded all plots we made, as well
as the code we used for the simulations, in Ref. [25].

V. CONCLUSION AND OUTLOOK

In this work we reviewed the simple and the multicolored
graph approaches to noncontextuality inequalities [11] and
focused on one of its open questions: Is the theta body of the
simple CHSH NC graph TH(GCSW) equal to the quantum set
of the CHSH Bell inequality QCHSH? We further explored the
boundaries of quantum sets Q(G) by analyzing various linear
functions. We used that when two different colored graphs G
and G ′, where G ′ was obtained by removing some edges from
G, happen to have different colored Lovász numbers for the
same weight, ϑc(G, ω) < ϑc(G ′, ω), this implies that Q(G) �

Q(G ′). By varying weights according to a parameter, we
could essentially move on the boundaries of different quantum
sets and plot the graphs that show many cases of proper
inclusions.

Our goal was to compare the quantum set QCSW of the
noncolored CHSH NC graph GCSW with the quantum set
QCHSH of the colored CHSH Bell graph GCHSH in order to find
out whether QCSW is equal to the quantum set of CHSH QCHSH

and what these sets look like. Since we show the difference of
these sets, we now know that it is possible to propose experi-
ments where quantum behaviors which can be associated with
the shadow CHSH NC graph can be produced, which would
be unattainable under the CHSH Bell constraints.

As an intermediate step, we found 14 colored graphs with
intermediate quantum sets Q, that is, QCHSH ⊂ Q ⊂ QCSW.
This means that some of the behaviors mentioned above can
be obtained in some two-player realization, but again, not
under CHSH Bell constraint of two parties, two possible mea-
surements for each part, and two possible outcomes for each
measurement. Two such sets are Q33,33 and Q44,1111. We com-
pared QCHSH with Q33,33 and Q44,1111 in the following way:

We first calculated numerically an upper bound to the colored
Lovász number ϑc(G, ω(ε)) of the graphs GCHSH, G33,33, and
G44,1111 using the NPA hierarchy [22,23]. Then we computed a
lower bound by constructing behaviors P ∈ Q(G). We showed
that the quantum sets of the three graphs are not the same
and especially that Q33,33 and Q44,1111 both are strictly larger
than QCHSH. The examples which we computed may further
indicate that, quite surprisingly, Q33,33 � Q44,1111. It would
be interesting to verify this observation by a proof or fal-
sify it by finding a weight ω∗ such that ϑc(Q33,33, ω

∗) >

ϑc(Q44,1111, ω
∗).

In order to understand how introducing colors influences
the quantum set, we are also interested in how the quantum
sets of the different graphs from the family of graphs with the
same shadow look. It is interesting to know how displacing or
removing single edges changes the quantum sets. In this paper
we computed good upper bounds to colored Lovász numbers
of a chain of graphs, where we removed edges one by one, dis-
tinguishing among the majority of them, but not all. Reference
[25] provides some more details, including other members of
the larger family. It would be interesting to analyze more paths
as well as higher-dimensional submanifolds on the boundary
in order to understand the whole structure of the quantum set
for each graph. A natural question still to be answered is to
compare the quantum sets of two graphs where our notation
needs an extra label to distinguish between them, like G1

44,33

and G2
44,33.

We are also interested in the Hilbert space dimension of the
projectors of the orthogonal labelings and handles which are
needed to describe the quantum set. In the given examples,
it was sufficient to use projectors and handles in H2 ⊗ H2

in order to find behaviors of GCHSH and G44,1111. For G33,33

projectors on a Hilbert space H3 ⊗ H2 are needed [24]. One
interesting question remains open: how the colored graph
structure indicates when finite dimensions are enough. At first
glance, one could imagine that finite numbers of vertices and
colors would imply the possibility of maximizing using finite
dimensions, as it happens for CSW graphs. However, the
inequality I3322 is a very good example where a finite graph
admits a larger lower bound for the colored Lovász number
with a higher dimension of the space used for the orthogonal
representation [26]. A method to find an upper bound of the
needed dimension for a monochromatic graph approach was
given in Ref. [27]. This approach may be extended to some
multicolored graphs and used to answer our question.
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APPENDIX A: ANALYTICAL CALCULATIONS OF THE
BEHAVIORS

In this Appendix we want to give an idea of how the han-
dles and projectors which lead to quantum behaviors on the
boundaries of the required quantum sets can be constructed.
A detailed description can be found in Ref. [13].

