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Relaxation dynamics in the driven-dissipative Su-Schrieffer-Heeger model

C. M. Dai ,1 Yunbo Zhang,1,* and X. X. Yi2,†

1Key Laboratory of Optical Field Manipulation of Zhejiang Province and Physics Department,
Zhejiang Sci-Tech University, Hangzhou 310018, China

2Center for Quantum Sciences, Northeast Normal University, Changchun 130024, China

(Received 23 August 2022; accepted 29 November 2022; published 15 December 2022)

For a chain with an open boundary described by the non-Hermitian Hamiltonian, the combination of the
algebraic damping and the non-Hermitian skin effect leads to an edge burst. It is interesting to ask whether these
features remain when the system is described by a master equation with periodic drives. In this paper, taking
the Su-Schrieffer-Heeger model as an example, we explore the relaxation dynamics of the system with time
periodically modulated intracell tunneling and single-particle dissipations. We find that for systems with periodic
boundary conditions, the relaxation in the infinite-frequency driving limit can be algebraic or exponential
depending on the intracell and intercell tunneling amplitudes. Finite-frequency driving can generally open the
Liouvillian gap regardless of its strength and can turn the dynamics from algebraic damping to an exponential
one. The Liouvillian gap increases with the increase of the driving period until a critical driving period is reached,
and then it tends to a small, nonzero value for a sufficiently slow drive. For open boundary systems, we find that
the dynamics of the localized excitation is still closely related to the Liouvillian gap before the excitation reaches
the system boundary. The propagation speed of the localized excitation that controls the transition relaxation
timescale can be slowed down by properly increasing the driving period and amplitude.
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I. INTRODUCTION

Periodic drive is a useful tool to manipulate the properties
of closed systems. For example, the topological Bloch band
was realized using time-modulated two-dimensional optical
lattices [1], the localization feature was changed in the kicked
noninteracting one-dimensional quantum system by either
time-periodic or nonperiodic pulses [2], and a discrete-time
crystal that explicitly reveals the rigidity of the emergent oscil-
lations was predicted in the periodic-driving one-dimensional
chain of trapped ions [3]. In recent years, interest in the ap-
plication of periodic drives (or Floquet engineering) to open
quantum systems has grown. Concrete examples include the
dynamic control of localization transitions and mobility edges
in non-Hermitian quasicrystals [4], dissipative time crystals
[5], and driving-assisted open quantum transport [6].

One of the fundamental properties of an open quantum
system is the relaxation pattern caused by its couplings to
external reservoirs. The control of relaxation time to the
steady state plays a crucial role in quantum controls and
simulations [7,8]. For open quantum systems described by
the Markov master equation, the eigenspectra and eigen-
modes of the Liouvillian govern the evolution of the system.
The Liouvillian gap defined as the smallest modulus of the
real part of nonzero eigenvalues characterizes the asymp-
totic decay rate to a steady state. It was shown that the
localization length of the Liouvillian eigenmodes also plays
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a crucial role in the transient relaxation of open quantum
systems [9].

Recent theoretical works have shown that a tight-binding
two-band system described by the Su-Schrieffer-Heeger
(SSH) model can have two different types of relaxation be-
havior in the presence of single-particle dissipation [10].
When the intracell tunneling is larger than the intercell tun-
neling, the relaxation of this model is algebraic; otherwise,
the system shows exponential damping. For the dissipative
SSH model with open boundaries, the combination of the
algebraic damping and the non-Hermitian skin effect leads
to an edge burst [11]. The generalization of the dissipative
SSH model by introducing additional spatial modulation of
intracell hopping can undergo a chiral to achiral damping
transition when the modulation strength increases [12]. It is
known that periodic driving can alter the topological phase of
matter [1] and change the relaxation behavior of dissipative
systems [5]. The dissipative SSH model possesses both rich
relaxation behaviors and a non-Hermitian skin effect orig-
inating from the intrinsic non-Hermitian topology [13] that
leads to boundary-sensitive damping [11]. These motivate us
to study how periodic driving enriches the non-Hermitian
physics of such a system. Inspired by the method developed in
Ref. [10], we will characterize the relaxation process in terms
of the damping matrix derived from the Liouvillian of the
systems.

The remainder of this paper is organized as follows. In
Sec. II we introduce a model and a Floquet theory to describe
our periodic-driving system. In Sec. III we investigate the
spectral property of the driven-dissipative system. In Sec. IV
we study the relaxation dynamics of the system via time
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evolution of single-particle correlations. Finally, we conclude
in Sec. V.

