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Thermal equilibrium in Gaussian dynamical semigroups
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We characterize all Gaussian dynamical semigroups in continuous-variables quantum systems of n-bosonic
modes which have a thermal Gibbs state as a stationary solution. This is performed through an explicit relation
between the diffusion and dissipation matrices, which characterize the semigroup dynamics, and the covariance
matrix of the thermal equilibrium state. We also show that Alicki’s quantum detailed-balance condition, based on
a Gelfand-Naimark-Segal inner product, allows the determination of the temperature dependence of the diffusion
and dissipation matrices and the identification of different Gaussian dynamical semigroups which share the same
thermal equilibrium state.
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I. INTRODUCTION

In modern quantum information theory for continuous
variable systems, i.e., systems described by n-bosonic modes,
Gaussian channels are the standard models in most of the
quantum communication protocols [1–6]. These channels are
defined as those bosonic channels which transform Gaussian
states into Gaussian states [7,8]. Further, these states have an
exceptional role in quantum communication as, for example,
they are optimal for the transmission of classical information
through Gaussian bosonic quantum channels with additive
capacity [9].

The most general form of a one-parameter Gaussian chan-
nel of n-bosonic modes is a Gaussian dynamical semigroup
(GDS) [10,11], constituting thus the tool to describe the
dynamics of all memoryless continuous-in-time Gaussian
quantum channels. This is the reason why they are widely
used to describe noisy quantum channels in continuous vari-
able systems [10,12,13]. Further, GDSs are able to describe
all processes which can formally be written as decomposition
and production of noninteracting particles (or quasiparticles)
which can be treated at least approximately as bosons [14]. In
this context, GDSs are known as quasifree completely positive
semigroups [15–17], which happens, for example, in damped
collective modes in deep inelastic collisions [18].

The dynamics of any quantum dynamical semigroup
(QDS), not necessarily Gaussian, also known as quantum
Markov semigroups [19], is described by a master equation in
the Lindblad form [20,21]. In an analogous way, a GDS
verifies a Lindblad master equation where the unitary part
of the evolution is set by a quadratic Hamiltonian which
describes the n-bosonic modes. By a quadratic Hamiltonian,
we mean one composed by products of any two canonical
conjugate operators, positions and momenta, or the set of
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self-adjoint operators that constitutes a representation of the
Heisenberg canonical commutation relations of the particular
bosonic system considered [22]. Meanwhile, the nonunitary
part is given by Lindblad operators corresponding to complex
linear functions of positions and momenta, which simplifies
the nonunitary dynamics to be described only in terms of two
real 2n × 2n matrices: the diffusion and dissipation matrices
[11,23].

Alternatively, the Weyl-Wigner representation [24] for the
master equation of a GDSs can be employed and corresponds
to a linear Fokker-Planck equation for the evolution of the
Wigner function of the evolved states [11,23,25]. This is the
quantum counterpart of the classical channels correspond-
ing to Ornstein-Uhlenbeck processes, thus also known as
Bose-Ornstein–Uhlenbeck semigroups [19], whose evolved
probability distributions satisfy exactly the same Fokker-
Planck equation as the GDSs.

Notably when the GDS dynamics has a steady state, this
will be a dynamically invariant Gaussian state which attracts,
over long times, the evolution of any initial condition [26–28].
Thus, for a given quadratic Hamiltonian, the characterization
of stationary situations in GDSs corresponds to find all the
diffusion and dissipation matrices that allow a stationary state
[11]. Of particular importance are the stationary states which
also correspond to thermal equilibrium states, characterized
by a Gibbs state of a quadratic Hamiltonian. This is the main
subject of our study.

Thermal equilibrium in QDSs in finite-dimensional quan-
tum systems has its own well-established theory based on
the so-called quantum detailed balance condition (QDBC),
as first stated by Alicki [14,29] (see also [19]). Of note are
the results in [19] where the authors prove, using the QDBC,
that the evolution governed by a QDS is a gradient flow, in
a particular Riemannian metric on the set of states, for the
relative entropy of a state with respect to a Gibbs state. On
the other hand, the study of thermal equilibrium in GDSs is
scarce, which is particularly true for the multimode scenario; a
prominent exception is the extension of the results for QDSs in
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finite-dimensional quantum systems to the case of a one-mode
GDS performed in [19].

Here we fill this gap and give a complete characterization
of all n-mode GDSs with a thermal equilibrium state. To this
aim, we employ the Fokker-Planck equation for the evolution
of the Wigner function and show that the thermal probabil-
ity current is always null in every phase space point. This
enables us to conclude that GDSs with thermal equilibrium
are characterized by a set of three commuting matrices. Two
of the them are the Hamiltonian matrices associated to the
covariance matrix of the thermal state and the diffusion matrix
of the GDS. The third one is the skew-Hamiltonian matrix
associated to the dissipation matrix of the GDS. By another
side, this condition neglects that different GDSs, characterized
by the diffusion and dissipation matrices, may share the same
thermal equilibrium state, as a consequence of the fact that
the relation among the matrices does not set their temper-
ature dependence. To circumvent this, we show that these
characterizations are possible by extending Alicki’s QDBC to
bosonic-mode systems.

The extended QDBC leads to a master equation for a GDS
with the form of a quantum master optical equation (QOME)
[30] and the temperature dependence of the diffusion and
dissipation matrices is established for this type of GDS. From
this temperature characterization, we establish that all GDSs
that lead to thermal equilibrium satisfy a QDBC if we allow
an arbitrary temperature dependence for coupling constants
between the system and the environment. Finally, we discrim-
inate the Hamiltonians corresponding to the unitary part of
the dynamics of a GDS which allow the occurrence of the
thermalization. Although, we show that the thermalization
process itself is not effected by these Hamiltonians.

The paper is organized as follows. In Sec. II we introduce
the GDSs, their action on Gaussian states (Sec. II A), and the
Weyl-Wigner formalism to describe its dynamics (Sec. II B).
In the introduction of Sec. III, we establish the general time
dependence of the first- and second-order moments in GDSs
with stationary solutions. Then, in Sec. III A we set up the
problem of having thermal equilibrium as stationary solutions
and describe general properties that must be satisfied by GDSs
with thermal equilibrium. Section III B contains one of our
main results: a theorem that characterizes all the GDSs with
a thermal equilibrium state. The extension of the QDBC to
n-bosonic mode systems is placed in Sec. IV, where five
theorems are presented. These theorems completely charac-
terize all GDSs satisfying the detailed balance. In Sec. V, we
show that the master equation of GDSs satisfying the QDBC
always corresponds to a QOME; this section finishes with a
discussion about entanglement properties of its thermal equi-
librium state solution. We further explore the characterization
of thermal equilibrium states in GDSs that satisfy a QDBC in
Sec. VI, where the temperature dependence of the diffusion
and dissipation matrices is developed in Sec. VI A, the high-
and low-temperature limits are described in Sec. VI B, and in
Sec. VI C we explain the pure diffusive regime, where the sta-
tionary solution is lost. In Sec. VII we describe the necessary
structure of a quadratic Hamiltonian, governing the unitary
part of the GDS, that has a thermal equilibrium state. In this
section we also clarify the role of this Hamiltonian in the
process of thermalization. Finally, we summarize our findings

in Sec. VIII. Some auxiliary calculations and technical proofs
are presented in the Appendixes A, B, C, D, E, and H.

II. GAUSSIAN DYNAMICAL SEMIGROUPS

In the Schrödinger picture, a QDS is ruled by the Lindblad
master equation (LME) [20,21]

d ρ̂t

dt
= L[ρ̂t ] = LU[ρ̂t ] + LNU[ρ̂t ], (1)

where

LU[ · ] = − ı

h̄
[Ĥeff , · ], (2a)

LNU[ · ] = 1

2h̄

K∑
k=1

(
2L̂k · L̂†

k − L̂†
k L̂k · − · L̂†

k L̂k
)

(2b)

are, respectively, the infinitesimal generators of the unitary
and nonunitary parts of the evolution. The operator Ĥeff is the
effective Hamiltonian of the system and L̂k (k = 1, . . . , K )
are the Lindblad operators.

With the help of the Hilbert-Schmidt inner product
〈Â, B̂〉 = Tr(Â†B̂), the adjoint L̄ of the superoperator L is
defined by

〈L[Â], B̂〉 = 〈Â, L̄[B̂]〉, (3)

which enables us to write the Heisenberg picture of Eq. (1) for
an observable Ôt [22]:

dÔt

dt
= L̄[Ôt ] = L̄U[Ôt ] + L̄NU[Ôt ], (4)

where

L̄U[ · ] = ı

h̄
[Ĥeff , · ], (5a)

L̄NU[·] = 1

2h̄

K∑
k=1

(
2L̂†

k · L̂k − L̂†
k L̂k − L̂†

k L̂k
)
. (5b)

Since L is time independent, the solution of (1) is formally
given by ρ̂t = etLρ̂0, which is the evolution of an initial con-
dition ρ̂0, and the set {�t = etL}t�0 is properly the QDS in
the Schrödinger picture [31]. The solution of (4) is formally
written as Ôt = etL̄Ô0, which gives the evolution of an initial
condition Ô0, where the set {�̄t = etL̄}t�0 is the Heisenberg
picture version of the QDS.

The kinematics of a system with n-bosonic modes is
described by a 2n-dimensional column vector of canonical
operators,

x̂ = (q̂1, . . . , q̂n, p̂1, . . . , p̂n)ᵀ, (6)

satisfying the canonical commutation relation [x̂ j, x̂k] =
ı h̄J jk 1̂, where

J =
(

0 1
−1 0

)
, J−1 = −J = Jᵀ (7)

is a 2n × 2n real antisymmetric symplectic matrix and 1 is the
n × n identity matrix.
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In a n-bosonic-mode system a Gaussian dynamical semi-
group is a QDS with the Hamiltonian and Lindblad operators
given by

Ĥeff = 1

2
x̂ᵀB′x̂ + x̂ᵀJξ′, (8a)

L̂k = lᵀk Jx̂ (k = 1, . . . , K ), (8b)

where B′ = (B′)ᵀ is the Hessian matrix of the Hamiltonian,
ξ′ is an (2n)-dimensional real column vector, and the lk’s
are (2n)-dimensional complex column vectors. In this case,
according to [11], the superoperator in (2b) becomes1

LG
NU[ρ̂t ] = tr

(
CJ

∂

∂ x̂
[x̂ᵀρ̂t ] + 1

2
D

∂

∂ x̂
∂

∂ x̂ᵀ ρ̂t

)
, (9)

where ∂
∂ x̂ = ı

h̄ [(Jx̂), ·] is a column vector operator whose
components are ∂

∂xk
= ı

h̄ [(Jx̂)k, ·] with k = 1, . . . , 2n. The
matrices

D = h̄Re(Γ) and C = Im(Γ) (10)

are, respectively, the diffusion and dissipation matrices, both
defined through the decoherence matrix

Γ =
K∑

k=1

lkl†
k, (11)

which is composed by the vectors in the Lindblad operators
(8b). The adjoint generator L̄NU in (4), using Eq. (5b) for the
present case, is

L̄G
NU[Ôt ] = tr

(
CJx̂

∂

∂ x̂ᵀ Ôt + 1

2
D

∂

∂ x̂
∂

∂ x̂ᵀ Ôt

)
. (12)

According to the definitions in (10), D = Dᵀ � 0 and
C = −Cᵀ. Note also that, according to (11), Γ � 0, and thus

h̄Γ = D + ı h̄C � 0, (13)

which can be interpreted as a generalized fluctuation-
dissipation relation [32]. For the next sections, a useful result
concerning a relation between the matrices in (13) is the
following lemma, which is proved in Appendix A.