If we restrict Alice and Bob to using measurements and
states acting on a Hilbert space H2 ⊗ H2, the projectors of
the orthogonal labeling can be represented in the Pauli basis

� = �A ⊗ �B (A1a)

= 1
2 (1 + �rA �σ ) ⊗ 1

2 (1 + �rB �σ ), (A1b)

where �r j is a Bloch vector and �σ is a vector with the Pauli
matrices σx, σy, and σz as components. The Bloch vectors can
be represented on a Bloch sphere (see, e.g., Ref. [20]). In the
following we will work with an equator of the Bloch sphere
for which r j

y = 0. Due to the Schmidt decomposition [30] and
up to local operations, a bipartite entangled state on H2 ⊗ H2

can be written as |�〉 = a|00〉 + b|11〉, with a2 + b2 = 1. The
expectation value of a projector in the form of Eq. (A1b) due
to this state is given by the equation

〈�|�|�〉 = 1
4

[
1 + 2abrA

x rB
x + rA

z rB
z + (2a2 − 1)

(
rA

z + rB
z

)]
.

(A2)

Note that if |�〉 is a maximally entangled state, i.e., a = b =
1√
2
, Eq. (A2) reduces to 1+�rA·�rB

4 . On the other hand, for non-
maximally entangled states, it is relevant in which quadrants
the vectors are. The maximal quantum bound of the CHSH
inequality can be reached with a maximally entangled state
and projectors in the form of Eq (A1b) with Bloch vectors
as shown in Fig. 8 by transparent orange (light) and blue
(dark) vectors. We see that the vectors are distributed in a
very symmetric way. For other inequalities, the maximally
quantum bound can be reached by nonmaximally entangled
states and a less symmetric distribution of Bloch vectors. This
is the case for the less symmetric graph of the first pentag-
onal inequality IP

1 . The maximally quantum bound of IP
1 is

reached by an entangled state |�〉 = aP|00〉 + bP|11〉 with
aP ≈ 0.6338, bP ≈ 0.7735, and projectors in the form of Eq.
(A1b) with Bloch vectors as shown in Fig. 8 by solid orange
(light) and blue vectors. The angles are given by γP1 ≈ 25◦
and δP1 ≈ 14◦ [5].

We computed the maximally quantum bound of the set
of equations S(G, ω) = ∑n−1

i=0 ωiPi with a weight vector ω as
given in Eq. (7) and plotted it in Fig. 5. For ε = 0 and 1 we
have the known CHSH and IP

1 inequalities. The intermediate
cases can be computed by a superposition of both handles and
projectors where the Bloch vectors rotate from one case to the
other. The handle is given by |�〉 = aε|00〉 + bε|11〉, with

aε = (1 − εs)
1√
2

+ εs0.6338, (A3a)

bε =
√

1 − a2
ε, (A3b)

FIG. 8. Bloch vectors of the orthogonal labeling and the states
which lead to the colored Lovász numbers ϑc(GCHSH, ωε=0

5 (0−1−7−))
and ϑc(GCHSH, ωε=1

5 (0−1−7−)) are known. The intermediate colored
Lovász numbers can be calculated by a transition from one case to
the other. The players are also indicated by the superscript A or B.
For each family of vectors, the light arrows are the Bloch vectors for
the case ε = 0 (CHSH), while the dark arrows are the Bloch vectors
for the case ε = 1 (IP

1 ). The intermediate vectors and shared states
are given in Eqs. (A3a)–(A4b).

and the angles of Bloch vectors in Fig. 8 are given by

γε = (1 − εt )
π

8
+ εtγP1 , (A4a)

δε = (1 − εt )
π

8
+ εtδP1 . (A4b)

Choosing fixed parameters t and s in the range 0.6 � s, t �
0.67, we get lower bounds to quantum violations which devi-
ate from the upper bound of O(10−5). Slightly better values
can be reached by the parameters shown in Fig. 9. The con-
crete ε dependence of t and s is not found yet. We conjecture

FIG. 9. For the parametrization in Eqs. (A3a)–(A4b) we com-
puted the parameters s and t shown in this figure to be optimal.
Caused by the irregular pattern of the parameters, we conjecture that
there is a better parametrization.
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FIG. 10. Ansatz to find the behaviors which lead to the colored
Lovász number ϑc(G44,1111, ω

ε
5(0−1−7−)). We rotate rB

6 and rB
7 coun-

terclockwise and all other vectors clockwise with the angle γ = εt π

8 ,
where t ≈ 1. The transparent orange (light) and blue (dark) vectors
represent the vectors for Alice and Bob at ε = 0, while the dark
vectors lead to the maximal quantum bound at ε = 1.

that one can find a better parametrization than the one we
proposed here.