II. MODEL AND FLOQUET THEORY

The starting point of our analysis is the one-dimensional
fermionic SSH model [14,15] described by the Hamiltonian

H0 =
∑

x

J0c†
xAcxB + J2c†

xBcx+1A + H.c., (1)

where c†
xs and cxs are the fermionic creation and annihilation

operators, the labels x and s = A, B refer to the unit cell
and sublattice, and J0 and J2 are the intracell and intercell
tunneling amplitudes, respectively. In this work we focus on a
driven-dissipative regime where the intracell tunneling ampli-
tude is time periodic modulated and each unit cell is coupled
to its environment, leading to the gain or loss of the system.
The system Hamiltonian including the drive is

H (t ) = H0 + F (t )
∑

x

(c†
xAcxB + H.c.), (2)

where F (t ) stands for the time-periodic modulation. For sim-
plicity, we choose the piecewise drive,

F (t ) =
{

J 0 � t < T/2,

−J T/2 � t < T,
(3)

where J and T are the driving amplitude and period, respec-
tively. The overall intracell tunneling amplitude is J1(t ) =
J0 + F (t ). We set the intracell tunneling strength J2 = 1 as
the unit of energy in the following discussions. The evolution
of the density matrix ρ(t ) of the system is governed by the
Lindblad master equation [16],

∂tρ(t ) = L(t )[ρ(t )] = −i[H (t ), ρ(t )] + D[ρ(t )], (4)

where the dissipator D describes the quantum jumps caused
by coupling to the environment. The dissipator D is con-
structed from a set of jump operators {Lxκ},

D(ρ) =
∑

x

∑
κ={l,g}

2LxκρL†
xκ − {L†

xκLxκ , ρ}, (5)

where the jump operators are given by

Lxl =
√

γl/2(cxA − icxB),

Lxg = √
γg/2(c†

xA + ic†
xB), (6)

which describe single-particle loss Lxl and gain Lxg in the
unit cell x. The jump operators in Eq. (6) can be realized by
coupling both sites in the unit cell to a shared reservoir that
induces nonlocal electron loss or gain [17]. A similar model
without drive was studied in Ref. [10].

The formal solution of the master equation (4) can be
written as ρ(t ) = V (t, 0)[ρ(0)], where V (t, 0) represents the
propagator from the initial time to a given time t . Because the
Liouvillian L(t ) of our model is time periodic, i.e., L(t ) =
L(t + T ), the propagator over integer multiples of the driving
period nT can be factorized as V (nT, 0) = Vn(T, 0). We can
define a time-independent Floquet generator LF [18,19] that
reproduces the evolution over one driving period, i.e.,

V (T, 0) = exp(LF T ), (7)

and rewrite the stroboscopic propagator as V (nT, 0) =
exp(LF nT ). In fact, according to the divisibility of the propa-
gator V (t, 0) [18,20], we can rewrite it as

V (t, 0) = K(t ) exp(LFt ), (8)

where K(t ) = K(t + T ) is a time-periodic linear operator
[18]. In the long-time limit, the density matrix ρ(t ) will relax
towards a time-periodic steady state [18,21],

ρs(t ) = K(t )(ρF ), (9)

where we define ρF = limt→∞ exp(LFt )[ρ(0)] [18,21].
We are interested in the relaxation process of the system

to the time-periodic steady state ρs(t ). In particular, we focus
on the time evolution of the single-particle correlation matrix
φ(t ); its elements are given by

φmn(t ) = Tr[c†
mcnρ(t )], (10)

where the index m (or n) labels both the unit cell and sublattice
degrees of freedom. We can obtain the evolution equation of
the single-particle correlation matrix using the Lindblad mas-
ter equation (4) (see the Appendix for the details of the
derivation),

∂tφ(t ) = i[hT (t ), φ(t )] − {
MT

l + Mg, φ(t )
} + 2Mg, (11)

where all three matrices h(t ), Ml , and Mg are Hermitian ma-
trices. The matrix elements of h(t ) are hxA,xB(t ) = h∗

xB,xA(t ) =
J1(t ), hxB,x+1A = h∗

x+1A,xB = J2, and zero otherwise. The el-
ements of Ml and Mg are (Ml )mn = ∑

x D∗
xl,mDxl,n and

(Mg)mn = ∑
x D∗

xg,mDxg,n, where the nonzero elements of ma-
trix D are Dxl,xA = iDxl,xB = √

γl/2 and Dxg,xA = −iDxg,xB =√
γg/2. By introducing a non-Hermitian damping matrix

X (t ) = ihT (t ) − MT
l − Mg, (12)

Eq. (11) can be rewritten into a more compact form,

∂tφ(t ) = X (t )φ(t ) + φ(t )X †(t ) + 2Mg. (13)

When the system evolves into the steady state ρs(t ), the
single-particle correlation matrix φ(t ) is given by a time-
periodic matrix φs(t ) = φs(t + T ) with elements [φs(t )]mn =
Tr[c†

mcnρs(t )]. Note that φs(t ) satisfies Eq. (13), and one
can verify that φs(t ) = γg1/γ using the relation MT

l + Mg =
Mgγ /γg, where 1 represents the identity matrix and γ = γl +
γg.