Lemma 1. If det C �= 0 in (13), i.e., C is invertible, then
both the diffusion and the decoherence matrices are invertible
and strictly positive definite, that is, D > 0 and Γ > 0.

Two quantities of main importance for establishing the
results of this work are the mean-value vector

〈x̂〉t = Tr(ρ̂t x̂) (14)

and the (dimensionless) covariance matrix

Vt = 1

2h̄
Tr[ρ̂t (x̂ − 〈x̂〉t )(x̂ − 〈x̂〉t )

ᵀ]. (15)

Despite the evolution of the system state through a GDS
can be analytically determined [28], the description for the
system behavior is improved when analyzing the evolution of
these two moments. Taking the temporal derivative of above
equations and using the LME in (1) for the GDS, i.e., with

1From now on, we will use tr to denote the trace of a matrix and Tr
to denote the trace of an operator.

the operators in (8), the cyclicity of the trace together with the
canonical commutation relation yield [23]

d〈x̂〉t

dt
= A〈x̂〉t − ξ (16)

and
dVt

dt
= (AVt + Vt AT ) + D

h̄
, (17)

where we defined the drift matrix

A = JB′ − CJ, (18)

for B′ from (8a) and C from (10).
By direct integration, the solutions of Eqs. (16) and (17)

are, respectively,

〈x̂〉t = eAt 〈x̂〉0 −
∫ t

0
dt ′eAt ′

ξ, (19a)

Vt = eAtV0eAT t + 1

h̄

∫ t

0
dt ′eA(t−t ′ ) D eAT (t−t ′ ). (19b)

If the matrix A is invertible, the integral in (19a) can be
explicitly performed and this solution becomes

〈x̂〉t = eAt (〈x̂〉0 − A−1ξ) + A−1ξ. (20)

A. Gaussian states

The formalism presented so far describes the action of a
GDS on a generic quantum state. However, the term “Gaus-
sian” in the acronym “GDS” refers to the fact that this kind of
dynamics is a quantum channel that preserves the Gaussian
character of an initial Gaussian state throughout the whole
evolution.

The density operator σ̂t of a Gaussian state can be ex-
pressed as [6,33]

σ̂t = e− 1
2h̄ (x̂−〈x̂〉t )ᵀUt (x̂−〈x̂〉t )√

det(Vt + ı
2 J)

, (21)

which is completely determined only by the moments in
Eqs. (14) and (15), where the mean value is 〈x̂〉t = Tr(σ̂t x̂)
and the matrix Ut is given by

Ut = 2ıJ coth−1 (2ıVt J). (22)

Note that Vt + ı
2 J � 0 is the bona fide condition of a covari-

ance matrix of a quantum state [34], thus the determinant in
the denominator (21) is never negative. When subjected to a
GDS, the evolved state is like (21) with 〈x̂〉t and Vt given in
(19).

The relation between the matrices in (22) can be strength-
ened, which will be necessary for our future results. It is
immediate from (22) that

JUtVt = VtUt J ⇔ [JUt ,Vt J] = 0; (23)

however, we will prove this relation using well-known results
in order to establish methods and notations for several fu-
ture occasions. First, we use the Williamson theorem [34,35]
which establishes that for every 2n × 2n real symmetric and
positive-definite matrix Vt , i.e., Vᵀ

t = Vt > 0, there exists a
symplectic matrix St ∈ Sp(2n,R) such that

StVt S
ᵀ
t = kt ⊕ kt , (24)
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where kt = diag(κ1(t ), . . . , κn(t )) is the symplectic spectra of
Vt and κ j (t ) � 1

2 ( j = 1, . . . , n) are the symplectic eigenval-
ues. Next, we use the following lemma, also a consequence of
the Williamson theorem.

Lemma 2. A Hamiltonian matrix2 OJ, where O is symmet-
ric and positive definite and J is in (7), is diagonalized by the
similarity transformation

(QS) OJ (QS)−1 = (ıo) ⊕ (−ıo), (25)

where o = diag(o1, . . . , on), o j > 0 ( j = 1, . . . , n) are the
symplectic eigenvalues of O through S, i.e., SOSᵀ = o ⊕ o,
and Q is the complex matrix3

Q = Qᵀ = 1√
2

(
1 −ı1

−ı1 1

)
(26)

such that QᵀJQ = J and Q−1 = Q†. Equivalently, we have

(QS−ᵀ) JO (QS−ᵀ)−1 = (ıo) ⊕ (−ıo). (27)

Returning to the proof of Eq. (23), the above lemma can be
used to diagonalize the matrix Vt J, i.e.,

QSt Vt J(QSt )
−1 = (ıkt ) ⊕ (−ıkt ) =: (Vt J)d. (28)

As a useful notation, the diagonal matrix (Vt J)d defined above
will be called the canonical form of Vt J. From (22), we write
JUt = −2ı g(2ıVt J), where

g(x) = 2 coth−1(2x) > 0 (29)

is a continuous function for x > 1
2 . Consequently, employing

Eq. (28) and noting that g(x) = −g(−x), we attain

QSt JUt (QSt )
−1 = [ıg(kt )] ⊕ [−ıg(kt )] =: (JUt )d, (30)

which is the canonical form of the Hamiltonian matrix JUt .
Therefore, the matrix (QSt )−1 simultaneously diagonalizes
the matrices Vt J and JUt and they must commute, as we
wanted to prove.

Noteworthy, the matrix Ut is positive definite so the
Williamson theorem can be applied. The symplectic diago-
nalization can be easily inferred using (27) with O = Ut and
S−ᵀ = St , so we get the canonical form in (30). Therefore,
according to the hypothesis of the lemma the matrix that
diagonalizes symplectically Ut is S−ᵀ

t , i.e.,

S−ᵀ
t Ut S−1

t = g(kt ) ⊕ g(kt ), (31)

where g(kt ) = diag(g(κ1(t )), . . . , g(κn(t ))) and g(κ j ) >

0 ( j = 1, . . . , n) are the symplectic eigenvalues of Ut .
From (31), we see that the matrix Ut is finite whenever

κ j (t ) > 1
2 for all j = 1, . . . , n and for each fixed value of t .

In this case the density operator σ̂t in (21) corresponds to
a full-rank mixed state. Still, the representation of Gaussian
states as in (21) is also valid in the limit κ j (t ) → 1

2 ∀ j, where
both the matrix Ut and det(Vt + ı

2 J) diverge. In this limit, we
have σ̂t → |�t 〉〈�t |, where |�t 〉 is an n-mode pure Gaussian
state. When some but not all symplectic eigenvalues are such

2A real 2n × 2n matrix M is said Hamiltonian matrix iff JM (or
equivalently MJ) is symmetric, where J is in (7).

3The matrix Q is a member of the compact symplectic group
Sp(n) := Sp(2n,C) ∩ SU(2n).

that κ j (t ) = 1/2, the same divergences happen, and σ̂t in (21)
represents a rank-deficient mixed quantum state in the limit
κ j (t ) → 1

2 . In conclusion, σ̂t in (21) is a valid representation
of the density operator of any Gaussian state.

B. Wigner function and Fokker-Planck equation

In continuous-variable systems, the following sets {T̂ξ =
e

ı
h̄ x̂ᵀJξ | ξ∈R2n} and {R̂x = (4π h̄)−n

∫
dξ e

ı
h̄ ξᵀJx T̂ξ | x∈R2n}

are basis of a vector space constituted by operators acting on
the separable infinite-dimensional Hilbert space H = ⊗n

j=1H j

of the n-mode bosonic system [36]. The elements of these
sets are called translations and reflections, respectively, and
refer to their action on the vector operator x̂ in (6), corre-
sponding to the Heisenberg picture, namely, T̂ †

ξ
x̂ T̂ξ = x̂ + ξ1̂

and R̂†
x x̂ R̂x = −x̂ + 2x1̂ [24]. Translation operators are uni-

tary T̂ † = T̂ −1
ξ

= T̂−ξ and reflection operators are unitary and

Hermitian, i.e., involutory operators R̂2
x = 1̂. The operator T̂ξ

is also known as Weyl operator and R̂x as Wigner operator
[22].

When dealing with continuous-variable systems, the exis-
tence of unbounded operators and operators with continuous
spectra may cause some mathematical difficulties. In partic-
ular, it is often difficult to find the algebra of operators that
defines the domain of applicability of a given formalism.
In this work, we circumvent this difficulty by applying our
formalism to the algebra of all operators with a Weyl and
Wigner representation. This will be particularly important for
the demonstration developed in Appendixes B and C.

The Weyl and Wigner representations of an operator Â
are, respectively, the Hilbert-Schmidt inner products A(ξ) =
〈Â, T̂ξ〉 and A(x) = 〈Â, R̂x〉, which are the coefficients of the
expansion (also called symbols of Â) in one of the mentioned
bases through the Bochner integrals [37]:

Â =
∫

dξ

(2π h̄)n
A(ξ) T̂ξ =

∫
dx

(π h̄)n
A(x) R̂x. (32)

These facts are consequences of the orthogonality relations
〈T̂ξ, T̂ξ′ 〉 = 2n〈R̂ξ, R̂ξ′ 〉 = (2π h̄)nδ(ξ′ − ξ). In particular, the
Wigner representation of the operator vector x̂ in (6),

x = 〈x̂, R̂x〉 = (q1, . . . , qn, p1, . . . , pn)ᵀ, (33)

is a real vector in phase space. In the following, we will
use the Wigner representation of the master equation for a
GDS, which is nothing more than an alternative description
of the system evolution. Through this representation we will
establish our first result in Theorem 1 in Sec. III B. Also, this
will be important to prove the results in Appendixes B and C.

The Wigner representation of the LME in (1) for the opera-
tors in (8) (see [25,28,32]) is the Fokker-Planck equation [38]

dW (x, t )

dt
= − ∂

∂xᵀ [vU(x, t ) + vNU(x, t )] (34)

062207-4



THERMAL EQUILIBRIUM IN GAUSSIAN DYNAMICAL … PHYSICAL REVIEW A 106, 062207 (2022)

for the Wigner function4 W (x) = 1
(π h̄)n 〈ρ̂, R̂x〉. In the above

equation, we identify the Fokker-Planck current vectors:

vU(x, t ) = (JB′ x − ξ′)W (x, t ), (35a)

vNU(x, t ) = −1

2
D

∂

∂x
W (x, t ) − CJx, (35b)

corresponding, respectively, to the unitary (reversible) and
nonunitary (irreversible) contributions to the evolution of
W (x). Note that the first term in Eq. (34) is the Poisson bracket

− ∂

∂xᵀ [vU(x, t )] = [Heff ,W (x, t )]cl (36)

between the Wigner function and the Hamiltonian Heff =
1
2 xᵀB′x + xᵀJξ′, which is the Wigner symbol of (8a).

When the initial state is a Gaussian state, the evolved
Wigner function of σ̂t in (21) is

WG(x, t ) = 〈σ̂t , R̂x〉
(π h̄)n

= e− 1
2h̄ (x−〈x̂〉t )ᵀV−1

t (x−〈x̂〉t )

(2π h̄)n
√

detVt
, (37)

for 〈x̂〉t and Vt in (19). This function is a multivariate Gaussian
distribution, so the Fokker-Planck currents in (35) are true
probability currents given by

vG
U(x, t ) = (JB′ x − ξ′)WG(x, t ), (38a)

vG
NU(x, t ) =

[
1

2h̄
DV−1

t (x − 〈x̂〉t ) − CJx
]
WG(x, t ). (38b)

III. THERMAL EQUILIBRIUM IN GDS:
GENERAL CONSIDERATIONS

For GDSs, if there exists a stationary state σ̂ S, it will be
unique for any initial state ρ̂0, i.e., limt→∞ ρ̂t = σ̂ S [26–28].
In particular, starting with an initial Gaussian state, the
evolved state remains Gaussian throughout the whole evolu-
tion, therefore, σ̂ S is necessarily Gaussian.