The curve for G44,1111 was constructed with orthogonal la-
belings and states acting on a Hilbert space H2 ⊗ H2 as well.
We saw that using this dimensions, we can construct behaviors
in Q44,1111 which do not belong to QCHSH, even if we did not
find the optimal behaviors for all ε. We conjecture that the
maximal quantum bound can be reached in this dimension.
In the graph G44,1111, there are two nonadjacent subgraphs
of Alice but four of Bob. Therefore, there are already more
options of arranging the Bloch vectors in a Hilbert space
H2 ⊗ H2 than we had for GCHSH.

As we did for the CHSH inequality, we explored the set of
functions S(G, ω) = ∑n−1

i=0 ωiPi with the same weight vector
ω. In the case of ε = 0, the maximum quantum value is the
same as for the CHSH inequality and the handle as well as the
set of projectors is known. For ε = 1, we have the also known
third pentagonal inequality IP

3 [5]. Their quantum bounds can
be reached by the maximally entangled Bell state |�+〉 and
the Bloch vectors as shown in Fig. 10 in solid orange (light)
and blue (dark). As an ansatz to find the behaviors for 0 <

ε < 1 we rotate the vectors as shown in Fig. 10. We also vary
the parameter a by the factor 1 − s, where the minimum of s
is s = 0 for ε = 0 and 1 and the maximum is s ≈ 0.027 for
ε ≈ 0.5.

We next discuss the curve of G33,33. In the same way as for
GCHSH, for G33,33 there are two nonadjacent subgraphs for each
color. If we restrict the Hilbert space dimension to H2 ⊗ H2,
the options of arranging the Bloch vectors are the same as
for GCHSH. We need to allow at least one party to use three
dimensions in order to have more options in the orthogonal
labeling. Note that more options in the orthogonal labeling
does not necessarily lead to new behaviors P.

In Fig. 5 we see that for ε � 0.85 the colored
Lovász number ϑc(G33,33, ω

ε
5(0−1−7−)) is the same as for

ϑc(GCHSH, ωε
5(0−1−7−)). At ε ≈ 0.85 we have a kink which

is a discontinuity in the first derivative and for ε � 0.85
we see that ϑc(G33,33, ω

ε
5(0−1−7−)) becomes greater than

ϑc(GCHSH, ωε
5(0−1−7−)) and matches with the curve of

ϑc(G44,1111, ω
ε
5(0−1−7−)) at ε = 1. The parts in which the

first derivative is continuous can be explained with a smooth
change of parameters as we have seen for GCHSH. A kink, as
we have at ε ≈ 0.85, indicates that there are different config-
urations of orthogonal labelings and states giving the same
result at the kink. Depending on ε, one or the other leads to a
higher value of ϑc on different sides of the kink.

As stated before, for orthogonal labelings and states re-
stricted to H2 ⊗ H2, the set of behaviors of G33,33 is the
same as the set of behaviors of GCHSH. Therefore, we need
a higher-dimensional Hilbert space to find the behaviors
which lead to the colored Lovász number in the domain
ε � 0.85. We first explain how to get the behavior for ε =
1. The orthogonal labeling and the state we found act on
the Hilbert space H3 ⊗ H2. We embed the state |�+〉 =

1√
2
(|00〉 + |11〉) canonically in H3 ⊗ H2, as well as the pro-

jectors induced by Bloch vectors rB
1 , rA

i , and rB
i for i =

0, 2, . . . , 7. We choose the projector �A
1 = |2〉〈2|. Note that

already P33,33(ωε=1
5 (0−1−7−)) /∈ QCHSH, which proves that

Q33,33 is strictly larger than QCHSH. The curve in the domain
0.85 � ε � 1 can be constructed by projectors �A

1 = |2〉〈2|
and projectors induced by Bloch vectors rB

1 , rA
i , and rB

i for
i = 0, 2, . . . , 7 which rotate from the positions given above
for GCHSH for ε ≈ 0.85 to the positions which were shown to
be optimal for IP

3 . We use a shared state which is a super-
position of the state given above for ε ≈ 0.85 and |�+〉. It is
interesting to see that the behavior we found which gave us the
maximal quantum bound has one component equal to 0 and all
other components are computed from states and projectors in
H2 ⊗ H2.