The convergence of the correlation matrix φ(t ) to its
steady-state value φs(t ) can be tracked from the deviation

η(t ) = φ(t ) − φs(t ). (14)

Because both φ(t ) and φs(t ) are solutions of Eq. (13), the evo-
lution of the deviation η(t ) satisfies the following equation:

∂tη(t ) = X (t )η(t ) + η(t )X †(t ), (15)

and its formal solution is

η(t ) = V (t )η(0)V †(t ), (16)

where the propagator V (t ) can be obtained by solving
the equation ∂tV (t ) = X (t )V (t ) with the initial condition
V (0) = 1. Because the damping matrix X (t ) inherits the time
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periodicity of the Liouvillian L(t ), we can use Floquet theory
[20] to factorize V (t ) as

V (t ) = P(t ) exp(XFt ), (17)

where the matrix P(t ) = P(t + T ) describes the micromotion
over one driving period and the time-independent matrix XF

controls the long-time evolution of the system. We call XF the
Floquet damping matrix in the following. By setting t = 0 in
Eq. (17), we have P(0) = 1, and what follows is

V (T ) = exp(XF T ) = exp[X (T/2)T/2] exp[X (0)T/2]. (18)

Generally, XF is also a non-Hermitian matrix, and we can ex-
pand it by the left (|uL

n 〉) and right (|uR
n 〉) eigenvectors [22,23],

XF =
∑

n

λn

∣∣uR
n

〉〈
uL

n

∣∣, (19)

where the eigenvectors satisfy the eigenvalue equa-
tions XF |uR

n 〉 = λn|uR
n 〉 and X †

F |uL
n 〉 = λ∗

n|uL
n 〉, respectively.

We have biorthonormality between the two complete sets of
eigenvectors {|uR

n 〉} and {|uL
n 〉}, 〈uL

n′ |uR
n 〉 = δnn′ [22]. Using the

expansion (19) and the factorization (17), we can write the
formal solution (16) as

η(t ) =
∑
n,n′

exp[(λn + λ∗
n′ )t]

∣∣uR
n (t )

〉〈
uL

n

∣∣η(0)
∣∣uL

n′
〉〈

uR
n′ (t )

∣∣, (20)

where |uR
n (t )〉 = P(t )|uR

n 〉 is time periodic. It is illuminating to
consider the spectrum of XF for a closed system, i.e., γl =
γg = 0. The eigenvalue λn is purely imaginary, and |uR

n 〉 =
|uL

n 〉. The coupling to the environment brings the system to
a steady state after a period of evolution. The real part of λn

captures the lifetimes of the different eigenmodes, and we
have Re(λn) � 0. One crucial quantity that determines the
long-time relaxation dynamics is the Liouvillian gap [10,24],
defined as 
 = min[2Re(−λn)]. It is known that a finite gap
leads to exponential convergence to the steady state, and for
the case of a vanishing gap, the convergence to the steady state
is algebraic [10].

III. FLOQUET SPECTRUM

Before exploring the relaxation dynamics of our model,
we first study the eigenvalue spectrum of the Floquet damp-
ing matrix XF , which contains useful information about the
dynamic properties of the system. In the case of periodic
boundary conditions, it is convenient to transform the damp-
ing matrix X (t ) to the momentum space by the relation |xs〉 =∑

k exp (−ikx)|ks〉/√N , where N is the number of unit cells.
In the momentum space, the damping matrix reads

X (k, t )=i[(J1(t ) + J2 cos k)σx + (J2 sin k − iγ /2)σy] − γ /2,

(21)
and the corresponding k-dependent Floquet damping matrices
XF (k) are given by

exp[XF (k)T ] = exp[X (k, T/2)T/2] exp[X (k, 0)T/2]. (22)

For the case of weak (J 	 1) and high-frequency drive
(1/T 
 1), we can calculate the approximate Floquet damp-
ing matrix XF (k) using the Baker-Campbell-Hausdorff (BCH)

FIG. 1. Eigenvalue spectrum of the effective damping matrix XF

for a few increasing driving periods T . (a)–(c) are the results of the
periodic boundary chain, and (d)–(f) show the cases with the open
boundary chain. The black dashed lines in (a) indicate the results
obtained by the zeroth-order effective damping matrix X (0)

F (k). The
parameters used in the calculations are J0 = 0.7J2, J = 0.2J2, and
γg = γl = 0.2J2, and the number of unit cells N = 200.

formula [25],

exp A exp B = exp{A + B + [A, B]/2

+ [[A, B], B]/12 + [A, [A, B]]/12 + · · · },
(23)

and then find its eigenvalues. For general driving parameters
that are not subject to these limits, we solve the eigenvalue
equation numerically to obtain the Floquet spectrum.