The first moments and covariance matrix of the stationary
state can be determined through the asymptotic behavior of
Eqs. (19) and for that we resort to the Lyapunov theory of sta-
bility [39]. Note that the only way to erase all the information
about any initial condition in Eqs. (19) is to admit a matrix A
with all of its eigenvalues with negative real part, which is the
same as saying that A is a Hurwitz matrix. Consequently, the
covariance matrix of σ̂ S is a solution of the Lyapunov equation

dVS

dt
= (

AVS + VSAT
) + D

h̄
= 0. (39)

Recalling that VS is strictly positive definite, VS > 0 and
together with the Hurwitz condition over A, the Lyapunov
theorem [39] sets that D > 0. In this case, the linear dynamical
system in (16) is said globally asymptotically stable (AS) [39]

4The Wigner function is proportional to the Wigner symbol of the
density operator; this proportionality guarantees the normalization
of that function as a quasiprobability density (see [24,28,36,37], for
instance).

and the solutions in (19) attain the asymptotic values

〈x̂〉S = A−1ξ′, (40a)

VS = 1

h̄

∫ ∞

0
dt eAt D eAᵀt , (40b)

where it is clear that any trace of the initial state disappears.

A. Gibbs states as stationary states

A stationary Gaussian state in a GDS corresponds to a
thermal equilibrium state when σ̂ S = σ̂ th is the Gibbs state

σ̂ th = ˆ̄σ th

Z th
, ˆ̄σ th = e−βĤ , Z th = Tr( ˆ̄σ th ), (41)

where β is the “inverse temperature” and Ĥ = Ĥeff is the
quadratic Hamiltonian in (8a) or, more generically, another
quadratic Hamiltonian such that [Ĥ, Ĥeff ] = 0. In the follow-
ing we will establish necessary conditions over the quadratic
Hamiltonians Ĥeff and Ĥ , which allows a GDS to have an
equilibrium thermal state.

Without loss of generality, we can set the origin of the
phase-space coordinates x in (33) such 〈x̂〉th = Tr(σ̂ thx̂) =
−B−1Jξ = 0, where the vector ξ is associated with a possible
linear term of Ĥ . Therefore, the quadratic Hamiltonian Ĥ can
be chosen as

Ĥ = 1

2
x̂ᵀBx̂, (42)

i.e., with ξ = 0. The Hessian matrix of the Hamiltonian has to
be positive definite, B > 0, in order to fulfill the normalization
condition Tr(σ̂ th ) = 1 [36]. From Ĥeff in (8a) and Ĥ in (42),
we have

[Ĥ, Ĥeff ] = − ı h̄

2
x̂ᵀJ[JB, JB′]x̂ − ı h̄(ξ′)ᵀBx̂ = 0

⇔ [JB, JB′] = 0 and ξ′ = 0. (43)

Therefore, the Hamiltonian of the free evolution of a GDS
with an equilibrium thermal state must also be of the form

Ĥeff = 1

2
x̂ᵀB′x̂. (44)

Comparing the general form of the density operator of a
Guassian state (21) with the thermal state σ̂ th in (41) with Ĥ
in (42), we arrive to

Uth = h̄βB. (45)

Applying condition (23), we get

JBVth = VthBJ ⇔ [JB,VthJ] = 0, (46)

where Vth is the covariance matrix of the Gibbs Gaussian state
in (41). Using (22), it is clear that VthJ is a function of JB,
viz.,

VthJ = − ı

2
coth

(
ı h̄β

2
JB

)
. (47)

Taking into account the relation [JB, JB′] = 0 from (43) and
that VthJ is a function of JB, it is also true that

[JB′,VthJ] = 0 ⇔ JB′Vth = VthB′J. (48)
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According to Williamson theorem it is possible to find a
symplectic matrix Sth such that

(Sth )Vth(Sth )ᵀ = kth ⊕ kth, (49)

and using Eq. (25) of Lemma 2, the matrix (QSth ) diagonal-
izes VthJ:

QSth VthJ(QSth )−1 = (ıkth ) ⊕ (−ıkth ). (50)

However, due to (47), the same matrix (QSth ) also diago-
nalizes JB. Using Eq. (31) one realizes that (Sth )−ᵀ is the
symplectic matrix that diagonalizes B, i.e.,

(Sth )
−ᵀ

B(Sth )−1 = w ⊕ w, w = diag(ω1, . . . , ωn), (51)

where ω j > 0 ( j = 1, . . . , n) are the symplectic eigenvalues
of the Hessian matrix B > 0 in (42). It is also possible to
define, again according to Lemma 2, the canonical form of
JB:

(JB)d = (QSth ) JB (QSth )−1 = (ıw) ⊕ (−ıw). (52)

Finally, from (47), the relation between the symplectic spectra
of Vth and B is

kth = 1

2
coth

(
h̄βw

2

)
(53)

or, equivalently, w = 1
h̄β

g(kth ) [see Eq. (29)].
For a phase space described by x in (33), the classical

counterpart of the Hamiltonian Ĥ in (42) coincides with its
Wigner symbol, i.e.,

H = 1

2
xᵀBx = 〈Ĥ , R̂x〉 (54)

and the solution of the Hamilton equation ẋ = J ∂H
∂x is given

by x(t ) = S̃t x(0) with

S̃t = eJBt = (QSth )−1 e(JB)dt (QSth ) (55)

and (JB)d in (52). The matrix S̃t defined above will be
important in Sec. III B, but here it is worth to note that it
generates a Hamiltonian flow around the elliptical fixed point
x = 0 and that, from (51), ω j are the eigenfrequencies of
the Hamiltonian (54). This is a direct consequence of the
positive definiteness of B and, by this reason, we call positive
elliptic all the Hamiltonians in (42) with B > 0. Consequently,
a positive-elliptic Hamiltonian in (42) is a necessary condition
for a GDS to have an n-mode equilibrium thermal state since
it is necessary for the convergence of the partition function
Z th in (41).

Up to this point we were describing some properties of
thermal states associated to quadratic Hamiltonians. In the
next section, we will show the conditions over the diffusion
and dissipation matrices D and C, respectively, which define a
GDS with a thermal equilibrium state.

B. Diffusion and dissipation matrices for thermal equilibrium

The Lyapunov equation (39) for the covariance matrix of a
GDS thermal-equilibrium state Vth, where A is given in (18),
attains a simpler form through condition (48):

CJVth + VthJC = D

h̄
, (56)

whose unique formal solution [see Eq. (40b)] is

Vth = 1

h̄

∫ ∞

0
dt e−CJt D e−JCt , (57)

where according to Lyapunov theorem [39], the matrix −CJ
must be Hurwitz since Vth > 0 and D > 0. Therefore, the dis-
sipation matrix C must be invertible and according to Lemma
1, D > 0 and Γ > 0, i.e., the diffusion and decoherence ma-
trices in (10) and (11), respectively, of a QDS with a thermal
equilibrium state must be positive definite. In the following
we show that an explicit solution of the integral (57) can be
obtained from the stationary condition over the Fokker-Planck
equation (34) corresponding to a QDS with a thermal equilib-
rium state.

When a GDS has a stationary state, this is a Gaussian state
σ̂ s and from the Fokker-Planck equation (34), we obtain the
condition

− ∂

∂xᵀ
[
vG

U(x) + vG
NU(x)

] = 0, (58)

with vG
U(x) and vG

NU(x) in Eqs. (38). If this stationary state is a
thermal equilibrium state, σ̂ s = σ̂ th, condition (58) simplifies
to

− ∂

∂xᵀ
[
vth

NU(x)
] = 0 (59)

since, due to Eq. (36), one has

[Heff (x),W th(x)]cl = tr[JB′xxᵀ(Vth )−1] = 0, (60)

where we employed Eq. (48) and the fact that tr(A) = tr(Aᵀ)
for any matrix A. Now we can establish the following theorem
that characterizes a QDS with a thermal equilibrium state.

Theorem 1. A QDS has a thermal equilibrium state iff

vth
NU(x) = 0. (61)

The covariance matrix of such state is given by

JVth = 1

2h̄
JD(JC)−1, (62)

where

[JD, JC] = 0. (63)

In order to prove our theorem, we use the divergence the-
orem5 and (59): both enable us to relate the divergence of the
vector field vth

NU(x) with the flux through the boundary ∂� of
the region � ∈ R2n,∫

∂�

nᵀvth
NU(x) ds =

∫
�

∂

∂xᵀ
[
vth

NU(x)
]

dx2n = 0, (64)

where n is the 2n-dimensional real vector normal to the sur-
face ∂�. Since � has arbitrary volume, the necessary and
sufficient condition in (61) is proved. From (38b), vth

NU(x) =
[ 1

2h̄D(Vth )−1 − CJ]x W th(x) = 0 for any x, ending up with
Eq. (62). The relation in Eq. (63) follows from the require-
ment Vth = (Vth )ᵀ. Note that if [JD, JC] = 0, then D e−JCt =
e−CJt D and the integration in (57) can be explicitly performed
to obtain exactly the expression in (62).

5See, for example, Appendix A of [40].
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It is worth to note that the covariance matrix Vth of the ther-
mal equilibrium state σ̂ th in (41) is completely determined by
the Hessian B of the Hamiltonian Ĥ in (42). This is shown in
Eqs. (49) and (53), where (Sth )−ᵀ symplectically diagonalizes
B, whose symplectic spectrum is contained in the diagonal
matrix w. So, the expression in Eq. (62) simply establishes the
connection between the fixed matrix Vth and the dynamics of
the GDS, that is, the one determined by the matrices C and
D, which at the end determines σ̂ th as an equilibrium state.
However, the Lyapunov equation (56) has common solutions
[41], i.e., there are different matrices D and C which are able
to give the same covariance matrix Vth in (62). Each pair
(D,C) corresponds to a different GDS which has as steady
state the same thermal state σ̂ th. In the next section we show
that the QDBC determines common solutions.

Also, according to Theorem 1, a GDS has a thermal equi-
librium state iff the set {JVth, JD, JC} is a commuting set
of matrices. Therefore, there is a matrix that simultaneously
diagonalizes the three matrices JVth, JD, and JC (see Ap-
pendix H). Using Lemma 2, the Hamiltonian matrix JVth is
diagonalized by (QSth )† so, for a GDS with a thermal equilib-
rium state, we can always write

JVth = (QSth )† (JVth )d ((QSth )†)−1, (65)

with (JVth )d = ıkth ⊕ (−ıkth ) and kth in (53). Equivalently,
applying the same lemma to the diagonalization of JD we
arrive at

JD = (QSth )† (JD)d ((QSth )†)−1, (66)

where (JD)d = (ı h̄d) ⊕ (−ı h̄d) with h̄d the Rn×n diagonal
matrix with the symplectic spectrum of D in its diagonal.6

Because JC is a skew-Hamiltonian matrix,7 its eigenvalues
are real and with at least multiplicity equal to 2 [42]. So we
can write

JC = (QSth )† (JC)d ((QSth )†)−1, (67)

where (JC)d = jc ⊕ jc with jc a Rn×n diagonal matrix. There-
fore, using (62) we arrive to 1

2h̄ (JD)d(JC)−1
d = (JVth )d =

(ıkth ) ⊕ (−ıkth ) or, equivalently, to

d(jc)−1 = 2kth = coth

(
h̄βw

2

)
= 1 + e−h̄βw

1 − e−h̄βw
. (68)

However, this relation says nothing about the dependence on
β, the inverse temperature of the matrices d and jc composed
by the eigenvalues of the matrices JD and JC, respectively.
In the next section we will show that a QDBC allows the
determination of this dependence.