APPENDIX B: MAKING USE OF HIGHER HILBERT
SPACE DIMENSIONS

In this Appendix we comment in more detail on the state-
ment about higher Hilbert space dimensions we made earlier
in the paper. We mainly summarize two references and state
how to combine dilation of measurements and purification
of states. In the case of positive-operator-valued measures
(POVMs), we use Naimark’s theorem [19] as presented in
Ref. [18]. In the case of states, we refer to the work of Nielsen
and Chuang [20]. As we are dealing with finite numbers of
measurements and outcomes, we do not consider the infinite
case here.

1. Dilation from POVMs to PVMs

We first state results from Appendix B of Ref. [18] and
comment on how to adapt them to our case.

Given a POVM {πi}d−1
i=0 acting on system S, there exists a

projective measurement {�i}d−1
i=0 on a system S ⊗ E where the

dimension of E is d such that

tr{πiρ
S} = tr{�i(ρ

S ⊗ |i〉〈i|E )}. (B1)
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This was first proven in Ref. [19]. The projective measurement
operators are constructed by

�i = U †
S,E (1S ⊗ |0〉〈0|E )US,E , (B2)

where US,E is a unitary on the extended system and {|i〉} is
a basis for E . We want the new set of projectors to have the
same pairwise commutativity structure as the initial POVM.
In Ref. [18] it was proven for two-outcome measurements that
this condition is fulfilled by constructing US,E such that

US,E |�〉S ⊗ |i〉E =
1∑

j=0

(−1)i j√πi⊕ j |�〉S ⊗ | j〉E . (B3)

Note that it was proven for the special case d = 2. In our case,
this is sufficient. It is not immediate to generalize this result
and it would be nice to see such a construction.

In our case, we are dealing with tensor products of mea-
surement operators: πA ⊗ πB. In the case of multiple POVMs,
Irfan et al. propose to extend to several systems

⊗
J EJ . In

our case, we can extend our system SA ⊗ SB to (SA ⊗ EA) ⊗
(SB ⊗ EB).

2. Purification of states

Purification of states follows a similar idea as presented
before. In this section, we follow Ref. [20].

Given a state ρS of a quantum system S, it is possible to
introduce a system R and define a state |SR〉 such that

ρS = trR(|SR〉〈SR|). (B4)

A system R and a state |SR〉 which fulfills Eq. (B4) can be
constructed in the following way: Knowing the orthogonal
decomposition

ρS =
∑

n

pn|nS〉〈nS|, (B5)

we can define the state

|SR〉 =
∑

n

√
pn|nS〉|nR〉, (B6)

where system R has a state space isomorphic to that of system
S, with orthonormal basis states {|nR〉}. It follows that Eq. (B6)
fulfills the condition (B4).

We show that for a given POVM {πi} and a state ρS ,

tr{πρS} = tr{(π ⊗ 1R)|SR〉〈SR|} (B7)

holds:

tr{(π ⊗ 1R)|SR〉〈SR|}

= tr

{
(π ⊗ 1R)

(∑
n,m

√
pn pm|nS〉〈mS| ⊗ |nR〉〈mR|

)}

(B8a)

=
∑
n,m

√
pn pmtr{π |nS〉〈mS|}tr{1R|nR〉〈mR|} (B8b)

=
∑
n,m

√
pn pmtr{π |nS〉〈mS|}δn,m (B8c)

=
∑

n

pntr{π |nS〉〈nS|} (B8d)

= tr{πρS}. (B8e)

Therefore, we get the same statistics from a POVM {πi}
and a state ρS as we get from its purified version.

3. Combination of both methods

As we have seen above, we can extend POVMs to PVMs
and get the same statistics by only simple modifications of
the state and equivalently going from mixed states to pure
states by doing simple modifications of the measurement
sets. In both cases, we make use of embedding the system
canonically to a higher-dimensional system. We can combine
the two methods by embedding the measurement sets and
the state into different higher-dimensional spaces. Therefore,
it is sufficient to consider PVMs and pure states. Here the
POVM purification follows the locality demand by using dif-
ferent state spaces for each party, while the state is purified
globally, since entangled states are naturally welcome in this
discussion.
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