According to the BCH formula, the approximate damping
matrix up to zeroth order in terms of driving period T is

X (0)
F (k) = [X (k, 0) + X (k, T/2)]/2

= i[(J0 + J2 cos k)σx + (J2 sin k − iγ /2)σy] − γ /2.

(24)

This is exactly the same damping matrix that was studied in
Ref. [10]. If J0 � J2, the Liouvillian gap of X (0)

F (k) closes at

k0
± = π ± arccos(J0/J2), (25)

and there is a nonzero Liouvillian gap when J0 > J2 [10].
Therefore, in the fast-driving limit T → 0, with a suitable
choice of the tunneling amplitudes J0 and J2, the Liouvillian
gap can still be closed.

In Fig. 1(a), we plot the spectra of X (0)
F (k) (dashed line) and

XF (k) (blue dotted line) for fast driving T = 0.5/J2; we can
see that the overall shapes of their spectra are similar to each
other. However, the difference between X (0)

F (k) and XF (k)
arises when we consider the size of their Liouvillian gaps. For
example, when we take the system parameters in Fig. 1(a),
X (0)

F (k) is gapless, but XF (k) has a nonvanishing Liouvillian
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FIG. 2. Normalized Liouvillian gap as a function of the dimen-
sionless parameter JT . The solid and dotted lines denote the results
for systems with unit cells N = 1500 and 500, respectively. The
dashed line represents the approximate analytic result (JT )2/24.
The other parameters used are J0 = 0.7J2, J = 0.2J2, and γg = γl =
0.2J2.

gap 
 ≈ 2 × 10−4J2, although the gap is too small to see in
Fig. 1(a). Larger Liouvillian gaps can be obtained when the
drives with longer periods are used, as shown in Figs. 1(b)
and 1(c) for two relatively slow drivings with T = 3/J2 and
T = 5/J2, respectively.

In order to capture the dependence of the Liouvillian gaps
on the driving parameters, we expand the effective damping
matrix up to the second power of driving period by the BCH
formula; the result is

X (2)
F (k) = X (0)

F (k) + JT (γ + 2iJ2 sin k)(3σz − JT σy)/12,

(26)
where the second term on the right side of the equation with
the complex coefficient γ + 2iJ2 sin k suggests that the cor-
rections to the zeroth-order damping matrix X (0)

F (k) contain
both incoherent and coherent parts, although only the coherent
intracell tunneling amplitude J1(t ) is modulated periodically.
Note that according to the complex Hurwitz test [26], if we
expand XF (k) up to linear order in the driving period T , i.e.,
X (1)

F (k) = X (0)
F (k) + JT (γ + 2iJ2 sin k)σz/4, the eigenvalues

of X (1)
F (k) can have a nonphysical positive real part when

k = k0
± in the case of J1 < J2 and any nonzero T . This prob-

lem does not arise in the second-order expansion X (2)
F (k) for

a sufficiently short driving period. We find that the values of
k that make the eigenvalues of X (2)

F (k) have the largest real
part are still k0

±; then the approximate Liouvillian gap given
by X (2)

F (k) is


(2) = γ (1 −
√

36 − 3J2T 2 + J4T 4/6) ≈ γ (JT )2/24, (27)

which satisfies the power-law scaling relation as a function of
the product JT . This equation also suggests that the specific
choice of J0 and J2 (assuming J0 < J2) does not affect the size
of the Liouvillian gap for fast driving.

In Fig. 2, we compare the analytical result 
(2) ≈
γ (JT )2/24 with the numerical solution of the Liouvillian
gap. The analytical result in Fig. 2 is indicated by the dashed
line, and the numerical results are denoted by the dotted and
solid lines for systems with two different lengths, N = 500
and N = 1500, respectively. We can see that the results for
N = 500 are slightly larger than the case with N = 1500 when
JT ≈ 0.01. This difference originates from the fact that k can

FIG. 3. (a) Liouvillian gap 
 as a function of driving period T .
The results for the four different driving amplitudes J = 0.2J2, 0.1J2,
0.05J2, and 0.03J2 are denoted by different types of lines. (b) The first
derivative of the Liouvillian gap versus driving period T as a function
of the driving period T and amplitude J . The other parameters are
J0 = 0.7J2, J = 0.2J2, and γg = γl = 0.2J2.

take discrete values only when the size of the system is finite;
for larger N , the interval between the two adjacent k gets
closer, and the Liouvillian gap tends to the continuum-limit
result. When the driving is fast, i.e., JT � 0.2, the analytic
result shows good agreement with the numerical solutions.
The departure between the analytic and numerical results in
Fig. 2 for JT � 0.2 suggests that the validity of the damping
matrix X (2)

F gradually breaks down with the increasing of the
driving period T .