IV. GDSs SATISFYING A DETAILED
BALANCE CONDITION

The notion of detailed balance is the principle governing
the way thermal equilibrium is attained by classical Markov

6It is worth to note that Sth simultaneously diagonalizes symplecti-
cally Vth and D.

7A real 2n × 2n matrix M is said a skew-Hamiltonian matrix iff JM
(or equivalently MJ) is a skew-symmetric matrix.

processes [38]. It has several different quantum versions (see
[19] and references therein) and in the context of QDS for
finite-dimensional systems, the one due to Alicki [29] stands
out because it allows the extension of time-reversal invariance
of classical equilibrium to the quantum realm [19].

Inspired by the classical case in Markov processes, where
the time-reversal invariance of transition probabilities is re-
lated to a particular definition of an inner product, Alicki’s
definition for quantum detailed balance is based on the
ˆ̄ρ-Gelfand-Naimark-Segal ( ˆ̄ρ-GNS) inner product in finite-
dimension Hilbert spaces:

〈Â, B̂〉GNS = Tr( ˆ̄ρ Â†B̂), (69)

where ˆ̄ρ is a positive operator,8 ˆ̄ρ = ˆ̄ρ† > 0, and the operators
Â and B̂ belong to a finite-dimensional C∗ algebra. Thus,
Alicki’s QDBC relies on the notion of self-adjointness with
respect to the ˆ̄ρ th-GNS inner product, where ˆ̄ρ th = e−βĤ is an
unnormalized Gibbs state with Hamiltonian Ĥ . A superopera-
tor � is said to be self-adjoint with respect to the ˆ̄ρ-GNS inner
product if

〈�[Â], B̂〉GNS = 〈Â,�[B̂]〉GNS, (70)

for any operators Â and B̂ in the C∗ algebra.
The extension of Alicki’s approach for continuous variable

systems relies on a definition for the set of operators where the
GNS inner product is well defined. In this regard, we consider
operators acting on the separable Hilbert space of n-bosonic
modes, H = ⊗n

j=1H j , of infinite dimension. In our case, the
ˆ̄σ th-GNS inner products are computed with ˆ̄σ th in (41) and
Ĥ being the quadratic Hamiltonian in (42). Also, regardless
of whether the operators Â and B̂ are bounded or unbounded,
having continuous spectra or not, the domain of applicability
of the ˆ̄σ th-GNS inner product in (69) with ˆ̄ρ = ˆ̄σ th is over all
operators such that the trace on this formula is finite.9

For the definition of the QDBC in the context of GDSs,
we recall the notation of Sec. II, where �̄t = etL̄ with L̄ in
(4) represents the superoperator that generates a GDS in the
Heisenberg picture and �t = etL with L in (1), the one in the
Schrödinger picture.

Definition 1. Consider the GDS {�̄t = etL̄}t�0 with the in-
finitesimal generator L̄ = L̄U + L̄G

NU, where L̄U is defined in
(5a) for the quadratic Hamiltonian in (44) and L̄G

NU is defined
in (12). This GDS satisfies the QDBC with respect to ˆ̄σ th in
(41) if �̄t is self-adjoint with respect to the ˆ̄σ th-GNS inner
product for all t . In such case, we say that �̄t satisfies a
ˆ̄σ th-DBC.

8The operator ˆ̄ρ in Alicki’s work [29] is a full-rank density operator
in finite-dimensional systems. However, it is more convenient to
extend the definition of a ˆ̄ρ-GNS inner product for unnormalized
density operators ˆ̄ρ and, in particular, to unnormalized Gibbs states
like ˆ̄σ th in (41) (see [19]).

9The existence of the trace in (69) can be checked, for example, us-
ing 〈Â, B̂〉GNS = ∫

R2n dξ σ̄ th (ξ)(A†B)(ξ) = ∫
R2n dx σ̄ th (x)(A†B)(x),

where in the integrands we have the Weyl and Wigner symbols of
ˆ̄σ th and Â†B̂, respectively. Notwithstanding, any other representation
that could be more convenient can be used.

062207-7



FABRICIO TOSCANO AND F. NICACIO PHYSICAL REVIEW A 106, 062207 (2022)

The connection between the QDBC and a steady state of
the GDS is in the following theorem, which is proved in
Appendix B.

Theorem 2. If a GDS �̄t (Heisenberg picture) satisfies a
ˆ̄σ th-DBC, then ˆ̄σ th is invariant under the GDS �t (Schrödinger
picture), i.e., �t [ ˆ̄σ th] = ˆ̄σ th or L[ ˆ̄σ th] = 0, equivalently.

In the theorem above, the statement L[ ˆ̄σ th] = 0 follows
from d�t [ ˆ̄σ th]/dt = L[�t [ ˆ̄σ th]]. So, if a GDS satisfies a ˆ̄σ th-
DBC, the quantum state σ̂ th = ˆ̄σ th/Tr( ˆ̄σ th ) is a stationary
state of the evolution. Therefore, in order to attain thermal
equilibrium, it is enough that the superoperator �̄t of a GDS
satisfies a ˆ̄σ th-DBC for (the unnormalized Gibbs state) ˆ̄σ th

defined in (41) with Ĥ in (42).
The equilibrium properties of a GDS can be extracted

from its relation with the so-called modular automorphism
group [19]:


t [Â] = e
ı
h̄ Ĥt Â e− ı

h̄ Ĥt , (71)

with Ĥ in (42) and t ∈ C. Of particular relevance will be the
elements of the group given by the superoperator 
−ı h̄β[·] =
( ˆ̄σ th )−1 · ˆ̄σ th, which existence is guaranteed for any finite
value of β. The relation between the ˆ̄σ th-DBC for a GDS
and the above-defined modular group is established in the
following theorem:

Theorem 3. If a GDS satisfies a ˆ̄σ th-DBC, then �̄t = etL̄

and L̄ both commute with 
t for all values of t ∈ C.
This theorem was proved in [19] for QDS in finite-

dimensional unital C∗ algebras and our demonstration for
GDSs follows almost the same lines (see Appendix C).

Now, due to the commutation relation between the Hamil-
tonians (42) and (44), [Ĥ , Ĥeff ] = 0, we have that L̄U

commutes with 
t . Therefore, the commutation of L̄ = L̄U +
L̄G

NU with the automorphism 
t in (71) is equivalent to the
following statement: L̄G

NU commutes with 
t . The generator
L̄G

NU in (12) for a GDS is an explicit function of both diffusion
and dissipation matrices D and C, respectively. The properties
of theses matrices that stem from the fact that L̄G

NU commutes
with 
t is settled by the following theorem:

Theorem 4. A GDS satisfies a ˆ̄σ th-DBC if and only if the
diffusion and dissipation matrices, defined in Eqs. (10), are
such that

D = S̃tDS̃ᵀ
t and C = S̃tCS̃ᵀ

t , (72)

for S̃t (t ∈ R) in Eq. (55).
This means that both matrices are invariant under a con-

gruence relation through the symplectic matrix S̃t .
We begin the proof first noting that, for real values of t , the

operator e
ı
h̄ Ĥt in (71), with Ĥ in (42), belongs to the metaplec-

tic group Mp(2n,R) of unitary operators and, consequently, is
associated with the symplectic matrix S̃−1

t = S̃−t defined by
(55) [24,37]. So, in the Heisenberg picture, the action of these
operators on the vector (6) is described by


−t [x̂] = S̃−1
t x̂. (73)

Note that the above equation is equivalent to 
t [x̂] = S̃t x̂.
Using these actions, in Appendix D, we prove that


−t

[
∂

∂ x̂ᵀ [·]
]

= ∂

∂ x̂ᵀ [
−t [·]] S̃t , (74)

where 
−t = 
−1
t . This relation can be equivalently rewritten

as 
−t [∂/∂ x̂[·]] = S̃ᵀ
t ∂/∂ x̂[
−t [·]]. Now, using Eq. (74), we

get


−t

[
Jx̂

∂

∂ x̂
[
t [·]]

]
= S̃ᵀ

t Jx̂
∂

∂ x̂
[·] S̃t , (75a)


−t

[
∂

∂ x̂
∂

∂ x̂ᵀ [
t [·]]
]

= S̃ᵀ
t

∂

∂ x̂
∂

∂ x̂ᵀ [·]S̃t , (75b)

where in (75a) we used the symplectic condition S̃−1
t =

−JS̃ᵀ
t J. Finally, inserting Eqs. (75) in (12) we attain


−t
[
L̄G

NU[
t [·]]
]

= tr

(
S̃tCS̃ᵀ

t Jx̂
∂

∂ x̂ᵀ [Ôt ] + 1

2
S̃tDS̃ᵀ

t
∂

∂ x̂
∂

∂ x̂ᵀ Ôt

)
, (76)

which is equal to L̄G
NU[·] in (12) iff D and C satisfy Eqs. (72).

In summary, all these prove that Eqs. (72) are equivalent to the
statement that L̄G

NU commutes with 
t for any real value of t .
However, due to 
t∗ = (
t )t∗/t , L̄G

NU must also commute with

t∗ for any complex value t∗. We finish the demonstration of
Theorem 4 noting that the commutation between L̄G

NU and 
t

with t ∈ C is tantamount to say that a GDS verifies a ˆ̄σ th-DBC,
according to Theorem 3.

As a consequence of the results in Theorem 4, the Lind-
blad operators in (8b) are restricted to a particular structure
since the congruence relations in (72) are extended to the
decoherence matrix Γ in (11), due to the definitions in (10),
that is, Γ = S̃tΓS̃ᵀ

t for S̃t (t ∈ R) in Eq. (55). Explicitly, the
continuous-variable version of Theorem 3 from Alicki’s work
[29], which deals with QDS in discrete Hilbert spaces, is a
mere reformulation of our Theorem 4.

Theorem 5. A GDS satisfies a ˆ̄σ th-DBC iff the Lindblad
operators describing the GDS are eigenoperators of the auto-
morphism group 
−t , i.e.,


−t [L̂ j] = eıω j t L̂ j, (77a)


−t [L̂n+ j] = e−ıω j t L̂n+ j = e−ıω j t e− 1
2 h̄βω j L̂†

j , (77b)

with j = 1, . . . , n and ω j > 0 are the eigenfrequencies (sym-
plectic eigenvalues) of the Hessian matrix B which defines,
through the Hamiltonian (42), the thermal equilibrium state
σ̂ th of the GDS.

The proof for this theorem stands on Theorem 4 and on
Eq. (73), and some technical details are placed in Appendix E.
In this Appendix we prove that Eqs. (72) are equivalent to
write the decoherence matrix Γ in the following characteristic
form:

Γ =
n∑

j=1

(|s j |2 l̄ j l̄
†
j + |r j |2 l̄∗j (l̄

∗
j )

†
)

= (QSth )−1(s ⊕ r)(s∗ ⊕ r∗)(QSth )−†, (78)

where {l̄ j} j=1,...,n are the eigenvectors of S̃t , i.e.,

S̃t l̄ j = eıω j t l̄ j ( j = 1, . . . , n), (79)

the matrix r := diag(r1, . . . , rn) is the diagonal matrix
satisfying

|r|2 = diag(|r1|2, . . . , |rn|2) = e− 1
2 h̄βw |s|2 (80)
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[see Eq. (E9) in Appendix E]; the diagonal matrix w is de-
fined in (51) and contains the symplectic spectrum of the
Hessian matrix B of the Hamiltonian in (42); the matrix |s|2 =
diag(|s1|2, . . . , |sn|2) is a real diagonal matrix with a particular
temperature dependence. Although Theorem 5 implies this
dependence for any GDS satisfying its conditions, we will
keep our track on the proof, postponing the analysis of |s|2
to Sec. VI [see Eq. (94)].

Comparing the canonical form (78) with (11), the Lindblad
operators L̂k = lᵀk Jx̂ in (8b), with k = 1, . . . , K = 2n, corre-
spond to the vectors

l j = s j l̄ j, ln+ j = r j l̄∗j ( j = 1, . . . , n). (81)

From (79), S̃t ln+ j = S̃t l̄∗j = e−ıω j t r j l̄∗j , consequently


−t [L̂ j] = lᵀj S̃ᵀ
t Jx̂ = s j l̄

ᵀ
j S̃ᵀ

t Jx̂ = eıω j t s j l̄
ᵀ
j Jx̂ = eıω j t L̂ j and


−t [L̂n+ j] = r j l̄
†
j S̃

ᵀ
t Jx̂ = eıω j t r j l̄†

jJx̂ = e−ıω j t e− 1
2 h̄βω j L̂†

j ,
where we used (73) and (80) and the symplectic condition
JS̃−1

t = S̃ᵀ
t J. With all these, we finish the proof of Theorem 5.

Here, two important observations are in order. First, the
decoherence matrix (78) could be written as Γ = ΥΥ†, where

Υ = (QSth )−1(s ⊕ se− 1
2 h̄βw)W (82)

and W ∈ C2n×2n is an arbitrary unitary matrix. Therefore,
alternatively we can use the column vectors l′j of the ma-
trix Υ to define new Lindblad operators L̂′

k = (l′k )ᵀJx̂ with
k = 1, . . . , 2n. Notwithstanding, it is straightforward to check
that transformation (82) corresponds to

L̂k −→ L̂′
k =

2n∑
j=1

Wk j L̂ j (83)

and the arbitrariness introduced by W in (82) is equivalent to a
well-known symmetry of any QDS (see, e.g., [31, Sec. 3.2.2]):
the LME (1) is invariant under the unitary transformation in
(83) of the Lindblad operators. Therefore, this symmetry also
holds for a GDS. Thus, the semigroup dynamic associated to
the new set of Lindblad operators L̂′

k is exactly the same as
the one generated by the old set, i.e., L̂k in (8b) with l̄k in
(81). Second, Theorem 5 shows that it is enough to consider
only n Lindblad operators to describe a GDS which satisfies
a ˆ̄σ th-DBC, although we are dealing with infinite-dimensional
quantum systems. In this sense, GDS are like QDS in finite-
dimensional systems.

Properties of the environment, characterized by the matri-
ces D and C, can be extracted from the canonical form of the
decoherence matrix Γ in (78). To this end, we conveniently
rewrite Γ in (78) as

Γ = D

h̄
+ ıC = (Sth )−1(Λr − ıJΛi )(Sth )−ᵀ, (84)

where we define the diagonal positive defined matrices

Λr = |s|2 + |r|2
2

⊕ |s|2 + |r|2
2

= |s|2
2

(1 + e−h̄βw) ⊕ |s|2
2

(1 + e−h̄βw) (85a)

and Λi = |s|2 − |r|2
2

⊕ |s|2 − |r|2
2

= |s|2
2

(1 − e−h̄βw) ⊕ |s|2
2

(1 − e−h̄βw), (85b)

using the notation |s|2 = diag(|s1|2, . . . , |sn|2), |r|2 =
diag(|r1|2, . . . , |rn|2), and the matrix relation in (80).
Therefore, the diffusion and dissipation matrices are

D = (Sth )−1h̄Λr (Sth )−ᵀ, (86a)

C = (Sth )−1JᵀΛi(Sth )−ᵀ. (86b)

Note that each pair of matrices D and C uniquely determine
a GDS. Since these only depend on the real matrix |s|2, it
is enough to choose a real matrix |s| = diag(|s1|, . . . , |sn|)
instead of a complex matrix s in (78) with r in (80). In this
way the relations in (81) change to

l j = |s j |l̄ j, ln+ j = |s j | e− 1
2 h̄βω j l̄∗j ( j = 1, . . . , n), (87)

which gives the expressions for the coefficients of the Lind-
blad operators in (8b).

The structure of D and C in (86) is determined by the
matrices Sth, w, and |s|. It is worth to note that, according
to Eq. (52), the matrices Sth and w can be extracted from the
ordinary diagonalization of the Hamiltonian matrix JB, where
B is the Hessian matrix of the Hamiltonian Ĥ in (42), that
defines the thermal equilibrium state σ̂ th in (41). However, we
will see in Sec. VI that |s| depends on the coupling constants
of the system and the environment. Thus, each matrix |s|,
corresponding to different coupling constants, defines one
different pair of diffusion and dissipation matrices through
Eqs. (86). The dynamics of the GDSs associated to these
matrices are different because each one corresponds to dif-
ferent Lindblad operators, which are not associated with the
symmetry in (83). Nonetheless, all these GDSs have the same
thermal equilibrium state σ̂ th. This is checked in Appendix E
through the symplectic diagonalization of Vth in (E6), where
the matrix 1

2ΛrΛ−1
i = kth ⊕ kth is the direct sum of the sym-

plectic spectrum of Vth that does not depend on |s|.

V. MASTER EQUATION OF A GDS SATISFYING A ˆ̄σth-DBC

Here, we prove that the master equation of a GDS that
satisfies a ˆ̄σ th-DBC, i.e., satisfying all theorems in last section,
has the form of the quantum optical master equation (QOME)
[see Eq. (5.4.14) in [30]]:

d ρ̂t

dt
= − ı

h̄
[ĤOME, ρ̂t ]

+
∑

k

γ̄k

2
(n̄k + 1)(2X̂ −

k ρ̂t X̂
+
k − {X̂ +

k X̂ −
k , ρ̂t })

+
∑

k

γ̄k

2
n̄k (2X̂ +

k ρ̂t X̂
−
k − {X̂ −

k X̂ +
k , ρ̂t }), (88)

where γ̄k are the coupling constants between the bath and the
system, n̄k = (eh̄βω̃k − 1)−1 is the Planck factor with ω̃k > 0,
and the operators X̂ ±

k are eigenoperators of ĤOME, i.e.,

[ĤOME, X̂ ±
k ] = ±h̄ω̃kX̂ ±

k , (89)

so (X̂ −
k )† = X̂ +

k .
In order to rewrite the master equation of a GDS sat-

isfying a ˆ̄σ th-DBC, first we rewrite the Lindblad operators
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in (8b) as

L̂ j = |s j |X̂ −, (90a)

L̂n+ j = e− 1
2 h̄βω j L̂†

j = |s j |e− 1
2 h̄βω j X̂ +

j (90b)

with

X̂ −
j = l̄ᵀj Jx̂ and X̂ +

j = (X̂ −)† = (l̄∗j )
ᵀJx̂, (91)

when employing Eq. (87) for j = 1, . . . , n. Therefore, using
these expressions for the Lindblad operators, the master equa-
tion in (1) becomes

d ρ̂t

dt
= − ı

h̄
[Ĥeff , ρ̂t ]

+
n∑

j=1

|s j |2
2h̄

(2X̂ −
j ρ̂t X̂

+
j − {X̂ +

j X̂ −
j , ρ̂t }) (92a)

+
n∑

j=1

|s j |2
2h̄

e−h̄βω j(2X̂ +
j ρ̂t X̂

−
j − {X̂ −

j X̂ +
j , ρ̂t }). (92b)

In Appendix F, we prove that X̂ ±
j are eigenoperators of Ĥ

in (42), i.e.,

[Ĥ , X̂ ±
j ] = ±h̄ω j X̂

±
j ( j = 1, . . . , n), (93)

while in Appendix G there is a proof for

|s j |2 = h̄γ̄ j n̄ j eh̄βω j = h̄γ̄ j (n̄ j + 1), (94)

where now the Planck factor is

n̄k = (eh̄βωk − 1)−1. (95)

With all these, we show that the master equation (92) has the
structure of a QOME like the one in (88).

Using Eq. (51) and writing ÛSth for the metaplectic opera-
tor associated with the symplectic matrix Sth, i.e., Û †

Sth x̂ÛSth =
Sthx̂, one can find

Ĥ = 1

2
x̂ᵀBx̂ = Û †

Sth ĤhoÛ(Sth ), (96)

where

Ĥho := 1

2
x̂ᵀ(w ⊕ w)x̂ =

n∑
j=1

ω j

2
( p̂2

j + q̂2
j )

is the Hamiltonian of a multimode harmonic oscillator. The
eigenequation for Ĥho is

Ĥho |n〉 = En |n〉 , En =
n∑

l=1

h̄ωl

(
nl + 1

2

)
, (97)

where |n〉 = |n1〉 ⊗ · · · ⊗ |nn〉, n = (n1, . . . , nn) with nl =
0, . . . ,+∞. Therefore, due to the similarity relation between
Ĥho and Ĥ , the eigenequation of Ĥ is Ĥ |φn〉 = En |φn〉, with

|φn〉 = Û †
Sth |n〉 . (98)

Now, from (93), it is straightforward to verify that X̂ +
j and

X̂ −
j are the creation and annihilation operators of a quantum

h̄ω j associated to the states |φn〉; that is, X̂ ±
j |φn〉 = αn±

j
|φn±

j
〉

is an eigenvector of Ĥ with energy En±
j

such that n±
j =

(n1, . . . , n j ± 1, . . . , nn). Since X̂ ±
j satisfies the commutation

relation (93), the operator X̂ +
j X̂ −

j is the number operator in

the eigenbasis {|φn〉}, i.e., X̂ +
j X̂ −

j |φn〉 = n j |φn〉, therefore,

ᾱn+
j

= √
n j + 1 and ᾱn−

j
= √

n j .10

It is worth to note that we consider the same mode structure
for Ĥho and Ĥ ; what changes is the nature of the stationary
states, i.e., while |n〉 are separable states, |φn〉 could be en-
tangled with respect to the considered mode structure. In an
analogous way, we can rewrite the thermal equilibrium state
in (41) as

σ̂ th = 1

Z th
e− β

2 x̂ᵀ(Sth )ᵀ(w⊕w)Sth x̂

= Û †
Sth σ̂

th
hoÛSth , (99)

where we recognize in

σ̂ th
ho = 1

Z th
e− β

2 x̂ᵀ(w⊕w)x̂ (100)

the Gibbs’s state of the multimode harmonic oscillator with
Hamiltonian Ĥho in (96). The state σ̂ th

ho is manifestly separable,
so the possible entanglement of the state σ̂ th is due to the
action of the unitary operation Û(Sth ), where Sth is the matrix
of the symplectic diagonalization of the Hessian matrix B, as
shown in Eq. (51).

Noteworthy that usually in the derivation of the QOME, it
is assumed that the commutation relation (89) is valid [30].
Here, the quantum detailed balance condition for a GDS
shows that commutation relation (93) must be valid instead.
When Sth is the identity and Ĥeff = Ĥ = Ĥho, we have that
X̂ −

j = â j and X̂ +
j = â†

j are the usual creation and annihila-
tion operators of the multimode quantum harmonic oscillator.
Then, in this case the QOME (92) is the well-known master
equation of a multimode damped harmonic oscillator [43].