We show the Liouvillian gap 
 for a few different driv-
ing amplitudes J and a wide range of driving periods T
in Fig. 3(a). The results demonstrate that regardless of the
specific driving amplitude used, the Liouvillian gap increases
along with the increasing of the driving period until the max-
imum is reached; then it starts to decrease and tends to a
nonzero value for large enough T . When the driving is strong
enough, for example, J = 0.2J2, as shown in Fig. 3(a) by the
black solid line, multiple local maxima can appear. We can see
that there are two different typical behaviors of the Liouvillian
gap as a function of the driving period near its maximum. For
the relatively weak drives J = 0.03J2 and 0.05J2, there is a
smooth crossover of the Liouvillian gap from increasing to
decreasing. But for the case of strong driving with J = 0.1J2

and 0.2J2, the transition is not smooth.
To clarify this point, we plot the first partial derivative

of the Liouvillian gap versus the driving period ∂
/∂T as
a function of J and T in Fig. 3(b). We can see that for
larger J , ∂
/∂T changes abruptly from positive to negative
values when T increases to nearly 4/J2, and there is a smooth
crossover only when J is small. If the driving is strong enough,
∂
/∂T as a function of T can have multiple discontinuity
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FIG. 4. The relative deviation between 
 and 
ave as a func-
tion of the driving period T . The results for four different driving
amplitudes J are denoted by different lines. The other parameters
are J0 = 0.7J2 and γg = γl = 0.2J2. The thin red line represents the
power-law fitting.

points where 
 obtains extreme values. For example, when
J = 0.4J2, the second discontinuity point is located at T ≈
9/J2, as shown in Fig. 3(b). Note that these specific driving
periods which make 
 take extreme values rely on the sys-
tem parameters and show roughly linear dependence on the
driving amplitude J [see Fig. 3(b)].

As for the behavior of the Liouvillian gap when T is large,
we find that it satisfies a quite compact expression in the slow-
driving limit T → ∞,

lim
T →∞


 = 
ave = min{−Re[λ̃1(k, T/2) + λ̃1(k, 0)]}, (28)

where λ̃1(k, t ) denotes the eigenvalue of X (k, t ) with the
largest real part for given k and t . This means that the Li-
ouvillian gap can be inferred from the time average of the
k-dependent instantaneous damping rate when the driving is
slow enough. A comparison of 
 and 
ave for finite T is
shown in Fig. 4, where the relative deviation between 
 and

ave decreases as a power law of the driving period T . In
order to obtain Eq. (28), we start with the right eigenvector
|λ̃R

1 (k, T/2)〉 corresponding to the eigenvalue λ̃1(k, T/2). It is
easy to find that

exp[X (k, 0)T/2]
∣∣λ̃R

1 (k, T/2)
〉

≈ ζ1 exp[λ̃1(k, 0)T/2]
∣∣λ̃R

1 (k, 0)
〉

(29)

for large T , where we define

ζ1 = 〈
λ̃L

1 (k, 0)
∣∣λ̃R

1 (k, T/2)
〉

and |λ̃R(L)
1 (k, 0)〉 stands for the right (left) eigenvector cor-

responding to the eigenvalue λ̃1(k, 0). Equation (29) holds
because the mode described by |λ̃R

1 (k, 0)〉 decays the most
slowly for the given k. For the same reason, we have

exp[X (k, T/2)T/2] exp[X (k, 0)T/2]
∣∣λ̃R

1 (k, T/2)
〉

≈ ζ exp{[λ̃1(k, 0) + λ̃1(k, T/2)]T/2}∣∣λ̃R
1 (k, T/2)

〉
,

where ζ = ζ1ζ2 and we define ζ2 = 〈λ̃L
1 (k, T/2)|λ̃R

1 (k, 0)〉.
So |λ̃R

1 (k, T/2)〉 is the approximate eigenvector of XF (k) =
ln{exp[X (k, T/2)T/2] exp[X (k, 0)T/2]}/T , and the corre-
sponding eigenvalue is λ1(k) = ln(ζ )/T + [λ̃1(k, T/2) +
λ̃1(k, 0)]/2. Using the definition 
 = min{2Re[−λ1(k)]}, we

have limT →∞ 
 = min{−Re[λ̃1(k, T/2) + λ̃1(k, 0)]}, i.e.,
Eq. (28).