VI. ADDITIONAL PROPERTIES OF GDSs
SATISFYING A ˆ̄σth-DBC

A. Temperature dependence of D and C

The final form for the diffusion and dissipation matrices of
GDSs that satisfy a ˆ̄σ th-DBC is obtained replacing (94) into
(86), so

D = h̄2(Sth )−1(ḡkth ⊕ ḡkth ) (Sth )−ᵀ, (101a)

C = h̄

2
(Sth )−1 Jᵀ(ḡ ⊕ ḡ)(Sth )−ᵀ, (101b)

where kth is given in (53) and ḡ is the diagonal matrix con-
taining the coupling constants, i.e.,

ḡ = diag(γ̄1, . . . , γ̄n). (102)

It is worth to remember here that Sth and kth are ultimately
determined by B, the Hessian matrix of Ĥ that defines the ther-
mal equilibrium state. However, the coupling constants can
take different values, thus defining different pair of matrices,
D and C, all having the same equilibrium state. These are the
multiples solutions of Eq. (62).

10This can be checked through a lengthy, but not difficult, calcula-
tion using the definition of X̂ ±

j in (91) and |φn〉 in (98).
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Note that here we consider that the coupling constants do
not depend on temperature. This is consistent with the fact that
the Fokker-Planck equation (34) for Gaussian states corre-
sponds to an Ornstein-Uhlenbeck process [38], where the drift
term ∂JCx

∂xᵀ = tr(JC) corresponds to a drift force −JCx which
does not depend on the temperature [11]. From Eq. (66), we
can write D = h̄(Sth )−1(d ⊕ d)(Sth )−ᵀ, where we use that Sth

is symplectic and that Q† (ıd ⊕ (−ıd)) Q = h̄J(d ⊕ d). Anal-
ogously, from Eq. (67), we can write C = (Sth )−1Jᵀ(jc ⊕
jc)(Sth )−ᵀ, where Q†(jc ⊕ jc)Q = jc ⊕ jc. Comparing with
Eqs. (101), we have d = h̄ḡ kth and jc = h̄

2 ḡ, so d = 2jc kth.
Therefore, the diffusion and dissipation matrices of a GDS
satisfying a QDBC verify the condition (68); this condition
guarantees that the GDS has a thermal equilibrium state.

For the validity of the reciprocal implication (every GDS
that attains thermal equilibrium must satisfy a QDBC), we
need to allow an arbitrary temperature dependence for the
coupling constants in the matrix ḡ. This arbitrariness is clear
taking into account (68), where d = 2jc kth; now jc can de-
pend on temperature still matching (101b) with jc = h̄

2 ḡ for
an arbitrary dependence of ḡ on temperature.

B. High- and low-temperature limits

The high-temperature limit is obtained when considering
h̄β‖w‖ � 1 in (101a), where ‖w‖ = max{ω1, ..., ωn}, so one
can write kth ≈ (h̄βw)−1 + 1

12 h̄βw + O(h̄βw)3 and neglect-
ing higher-order terms, we write

D ≈ h̄β−1(Sth )−1(ḡw−1 ⊕ ḡw−1)(Sth )−ᵀ. (103)

Inserting this into Eq. (62) with C in (101b), using the sym-
plectic condition for Sth, and the symplectic diagonalization
in (51), one obtains

V ≈ (h̄βB)−1. (104)

This limit is also called classical limit and the Wigner function
in (37) for this covariance matrix is the classical Boltzmann
factor exp[−βH] for the classical version (Wigner symbol) of
Hamiltonian (42) [36].

The low-temperature limit corresponds to h̄β‖w‖ � 1 and
in this case kth = 1

21 + O(e−h̄βw). From (101),

D ≈ h̄
1

2
(Sth )−1(Sth )−ᵀJC. (105)

Consequently,

Vth ≈ 1

2
(Sth )−1(Sth )−ᵀ, (106)

and the thermal equilibrium state corresponds to a pure Gaus-
sian state σ̂ th ≈ |φn=0〉〈φn=0|, where |φn=0〉 is the ground state
of the Hamiltonian Ĥ in (42).

C. Pure diffusive regime

This regime corresponds to the limit n̄ j → +∞ (i.e., β →
0) together with γ̄ j → 0, such that n̄ j γ̄ j = c̄ j are constant
values for j = 1, . . . , n. In such limit, the coeficients in (92a)
become equal to the ones in (92b) for the master equation of
the GDS [see also Eq. (88)]. For the difussion and dissipation

matrices, respectively, we have

D = h̄2(Sth )−1 c̄ ⊕ c̄ (Sth )−ᵀ, (107a)

C = 0, (107b)

where c̄ = diag(c̄1, . . . , c̄n). In this case the GDS has no
thermal equilibrium solution because D and C do not satisfy
Eq. (62).

It is worth to note that the master equation in (92) has
no pure dissipative regime, i.e., D = 0, since Eq. (13) is vi-
olated. However, if h̄ represents an effective Planck constant
in the master equation of the GDS in (92), the semiclassical
limit h̄ � 1 and the low-temperature condition h̄β‖w‖ � 1
guarantee the validity of (105), thus, the contributions from
D can be effectively neglected when compared to those com-
ing from C; in this case the evolution is thus dominated by
dissipation [44].

VII. ROLE OF Ĥeff IN THERMALIZATION

So far, we completely answer the question of which kind of
environments, characterized by the diffusion and dissipation
matrices D and C, allow the existence of a given thermal
equilibrium state in a GDS. This state is given by a Gaussian
Gibbs state σ̂ th = e−βĤ/Z th, corresponding to a quadratic
Hamiltonian Ĥ of positive-elliptic type, which is completely
characterized by its covariance matrix Vth such that JVth be-
longs to the commuting set {JVth, JD, JC}.

However, it is interesting to analyze this result from the
perspective of a fixed GDS that governs the system to ther-
mal equilibrium. In this case, the commuting matrices JD
and JC determine JB through the relations (62) and (47).
Then, it is clear that the effective action of the environment,
through the nonunitary part of the evolution in (9), is to con-
fine the system in phase space (with coordinates x) around
the equilibrium point 〈x̂〉th = 0. The energetic balance be-
tween the environment and the system is described by the
quantum positive-elliptic Hamiltonian Ĥ , which is dynami-
cally stable (with spectrum necessarily discrete with bounded
eigenstates). If we admit that every GDS that leads to thermal
equilibrium satisfies a QDBC, the form of the master equation
in (92) together with (93) and (94) helps to understand in
detail the energetic balance of the thermal equilibrium pro-
cess. Indeed, this process is determined by the action of the
eigenoperators X̂ ±

j of Ĥ , which promote transitions between
the energy levels of this Hamiltonian as a consequence of the
interaction with the environment. This contrasts with the usual
derivation [30] of the QOME in (88), where {X̂ ±

j } is consid-

ered as a basis of eigenoperators of ĤOME, which expands the
algebra of operators acting on the system [30].

The induced environmental confinement process of the
system in thermal equilibrium is not influenced by the unitary
dynamics generated by Ĥeff since the commuting set of ma-
trices {JVth, JD, JC}, which ultimately determine the thermal
equilibrium through (62), do not depend on the Hessian matrix
B′ of Ĥeff . However, there are some of these Hamiltonians
that allow the process of thermalization to occur; these are
determined by the condition [Ĥ , Ĥeff ] = 0. Using Eq. (43) and
the results in Appendix H, all these Hamiltonians are written
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as

Ĥeff = 1

2
x̂ᵀB′x̂ = Û †

Sth Ĥ ′
hoÛ(Sth ), (108)

where we employed the same reasoning performed in Eq. (96)
with B′ = (Sth )ᵀ(x ⊕ x)Sth. The Hamiltonian Ĥ ′

ho is the one
of a multimode harmonic oscillator, i.e.,

Ĥ ′
ho := 1

2
x̂ᵀ(x ⊕ x)x̂ =

n∑
j=1

λ j

2
( p̂2

j + q̂2
j )

with x = diag(λ1, . . . , λn) and λ j ∈ R, j = 1, . . . , n.
Likewise Ĥ , the Hamiltonian Ĥeff in (108) is also elliptic,

or dynamically stable. However, contrary to the multimode
harmonic oscillator Ĥho in the expression (96), the arbitrary
frequencies λ j of Ĥ ′

ho can be positive, negative, or even null.
Consequently, Ĥeff can be the null Hamiltonian and the system
still thermalizes to the same state σ̂ th. Note, however, that
taking a null Hamiltonian is quite different of considering
the interaction representation of the QOME in (88), where
the density operator turns to ρ̂I

t = e
ı
h̄ ĤOMEt ρ̂t e− ı

h̄ ĤOMEt since the
frequencies ω̃k still correspond to ĤOME through the Planck
factor n̄k .

It is worth to note that the operators X̂ ±
k are eigenoperators

of Ĥ when the master equation (92) of a GDS thermalizes
[see Eq. (93)], but they are also eigenoperators of Ĥeff , i.e.,
[Ĥ, X̂ ±

j ] = ±h̄λ j X̂
±
j with j = 1, . . . , n. Nevertheless, the fre-

quencies ωk in the master equation (92) are associated with
Ĥ . Thus, the energetic balance of the thermalization process
is associated with transitions in the Hamiltonian Ĥ associated
with the confinement of the system.

VIII. CONCLUSIONS

When a GDS has a thermal equilibrium state σ̂ th, every
initial condition of the evolution ends up on this state. Without
lost of generality, we can choose 〈x̂〉th = 0, so the thermal
state σ̂ th must have the form in (41) with Ĥ in (42), and
the Hamiltonian of the unitary part of the evolution for the
GDS given by Ĥeff , of the form in (44) such that Ĥ = Ĥeff or
[Ĥ, Ĥeff ] = 0. Another prerequisite for σ̂ th came from the nor-
malization of a density operator: in order to have unity trace,
the Hessian matrix B of Ĥ must be positive definite [36]. This
means that Ĥ is elliptic, i.e., its classical counterpart in (54)
generates a Hamiltonian flow given by the symplectic matrix
S̃t in (55) around the elliptic fixed point x = 0. Therefore,
Ĥ is dynamically stable having a discrete energy spectrum
corresponding to bound states.

The nonunitary part of the evolution of a GDS is deter-
mined by the diffusion and dissipation matrices D and C,
respectively. These are the real and imaginary parts, respec-
tively, of the decoherence matrix Γ [see Eq. (11)]. In (62),
we show the relation between the covariance matrix Vth of
σ̂ th and the matrices D and C for every GDS with a thermal
equilibrium state, which has appeared before in [11] in a
narrower context. Further, we show that Vth is completely
determined by the symplectic matrix Sth in (49), which di-
agonalizes symplectically the Hessian matrix B as shown in
(51), and by the symplectic spectrum of B, which contains the
eigenfrequencies ω j > 0 of the system Hamiltonian.

However, Eq. (62) does not establish neither the tempera-
ture dependence of D and C nor characterize all the different

GDSs that have the same thermal equilibrium state σ̂ th. This
deficiency can be fixed extending Alicki’s QDBC (developed
for systems described by discrete Hilbert spaces) to n-mode
bosonic systems. We have shown how to implement this ex-
tension and the result is that all GDSs verifying a QDBC have
a thermal equilibrium state whose dynamics is characterized
by symplectically invariant diffusion and dissipation matri-
ces [see Eq. (72)]. This condition allows the characterization
of the Lindblad operators of a GDS satifying a QDBC in
Theorem 5.

The corresponding master equation has the structure of
a quantum optical master equation (QOME) [see Eq. (92)
together with Eqs. (93) and (94)]. As a consequence, the
matrices D and C have the specific structure in (101), which
sets explicitly their dependence on temperature. These expres-
sions also show that different GDSs with the same thermal
equilibrium state differ from each other only on the value
of the coupling constants, namely, γ̄ j in (94), because Sth is
determined by the symplectic diagonalization of B, i.e., the
Hessian matrix of Ĥ . Usually, the coupling constants γ̄ j do
not depend on temperature, however, we show that if we allow
these to have an arbitrary temperature dependence, then it
is possible to say that every GDS with thermal equilibrium
satisfies a QDBC.

We also have shown that it is possible to define a pure
diffusive regime for any GDS satisfying the QDBC, where the
GDS lost its stationary solution. This is a specific example of
the necessity to balance diffusion and dissipation to achieve a
stationary solution in any quantum dynamical semigroup [11].

Finally, we also show that the contribution of Ĥeff to
the dynamics of a GDS has no influence in the thermal-
ization process. However, by determining all Ĥeff such that
[Ĥ , Ĥeff ] = 0, we have determined all Hamiltonians that al-
low thermalization. These Hamiltonians are also dynamically
stable as Ĥ , however, with arbitrary eigenenergy frequencies.
Therefore, the energetic balance of the thermalization process,
determined by Ĥ , is completely independent of Ĥeff . This
marks a fundamental difference between the QOME for a
GDS satisfying a QDBC and the usual QOME [30].
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APPENDIX A: PROOF OF LEMMA 1

Let us prove first that D > 0 under the hypothesis of
the Lemma. Since C is antisymmetric (C = −Cᵀ) and in-
vertible, the spectral theorem [45] guarantees that there is a
unitary diagonalizing matrix U, such that UCU† = (−ıc) ⊕
(ıc) = C′, where c = diag(c1, . . . , cn), with ci > 0, for i =
1, . . . , n. Thus, using (13) we have Uh̄ΓU† = D′ + C′ � 0,
where D′ = UDU† and C′ = (h̄c) ⊕ (−h̄c). Now consider the
matrix Γᵀ and apply the same unitary transformation, reach-
ing UΓᵀU† = D′ − C′ � 0, which is positive semidefinite,
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since Γᵀ is Hermitian and has the same eigenvalues of Γ.
For a complex 2n-dimensional vector z, the above matrix in-
equalities are equivalent to z†D′z ± z†C′z � 0, for all vectors
z, which implies z†D′z > 0, thus D > 0.

To prove that Γ > 0, it is enough to use that z†Cz = 0 for
all vectors z since C is antisymmetric. Consequently, h̄z†Γz =
z†Dz since D > 0 under the hypothesis of the Lemma 1 in
Sec. II, thus Γ > 0. This finishes the proof.

Observing the particular case where C = 0, one has Γ > 0
iff D > 0, which shows that the converse of the Lemma is not
true.

APPENDIX B: PROOF OF THEOREM 2

Since �̄t is a GDS and satisfies a ˆ̄σ th-DBC, we have

〈�̄t [Â], B̂〉GNS = 〈Â, �̄t [B̂]〉GNS. (B1)

Evaluating for Â = 1̂, we have �̄t [1̂] = 1̂ and thus

〈1̂, B̂〉GNS = 〈1̂, �̄t [B̂]〉GNS. (B2)

However, 〈1̂, B̂〉GNS=〈 ˆ̄σ, B̂〉 and 〈1̂, �̄t [B̂]〉GNS=〈 ˆ̄σ, �̄t [B̂]〉 =
〈�t [ ˆ̄σ ], B̂〉, where we use that �t is the adjoint of �̄t with
respect to the Hilbert-Schmidt scalar product 〈·〉. Therefore,
we arrive to

〈 ˆ̄σ th, B̂〉 = 〈�t [ ˆ̄σ th], B̂〉, (B3)

valid for all operators B̂ such the Hilbert-Schmidt scalar prod-
uct on both sides is finite. In particular, we can use B̂ = R̂x, a
reflection operator defined in Sec. II B, therefore, (B3) is just
the equality between the Wigner symbols of ˆ̄σ th and �t [ ˆ̄σ th],
which implies that �t [ ˆ̄σ th] = ˆ̄σ th.

APPENDIX C: PROOF OF THEOREM 3

Let us start writing

〈�̄t [
τ [Â]], B̂〉GNS = Tr( ˆ̄σ th(�̄t [
τ [Â]])†B̂)

= Tr( ˆ̄σ th(
τ [Â])†�̄t [B̂]) = Tr( ˆ̄σ th
τ ∗[Â†]�̄t [B̂])

= Tr( ˆ̄σ th e
ı
h̄ Ĥτ ∗

Â†e− ı
h̄ Ĥτ ∗

�̄t [B̂])

= Tr(e− ı
h̄ Ĥτ ∗

�̄t [B̂
†]† e

ı
h̄ Ĥτ ∗ ˆ̄σ thÂ†), (C1)

where in the first line we used that �̄t satisfies a ˆ̄σ th-DBC
and the notation τ ∗ means complex conjugation of τ ; in the
third line, we used that [e± ı

h̄ Ĥτ , ˆ̄σ th] = 0 and that �̄t is a real
superoperator, i.e., �̄t [B̂†]† = �̄t [B̂].

Following [19], we specialize (C1) for τ ∗ = −ı h̄β, there-
fore, e

ı
h̄ Ĥ (−ı h̄β ) = ( ˆ̄σ th )−1, then

〈�̄t [
ı h̄β[Â]], B̂〉GNS = Tr( ˆ̄σ th �̄t [B̂
†]† Â†)

= Tr( ˆ̄σ th (B̂†)† �̄t [Â
†]) = Tr( ˆ̄σ th B̂ �̄t [Â]†)

= Tr(�̄t [Â]† ˆ̄σ th B̂) = Tr( ˆ̄σ th ( ˆ̄σ th )−1�̄t [Â]† ˆ̄σ th B̂)

= Tr( ˆ̄σ th ( ˆ̄σ th�̄t [Â] ( ˆ̄σ th )−1)† B̂)

= Tr( ˆ̄σ th (
ı h̄β[�̄t [Â]])† B̂)

= 〈
ı h̄β[�̄t [Â]], B̂〉GNS. (C2)

Since this identity is valid for any operator B̂, we can set it
equal to the reflection operator, i.e., B̂ = R̂x. Then, in this
case, Eq. (C2) just restates that the Wigner symbols of the
operator ˆ̄σ th�̄t [
ı h̄β[Â]] and of ˆ̄σ th
ı h̄β[�̄t [Â]] are identical,
therefore also the operators themselves. For any finite value
β, the operator ˆ̄σ th has an inverse, then it must be true that

�̄t [
ı h̄β[Â]] = 
ı h̄β[�̄t [Â]], (C3)

for all Â, which means that �̄t commutes with 
ı h̄β for all t .

Noting that ( ˆ̄σ th )±
ıt
h̄β = (e−βĤ )±

ıt
h̄β = e∓ ı

h̄ t Ĥ , therefore, we
can define (
ı h̄β )−

ıt
h̄β [·] = ( ˆ̄σ th )−

ıt
h̄β · (( ˆ̄σ th )−1)−

ıt
h̄β = e

ı
h̄ Ĥt ·

e− ı
h̄ Ĥt = 
t [·]. But, according to (C3), �̄t commutes with


ı h̄β and thus it must commute with any function of 
ı h̄β , then
with (
ı h̄β )

ı
h̄ t = 
t for all t ∈ C. Taking the time derivative on

both sides of Eq. (C3) and using d�̄t [·]/dt = L̄[�̄t [·]], we get
L̄[�̄t [
ı h̄β[Â]]] = 
ı h̄β[L̄�̄t [[Â]]], which shows that L̄ com-
mute with 
ı h̄β when t = 0. Following the same reasoning as
before, L̄ commutes with 
t .

APPENDIX D: DEMONSTRATION OF EQ. (74)

Let us start from the left-hand side of (74):


−t

[
∂

∂ x̂ᵀ [·]
]

= 
−t

[ ı

h̄
[(Jx̂)ᵀ, ·]

]
= ı

h̄

(

−t [(Jx̂)ᵀ ·] − ı

h̄

−t [· (Jx̂)ᵀ]

)
= ı

h̄

(

−t [(Jx̂)ᵀ]
−t [·] − ı

h̄

−t [·]
−t [(Jx̂)ᵀ]

)

= ı

h̄

(
−
−t [x̂ᵀ] J 
−t [·] + ı

h̄

−t [·] 
−t [x̂ᵀ] J

)
= ı

h̄

(
−x̂ᵀS̃−ᵀ

t J 
−t [·] + ı

h̄

−t [·] x̂ᵀS̃−ᵀ

t J
)

= ı

h̄

(
−x̂ᵀ J S̃t 
−t [·] + ı

h̄

−t [·] x̂ᵀ JS̃t

)
= ı

h̄

(
(Jx̂)ᵀ
−t [·] − ı

h̄

−t [·] (J x̂)ᵀ

)
S̃t = ∂

∂ x̂ᵀ [
−t [·]]S̃t , (D1)

where we used that 
−t [x̂ᵀ] = x̂ S̃−ᵀ
t and S̃−ᵀ

t J = JS̃t because S̃t is a symplectic matrix.

APPENDIX E: DEMONSTRATION OF EQ. (78)

In order to prove Eq. (78), note that the decoherence matrix
Γ, that stems from Theorem 4, must be invariant under a
congruence with S̃t in (55). This follows using (72) into the
definition of the matrices D and C in (10), and the fact that S̃t

is a real matrix.
Now, using Eq. (55) we can write S̃t (QSth )−1 =

(QSth )−1e(JB)d t , so the column vectors (QSth )−1|k = l̄k for

k = 1, . . . , 2n are the complex eigenvectors of S̃t . Respecting
the block order in the matrix in (52), we can write

S̃t l̄ j = eıω j t l̄ j, (E1a)

S̃t l̄n+ j = S̃t l̄∗j = e−ıω j t l̄∗j , (E1b)

where j = 1, . . . , n and ω j > 0 are the frequencies corre-
sponding to the symplectic spectra of B in (51). According
to (E1), it is clear that the canonical form of Γ in (78) is
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manifestly invariant under a congruence through S̃t and is
positive definite, as it must be.

Let us now prove that the matrices s and r in (78) satisfy
the relation in Eq. (80). We first note that the expression of
Γ in (78) can be rewritten as in (84), which allows us to
show that the matrix (Sth )ᵀQ† diagonalizes simultaneously
the Hamiltonian matrix JD and the skew Hamiltonian matrix
JC, therefore, we must have [JD, JC] = 0. Indeed, from (84),
we have

JD = h̄J(Sth )−1Λr (Sth )−ᵀ = h̄(Sth )ᵀJΛr (Sth )−ᵀ

= h̄(Sth )ᵀQ†QJΛrQ
†Q(Sth )−ᵀ

= (Sth )ᵀQ†(JD)d((Sth )ᵀQ†)−1, (E2)

where Q is the unitary matrix defined in (26). In the above
steps, the symplectic condition J(Sth )−1 = (Sth )ᵀJ and the
fact that h̄QJΛrQ† is a diagonal matrix were employed. Since
Eq. (E2) is a similarity transformation the matrix h̄QJΛrQ†

has the eigenvalues of JD in its diagonal. Therefore, we can
write

(JD)d = ı h̄

2
[(|s|2 + |r|2) ⊕ (−|s|2 − |r|2)]. (E3)

It is worth to note that, according to Lemma 2, the diagonal
matrix d = 1

2 (|s|2 + |r|2) contains the symplectic spectrum of
D. In an analogous way, we have

JC = J(Sth )−1(−JΛi )(Sth )−ᵀ = (Sth )ᵀΛi(Sth )−ᵀ

= (Sth )ᵀQ†ΛiQ(Sth )−ᵀ

= (Sth )ᵀQ†(JC)d((Sth )ᵀQ†)−1, (E4)

where the eigenvalue matrix corresponding to JC is

(JC)d = Q†ΛiQ = Λi = jc. (E5)

From (E2) and (E4), we immediately realize that JD com-
mutes with JC, as we wanted to prove.