One of the unique features of non-Hermitian systems is the
so-called non-Hermitian skin effect [10,13], where an exten-
sive number of eigenmodes are localized at the boundary of
the system and the eigenvalues show extreme sensitivity to the
boundary conditions. As for the system studied here, we have
verified numerically for a wide range of driving parameters
that all the eigenstates of XF are localized at the boundary
when open boundary conditions are used, and the spectrum of
XF is boundary sensitive. So the system described by the time-
periodic damping matrix X (t ) also exhibits the non-Hermitian
skin effect in the sense of time coarsening. But it is different
from the undriven system in Ref. [10] with open boundary
conditions; the real part of the eigenvalues of XF is no longer
a constant when the driving is slow enough, as shown in
Figs. 1(d)–1(f) for the spectrum of XF with three different
driving periods T . Note that although most of the discussion in
this section focused on a specific choice of intracell tunneling
J0 and damping rate γ , similar results can be obtained when
the parameters are changed.

IV. RELAXATION DYNAMICS

In this section, we study how the periodic driving modifies
the relaxation dynamics of the system. The observables of
interest are the excitation number profile

nx(t ) = ηxA,xA(t ) + ηxB,xB(t ) (30)

and the dissipative current to the environment

jd
x (t ) = (γg + γl )[nx(t )/2 + iηxB,xA(t )] + c.c. (31)

By the evolution equation (15) of the deviation η(t ), we can
verify that the local excitation number nx(t ) satisfies the con-
tinuity equation,

∂t nx(t ) = jc
x − jc

x+1 − jd
x (t ), (32)

where jc
x = −iJ2ηxA,x−1B(t ) + c.c. represents the coherent

current from the unit cell x − 1 to x. The dissipative cur-
rent jd

x (t ) leads to the change in the total excitation number
ntot (t ) = ∑

x nx(t ), i.e.,

∂t ntot (t ) = −
∑

x

jd
x (t ). (33)

We set the initial state in the Gaussian form [27],

ρ(0) = exp(−β
∑

x �=x0,s

c†
xscxs − β ′ ∑

s

c†
x0scx0s)/Z, (34)

where Z = Tr[exp(−β
∑

x �=x0,s
c†

xscxs − β ′ ∑
s c†

x0scx0s)] and
β = ln(γl/γg). When β ′ = β, ρ(0) is just the steady state
of the system, i.e., L(t )[ρ(0)] = 0. In order to probe the
relaxation process of the system, we choose β ′ �= β, which de-
scribes local excitation at position x0 upon the steady state. For
clarity, we set γg = γl and β ′ → ∞ in the following. Then the
matrix elements of η(0) are ηx0A,x0A(0) = ηx0B,x0B(0) = −1/2
and zero otherwise.

The evolution of the total excitation ntot (t ) with periodic
boundary conditions is shown in Fig. 5. Because of the
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FIG. 5. The evolution of the total excitation number ntot (t ) with
periodic boundary conditions. The dashed, dotted, and dot-dashed
lines are the results for three different driving periods, T = 2/J2,
4/J2, and 5/J2, respectively. The thick solid line indicates the high-
frequency-limit result for comparison. The other parameters are
J0 = 0.7J2, γg = γl = 0.2J2, N = 100, x0 = N/2, and J = 0.2J2.

nonzero Liouvillian gap induced by the finite-frequency driv-
ing, ntot (t ) satisfies exponential decay rather than power-law
decay. We have verified that the decay rate of ntot (t ) is well
described by the Liouvillian gap 
 after a transition time, i.e.,
ntot (t ) ∝ exp(−
t ). More precisely, the long-time behavior of
ntot (t ) is dominated by the modes around the dissipative gap,
which provide a decay factor

∑
δk exp{−[
 + χ (δk)2]t} ≈

exp(−
t )
∫

d (δk) exp[−χ (δk)2t] ∼ t−1/2 exp(−
t ) = exp
{−[
t + ln(t )/2]}, where χ depends on the parameters of
the system. When the evolution time t is very long, the
contribution of the logarithmic function in the exponent of
exp{−[
t + ln(t )/2]} is smaller than the linear function, and
the decay factor can be approximated by exp(−
t ). When
the open boundary conditions are used, we find that the initial
relaxation process of the localized excitation can still be
characterized by the Liouvillian gap 
 of the momentum
space Floquet damping matrix XF (k), but the decay rate of the
excitation is close to the bare relaxation rate γ after the initial
slow decay stage, as shown in Figs. 6(a) and 6(b). Figure 6(b)
shows the evolution of ntot (t ) for systems of different sizes
where we fix the distance between the initial excitation and
the right boundary; the results suggest that the duration of
the initial slow relaxation depends on the distance from the
localized excitation to the right boundary.

Such a two-stage relaxation process can be attributed to
the reflection of the excitation by the boundary, and the re-
flected wave decays much faster than the incident wave. To
illustrate this, we show the evolution of the normalized ex-
citation nx(t )/ntot (t ) in Fig. 7(a). We can see that the peak
of nx(t )/ntot (t ) moves to the right at a constant velocity un-
til it reaches the boundary, and the arrival time ta ≈ 70/J2

coincides with the sudden change in damping rate shown in
Fig. 6(a). To quantify the propagation velocity of the excita-
tion in the bulk, we define the average position

x(t ) =
∑

x

xnx(t )/ntot (t ). (35)

Then the propagation velocities ve [28] are given by

ve = ∂t x(t ) ≈ ∂kIm[λ1(k)]|k=kc , (36)

FIG. 6. (a) The evolution of the total excitation number ntot (t )
with open boundary conditions. The results for three different driv-
ing periods are denoted by different lines, and the thick solid line
is the high-frequency-limit result. The initial position of excitation
x0 = N/2, and the number of unit cells N = 100. (b) Comparison
of ntot (t ) for systems with different lengths and boundary condi-
tions. The results obtained by applying open boundary conditions
are denoted by dashed, dotted, and dot-dashed lines for N = 60,
80, and 100, respectively. The thick solid line indicates the periodic
boundary result with N = 100. The red thin solid line is the expo-
nential fitting −ntot (t ) ∝ exp(−γ t ). The initial position of excitation
x0 = N − 50, and the driving period T = 4/J2. The other parameters
are J0 = 0.7J2, γg = γl = 0.2J2, N = 100, and J = 0.2J2.
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FIG. 7. (a) The evolution of the normalized excitation
nx (t )/ntot (t ). The initial position of excitation x0 = N/2, and the
number of unit cells N = 100. The driving parameters are J = 0.2J2

and T = 2/J2. (b) The propagation velocity of the excitation versus
driving period T for three different driving amplitudes, J = 0.2J2,
0.3J2, and 0.4J2. The results are obtained by the linear fitting of
x(t ) = x0 + vet . (c) Comparison of the numerical solution of ve

via linear fitting and the analytical solution ve ≈ J0 − α(JT )2 for
fast driving. The dotted and dashed lines denote the numerical
and analytical solutions, respectively. The other parameters are
J0 = 0.7J2 and γg = γl = 0.2J2.
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where λ1(k) is the eigenvalue of XF (k) with the largest real
part for given k and kc corresponds to the largest Re[λ1(k)].
In Fig. 7(b), we show the typical situations of the velocity ve

as a function of driving parameters. The results suggest that
a moderate increase in the driving period can lead to a sub-
stantial decrease of the propagation velocity of the excitation.
In the case of fast driving, we can also obtain the velocity ve

via the approximate Floquet damping matrix X (2)
F (k) and the

relation ve ≈ ∂kIm[λ1(k)]|k=kc ; the result is

ve ≈ J0 − α(JT )2, (37)

where the coefficient α = {J0(4J2
2 − 4J2

0 − γ 2) − 4J2
2

√
J2

2 − J2
0

sin[2 arccos(J0/J2)]}/[24(4J2
0 − 4J2

2 − γ 2)]. A comparison of
the analytic expression ve ≈ J0 − α(JT )2 and the numeri-
cal results of ve using the linear fitting of x(t ) is shown in
Fig. 7(c); the two are in good agreement.

When the excitation reaches the boundary of the system, it
is effectively trapped there. It is known that the decay rates of
the eigenmodes under open boundary condition are no longer
a constant γ for slower drives, but their deviations from γ

are approximately an order of magnitude smaller than γ , as
shown in Figs. 1(d)–1(f). This is why the overall decay rate
of the excitation is close to γ when it reaches the boundary.
The decay rate of the excitation will gradually approach the
open boundary Liouvillian gap over a long time evolution that
is slightly smaller than γ for slower drives. If the bulk loss of
the excitation is small enough in this case, a significant portion
of the excitation will escape from the boundary. This is the so-
called non-Hermitian edge burst [11]. For the model studied
here, the site-resolved loss of excitation is given by

Px = −
∫ ∞

0
jd
x (τ )dτ. (38)

We adopt the relative edge loss Lrel introduced in Ref. [11] to
quantify the edge burst,

Lrel = Pedge/Pmin, (39)

where Pedge = PN and Pmin = min[Px0 , Px0+1, . . . , Pedge] is the
minimum of Px between the initial position x0 and the right
edge. The existence and absence of the edge burst are charac-
terized by Lrel 
 1 and Lrel ∼ 1, respectively [11]. Figure 8(a)
shows the site-resolved loss Px in the fast-driving limit T →
0; we notice that Px decreases rapidly in the bulk, but an
exceptionally high peak appears at the right edge of system.
When the driving period increases (but is smaller than the
critical driving period T ≈ 4/J2), the bulk loss characterized
by the Liouvillian gap increases, and the edge-loss peak will
be reduced. We illustrate this in Fig. 8(b) by the relative edge
loss Lrel as a function of driving period T . These findings
are in agreement with the results in Ref. [11], which studied
the escape probability in lattices described by a static non-
Hermitian Hamiltonian.