The condition [JD, JC] = 0 in Theorem 1 (proved in the
main text) determines univocally the covariance matrix Vth of
a thermal equilibrium state σ̂ th. Therefore, using the expres-
sions (62) and (86), we can write

Vth = (Sth )−1 1

2
ΛrΛ

−1
i (Sth )−ᵀ, (E6)

where we used the symplectic condition J(Sth ) = (Sth )−ᵀJ.
Comparing with Eq. (49), we immediately recognize in
Eq. (E6) the symplectic spectrum of Vth, i.e.,

1

2
ΛrΛ

−1
i = kth ⊕ kth. (E7)

Equating the matrix elements on both sides of (E7), we obtain
1
2

1+a j

1−a j
= κ th

j with a j = |r j |2
|s j |2 and j = 1, . . . , n. Inverting these

equations and rewriting in a matrix structure, we get

|r|2
|s|2 = 2kth − 1

2kth + 1
. (E8)

Now using (31), (45), and (51), we arrive to the
equality g(kth ) = h̄βw. Then, employing the identity
exp[−2 coth−1(2x)] = 2x−1

2x+1 for x � 1
2 , we can rewrite

Eq. (E8) as

|r|2
|s|2 = e−h̄βw, (E9)

which finally implies the relation in (80).

APPENDIX F: PROOF OF EQ. (93)

Let us prove an equivalent statement of Eq. (93), i.e., in a
GDS satisfying a ˆ̄σ th-DBC we have

[Ĥ, L̂ j] = −h̄ω j L̂ j ⇒ [Ĥ, L̂†
j ] = h̄ω j L̂

†
j , (F1)

for j = 1, . . . , n, Ĥ given in (42), and the Lindblad operators
L̂ j in (90).

For a generic symmetric matrix X and a generic complex
vector l, it is straightforward to show that[

1

2
x̂ᵀXx̂, lᵀJx̂

]
= ı h̄lᵀXx̂ = ı h̄lᵀXJᵀJx̂, (F2)

which is the commutation relation for a generic quadratic
Hamiltonian with a linear Lindblad operator. But, if the GDS
satisfies a ˆ̄σ th-DBC according to Eq. (55), l̄ j appearing in (91)
is an eigenvector of the matrix JB, i.e., JBl̄ j = ıω j l̄ j , which
is the same as say that l̄ j = (QSth )−1| j (see Appendix E).
Therefore, using (F2) with lᵀj BJ = ıω j l

ᵀ
j we arrive to (F1).

APPENDIX G: PROOF OF EQ. (94)

Let us start noting that for the thermal state σ̂ th in (41), or
equivalently in (99), the eigenenergy distribution is the usual
(multimode) Planck distribution:

P(n) = 〈φn|σ̂ th|φn〉 = 〈n|σ̂ th
ho|n〉 =

n∏
j=1

Pnj (n̄ j ), (G1)

which is nothing but a consequence of Eqs. (96) and (98). In
the above equation,

Pnj (n̄ j ) = 1

n̄ j + 1

(
n̄ j

n̄ j + 1

)n j

, (G2)

where n̄ j is in (95). Note that n̄ j (n̄ j + 1)−1 = e−h̄βω j .
This distribution can be recovered considering the station-

ary regime d ρ̂t

dt = 0 in (92), subsequently taking the diagonal
matrix elements in the eigenbasis {|φn〉} and using the com-
mutation relation [X̂ −

j , X̂ +
j ] = 1, indeed

n∑
j=1

|s j |2
h̄

[
(n j + 1) Pn j+1 − n jPn j

]

+
n∑

j=1

|s j |2
h̄

e−h̄βω j
[
n j Pn j−1 − (n j + 1)Pn j

] = 0,

where Pn j = 〈φn|σ̂ th|φn〉 and Pn j±1 = 〈φn±
j
|σ̂ th|φn±

j
〉. As can

be directly checked, the solution is

Pn j = h̄γ̄ j

|s j |2 e−h̄βω j n j . (G3)

The constant γ̄ j is included in order to h̄γ̄ j/|s j |2 be dimen-
sionless. Comparing Eqs. (G3) and (G2) we arrive to (94).
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APPENDIX H: ALGEBRA OF COMMUTING ELLIPTIC
HAMILTONIAN MATRICES

In this Appendix we will prove the following theorem:
Theorem 6. Consider a positive-definite symmetric matrix

B and a symmetric matrix B′ such that [JB, JB′] = 0, then

JB′ = (QS)−1 ıx ⊕ (−ıx) (QS), (H1)

where Q is defined in (26), x := diag(λ1, . . . , λn) with λi ∈ R
for i = 1, . . . , n, and S is a symplectic matrix that diagonal-
izes symplectically B, i.e.,

S−ᵀBS = w ⊕ w, w = diag(ω1, . . . , ωn) (H2)

for ωi > 0 and i = 1, . . . , n. Further, Eq. (H1) is equivalent to
a “symplectic diagonalization” of B′:

S−ᵀB′S−1 = x ⊕ x. (H3)

Let S̃ be a symplectic matrix such that S̃−ᵀBS̃ = w ⊕ w,
then

[JB, JB′] = [JS̃ᵀ(w ⊕ w)S̃, JB′]

= JS̃ᵀ [J(w ⊕ w), S̃−ᵀB′S̃−1] S̃, (H4)

where we used the symplectic condition S̃J = JS̃−ᵀ and
J(w ⊕ w) = (w ⊕ w)J. Writing

B̃ := S̃−ᵀB′S̃−1 =
(

x̃ ỹ
ỹᵀ z̃

)
,

where x̃, ỹ, and z̃ are n × n real matrices such that x̃ = x̃ᵀ and
z = zᵀ, and using the commutation relation [JB, JB′] = 0 in
(H4) one attains

ỹ� = −w−1ỹw = −wỹw−1 and z̃ = w−1x̃w = wx̃w−1;

consequently, [ỹ,w] = [x̃,w] = 0, thus x̃ = z̃ and ỹ is skew
symmetric ỹᵀ = −ỹ. All of these relations enable us to write

B̃ := S̃−ᵀB′S̃−1 =
(

x̃ ỹ
−ỹ x̃

)
. (H5)

Multiplying by J from left, considering the symplecticity of
S̃, and using Q, the last equation is equivalently rewritten as

(QS̃) JB′ (QS̃)−1 = QJB̃Q† = (ıx̃ − ỹ) ⊕ (−ıx̃ − ỹ). (H6)

The above particular block structure is a consequence of the
degenerated structure of the diagonal matrix w ⊕ w, where
each diagonal element is at least doubly degenerated.

The two blocks in the matrix of rightmost equality in
(H6) are skew Hermitian and, moreover, they are complex
conjugates of each other. Recalling that a skew-Hermitian
matrix has pure imaginary (possibly null) eigenvalues and is
unitarily diagonalizable [46], then there exists a unitary matrix
u such that u(ıx̃ − ỹ)u† = ıx, where x = diag(λ1, . . . , λn) is
the diagonal matrix containing the eigenvalues λ j ∈ R of the
matrix ıx̃ − ỹ.

Defining S = R S̃ with

R = Q

(
u 0
0 u∗

)
Q† ∈ Sp(2n,R) ∩ O(2n) (H7)

a real symplectic and orthogonal matrix, from (H6) we can
write

QS JB′ (QS)−1 = ıx ⊕ (−ıx), (H8)

which is Eq. (H1). Since S is symplectic and using
that Q†(ıx ⊕ (−ıx))Q = J(x ⊕ x), we immediately recover
Eq. (H3) from (H8).

However, it remains to prove that S satisfies (H2). If
the symplectic spectrum in w is nondegenerate, conditions
[ỹ,w] = [x̃,w] = 0, x̃ᵀ = x̃, and ỹᵀ = −ỹ imply x̃ = x =
diag(λ1, . . . , λn) and y = 0, so one can choose u = 1 such
that R = 1 and S = S̃; consequently, S satisfies (H2), as
claimed. When the symplectic spectrum in w is degenerate,
x̃ is diagonal outside the degenerate subspaces of w, while
y is null outside the same subspaces. Therefore, the unitary
matrix u has to diagonalize ıx̃ − ỹ only inside the degenerate
subspaces of w. This is possible choosing u block diagonal
such uıx̃ − ỹu† = ıx. In this case we also have that Rᵀw ⊕
w R = w ⊕ w, and therefore S = R S̃ also diagonalize sym-
plectically B, i.e.,

B = Sᵀw ⊕ wS = S̃ᵀRᵀw ⊕ w RS̃ = S̃ᵀw ⊕ w S̃, (H9)

which shows that S satisfies (H2) for the degenerate case; with
this we finish the proof of the theorem.

[1] A. S. Holevo, M. Sohma, and O. Hirota, Phys. Rev. A 59, 1820
(1999).

[2] A. S. Holevo and R. F. Werner, Phys. Rev. A 63, 032312
(2001).

[3] A. S. Holevo, Sending quantum information with Gaussian
states, in Quantum Communication, Computing, and Measure-
ment 2, edited by P. Kumar, G. M. D’Ariano, and O. Hirota
(Springer, Boston, 2002), pp. 75–82

[4] N. J. Cerf, G. Leuchs, and E. S. Polzik, Quantum Information
with Continuous Variables of Atoms and Light (Imperial College
Press, London, 2007).

[5] F. Caruso, J. Eisert, V. Giovannetti, and A. S. Holevo, New J.
Phys. 10, 083030 (2008).

[6] A. S. Holevo, Quantum Systems, Channels, Information (De
Gruyter, Berlin, 2019).

[7] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C.
Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621
(2012).

[8] G. Adesso, S. Ragy, and A. R. Lee, Open Syst. Inf. Dyn. 21,
1440001 (2014).

[9] M. M. Wolf, G. Giedke, and J. I. Cirac, Phys. Rev. Lett. 96,
080502 (2006).

062207-15

https://doi.org/10.1103/PhysRevA.59.1820
https://doi.org/10.1103/PhysRevA.63.032312
https://doi.org/10.1088/1367-2630/10/8/083030
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1103/PhysRevLett.96.080502


FABRICIO TOSCANO AND F. NICACIO PHYSICAL REVIEW A 106, 062207 (2022)

[10] T. Heinosaari, A. Holevo, and M. Wolf, Quantum Inf. Comput.
10, 619 (2010).

[11] F. Toscano, G. M. Bosyk, S. Zozor, and M. Portesi, Phys. Rev.
A 104, 062207 (2021).

[12] V. Giovannetti, A. S. Holevo, S. Lloyd, and L. Maccone, J. Phys.
A: Math. Theor. 43, 415305 (2010).

[13] G. De Palma, D. Trevisan, and V. Giovannetti, IEEE Trans. Inf.
Theory 62, 2895 (2016).

[14] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and
Applications, Lecture Notes in Physics (Springer, Berlin, 2007).

[15] P. Vanheuverzwijn, Ann. I.H.P.: Phys. Theor. 29, 123 (1978).
[16] P. Vanheuverzwijn, Ann. I.H.P.: Phys. Theor. 30, 83 (1979).
[17] B. Demoen, P. Vanheuverzwijn, and A. Verbeure, Rep. Math.

Phys. 15, 27 (1979).
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