V. CONCLUSION

In summary, we studied the relaxation dynamics of the
SSH model with single-particle loss and time-periodic modu-
lation imposed on intracell tunnelings. For periodic boundary
conditions, we found that the system has a zero Liouvillian

FIG. 8. (a) The site-resolved loss of excitation Px in the fast-
driving limit T → 0. (b) The relative edge loss Lrel = Pedge/Pmin

versus driving period T for driving amplitude J = 0.2J2. The other
parameters are J0 = 0.7J2, γg = γl = 0.2J2, and N = 100.

gap in the infinite-frequency driving limit, while the finite-
frequency driving opens the Liouvillian gap and changes
the system relaxation from algebraic to exponential. Along
with the increasing of the driving period, the Liouvillian gap
increases until a critical driving period is reached, and for
a sufficiently slow drive, the Liouvillian gap converges to a
smaller nonzero value. By investigating the time evolution of
localized excitation, we observed that the damping of the exci-
tation in open boundary systems can still be interpreted by the
Liouvillian gap derived from the momentum space damping
matrix. This result holds true until it reaches the boundary.
After reaching the boundary, the eigenvalue spectrum of the
open boundary chain starts to govern the relaxation dynam-
ics, and the decay rate of the excitation approaches the open
boundary Liouvillian gap asymptotically. The duration of the
transition relaxation depends on the propagation velocity of
the excitation, and the spread of the excitation can be slowed
down by increasing the driving period and amplitude.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China (Grants No. 12105245, No. 12074340 and No.
12175033) and the Fundamental Research Funds of Zhejiang
Sci-Tech University (Grant No. 21062106-Y), as well as Na-
tional Key R&D Program of China (No. 2021YFE0193500).

APPENDIX: DERIVATION OF THE SINGLE-PARTICLE
CORRELATION-MATRIX EVOLUTION EQUATION

According to the master equation (4) and the definition of
the single-particle correlation matrix (10) in the main text, the
time evolution of φmn(t ) satisfies the following equation:

∂tφmn(t ) = Tr[c†
mcn{−i[H (t ), ρ(t )] + D[ρ(t )]}]. (A1)
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To proceed, we can use the cyclic property of the trace to
rewrite Eq. (A1) as

∂tφmn(t ) = −iTr{[c†
mcn, H (t )]ρ(t )}

+
∑
xκ

Tr{(L†
xκ [c†

mcn, Lxκ ] + [L†
xκ , c†

mcn]Lxκ )ρ(t )}.

(A2)

For the quadratic Hamiltonian H (t ) = ∑
αβ hαβ (t )c†

αcβ and
the jump operators of linear form Lxl = ∑

α Dxl,αcα and Lxg =∑
α Dxg,αc†

α that we used, the commutation relations on the
right-hand side of Eq. (A2) can be simplified as

[c†
mcn, H (t )] =

∑
αβ

hαβ (t )(δnαc†
mcβ − δmβc†

αcn), (A3)

L†
xl [c

†
mcn, Lxl ] + [L†

xl , c†
mcn]Lxl

= −
∑
αβ

(δmαD∗
xl,βDxl,αc†

βcn + δnβD∗
xl,βDxl,αc†

mcα ), (A4)

L†
xg[c†

mcn, Lxg] + [L†
xg, c†

mcn]Lxg

=
∑
αβ

(δnαD∗
xg,βDxg,αcβc†

m + δmβD∗
xg,βDxg,αcnc†

α ). (A5)

Inserting Eq. (A3)–(A5) into Eq. (A2), we obtain

∂tφmn = i
∑

α

φαnhαm(t ) − φmβhnβ (t )

−
∑
xα

[D∗
xl,αDxl,mφαn + D∗

xl,nDxl,αφmα

+ D∗
xg,αDxg,nφmα + D∗

xg,mDxg,αφαn]

+ 2
∑

x

D∗
xg,mDxg,n, (A6)

where we omit the time dependence of φ(t ) for simplicity. By
defining two matrices, (Ml )mn = ∑

x D∗
xl,mDxl,n and (Mg)mn =∑

x D∗
xg,mDxg,n, we can rephrase Eq. (A6) in matrix form,

∂tφ(t ) = i[hT (t ), φ(t )] − {
MT

l + Mg, φ(t )
} + 2Mg. (A7)

For the model we studied, the nonzero elements of h(t ) and
D are hxA,xB(t ) = h∗

xB,xA(t ) = J1(t ), hxB,x+1A = h∗
x+1A,xB = J2,

Dxl,xA = iDxl,xB = √
γl/2, and Dxg,xA = −iDxg,xB = √

γg/2.
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